An Evaluation of the Impact of 60Co Irradiation on Volatile Organic Compounds of Olibanum Using Gas Chromatography Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Results
2.1. GC-IMS Profiles of Olibanum at Different Irradiation Doses
2.2. Qualitative Analysis of the VOCs in Olibanum
2.3. Fingerprint Analysis of the Volatile Organic Compounds of Olibanum at Four Irradiation Doses
2.4. Chemometric Analysis
2.4.1. Principal Component Analysis (PCA)
2.4.2. Cluster Analysis (CA)
2.4.3. Partial Least-Squares Discriminant Analysis (PLS-DA)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. 60Co-γ Irradiation
4.3. Analysis by GC–IMS
4.3.1. Sample Preparation
4.3.2. Headspace Conditional
4.3.3. GC Conditional
4.3.4. IMS Conditional
4.4. Statistical Analysis
5. Conclusions
- Rapid detection and analysis—this method saves time and money by allowing samples to be detected and analyzed quickly without requiring complex sample processing;
- High sensitivity and accuracy—GC-IMS is highly sensitive and can detect trace components and it can be used to analyze samples qualitatively and quantitatively when combined with chemometric methods;
- Visualization and fingerprint recognition—using this technique, fingerprint spectra can be quickly generated and samples can be compared and identified more easily;
- Multi-sample classification and clustering analysis—based on the differences of VOCs, this method can classify and cluster samples with different processing methods, thereby supporting sample quality control and optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, Y.M.; Xie, S.H.; Yao, L.; Zheng, J.; Xue, H.C.; Dong, L.Y.; Chen, J.F. Research and Industrialization Application of New Technologies for Sterilization of Traditional Chinese Medicine Raw Powder. Innov. World Wkly. 2021, 1, 86–93. [Google Scholar]
- Feng, S.J.; Wu, Z.F.; Wang, Y.Q.; Yue, P.F.; Zhang, S.J.; Yang, M. Current situation and problem analysis on sterilization process for Chinese materia medica. Chin. Tradit. Herb. Drugs 2015, 46, 2667–2673. [Google Scholar] [CrossRef]
- Wei, Y.L.; Lan, X.Q. Progress in Application research of 60Co Irradiation Sterilization on Traditional Chinese Medicine. Strait. Pharm. J. 2019, 31, 4–7. [Google Scholar] [CrossRef]
- Leminih, M.; Teketay, D. Frankincense and myrrh resources of Ethiopia I distribution production opportunities for dryland development and research needs. Ethiop. J. Sci. 2003, 26, 63–72. [Google Scholar] [CrossRef]
- Shen, T.; Lou, H.X. Bioactive constituents of myrrh and frankincense, two simultaneously prescribed gum resins in Chinese traditional medicine. Chem. Biodivers. 2008, 5, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, M.B.F.; Alrouji, M.; Almuhanna, Y.; Asad, M.; Joseph, B. In-vitro and in-vivo antibacterial effects of frankincense oil and its interaction with some antibiotics against multidrugresistant pathogens. Antibiotics 2022, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Obiștioiu, D.; Hulea, A.; Cocan, I.; Alexa, E.; Negrea, M.; Popescu, I.; Herman, V.; Imbrea, I.M.; Mindru, G.H.; Suleiman, M.A.; et al. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants 2023, 12, 1807. [Google Scholar] [CrossRef] [PubMed]
- Al-Yasiry, A.R.M.; Kiczorowska, B. Frankincense—Therapeutic properties. Adv. Hyg. Exp. Med. 2016, 70, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Yang, Q.; Osban, J.; Azzarello, J.; Saban, M.; Saban, R.; Ashley, R.; Welter, J.; Fung, K.M.; Lin, H.K. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement. Altern. Med. 2009, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Ragab, E.A.; Abd El-Wahab, M.F.; Doghish, A.S.; Salama, R.M.; Eissa, N.; Darwish, S.F. The journey of boswellic acids from synthesis to pharmacological activities. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Liu, J.J.; Zhou, W.C.; Zhou, W.; Li, S.X.; Huang, D. Influence of 60Co-γ Irradiation on the Components of Essential Oil of Curcuma. Molecules 2023, 28, 5877. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Lei, C.; Hu, G.; Zhou, W.; Li, Y.; Huang, D. Investigation of 60Co Irradiation on the Volatile Organic Compounds from Finger Citron (Citri Sarcodactylis Fructus) Using GC–IMS. Foods 2023, 12, 3543. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yin, L.; Zhou, W.; Wan, H.Y.; Lei, C.; Li, S.X.; Huang, D. Evaluation of 60Co Irradiation on Volatile Components of Turmeric (Curcumae Longae Rhizoma) Volatile Oil with GC-IMS. Foods 2023, 12, 2489. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.X.; Wu, M.F.; Lin, R.M.; Li, X.; Ding, H.; Han, L.F.; Yang, W.Z.; Song, X.B.; Li, W.B.; Qu, H.B.; et al. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.M.; Wang, Z.Z.; Liu, X.D.; Yan, X.C.; Liu, S.S.; Li, X.; Liao, Z.Y.; He, X.Y. Process optimization of chili flavor beef tallow and analysis of its volatile compounds by GC-IMS. Int. J. Food Eng. 2021, 17, 507–516. [Google Scholar] [CrossRef]
- Yuan, J.; Li, H.; Cao, S.; Liu, Z.; Li, N.; Xu, D.; Mo, H.; Hu, L. Monitoring of Volatile Compounds of Ready-to-Eat Kiwifruit Using GC-IMS. Foods 2023, 24, 4394. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Han, Y.; Li, J.; Niu, X.; Ma, G.; Xu, Q. Discriminant Analysis of Aroma Differences between Cow Milk Powder and Special Milk Powder (Donkey, Camel, and Horse Milk Powder) in Xinjiang Based on GC-IMS and Multivariate Statistical Methods. Foods 2023, 12, 4036. [Google Scholar] [CrossRef]
- Kucukoglu, A.S.; Hiz, G.; Karaca, H. Effects of thermal and nonthermal treatments on microorganisms, pyrrolizidine alkaloids and volatile compounds in oregano (Origanum vulgare L.). Food Chem. 2023, 440, 138235. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.H.A.; Alwan, A.S.; Mohamed, A.M. Principal component analysis as tool for data reduction with an application. EUREKA Phys. Eng. 2022, 5, 184–198. [Google Scholar] [CrossRef]
- Zheng, H.P. Composition identification of ancient glass products based on cluster analysis. Acad. J. Comput. Inf. Sci. 2022, 5, 38–43. [Google Scholar] [CrossRef]
- Liu, H.C.; Yu, Y.S.; Zou, B.; Yu, Y.Y.; Yang, J.G.; Xu, Y.J.; Chen, X.W.; Yang, F. Evaluation of Dynamic Changes and Regularity of Volatile Flavor Compounds for Different Green Plum (Prunus mume Sieb. et Zucc) Varieties during the Ripening Process by HS-GC–IMS with PLS-DA. Foods 2023, 12, 551. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wei, X.C.; Xu, X.R.; Zhang, H.Z.; Luo, C.H.; Feng, B.; Xu, R.C.; Zhao, S.Y.; Du, X.J.; Han, L.; et al. Seeing the Unseen of the Combination of Two Natural Resins, Frankincense and Myrrh: Changes in Chemical Constituents and Pharmacological Activities. Molecules 2019, 17, 3076. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.X.; Cha, Y.F.; Li, J.; Yu, J.D.; Dai, Z.; Ma, S.C.; Zhu, J. Discussion on Quality Status of TCM Raw Powder Preparations Based on National Post-market Drug Surveillance in 2018. Chin. Pharm. J. 2019, 54, 1617–1621. [Google Scholar] [CrossRef]
- Wang, S.W.; Li, Y.X.; Qu, Y.; Guo, D.; Luo, S.; Wang, J.X.; Peng, C.R.; Zhang, X.B.; Jiang, H.Z. Enhancing effects of 60Co irradiation on the extraction and activities of phenolic components in edible Citri Sarcodactylis Fructus. Food Chem. 2023, 417, 135919. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Li, X.Q.; Chen, Y. Effect of 60Co-γ Irradiation Sterilization on the Active Components of Indigo Naturalis. China Pharmarist. 2022, 25, 724–728. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Peng, L.; Li, P.-H.; Zhang, Q.-L.; Gao, M.-X.; Zhou, Y.-J.; Li, W.-G.; Deng, G.-Q. Evaluation on the Quality of Lonicerae flos of Electron Beam Irradiation Sterilization Based on Spectrum-Effect Analysis. J. Nucl. Agric. Sci. 2022, 36, 745–753. [Google Scholar] [CrossRef]
- Ma, Y.; Han, Z.M.; Zhang, W.; Ma, J.; Guan, Y.X.; Zhang, G.M. Effects of 60Co-γ ray irradiation sterilization on quality of Buthus martensii Karsch powder. Chin. J. Pharmacovigil. 2023, 20, 519–523. [Google Scholar] [CrossRef]
- Wang, G.; Wang, D.; He, Y.; Fu, M.; Tang, Y.W.; Qing, C.; Gao, P.; Huang, M. Study on the Decontamination Process of Decoction Pieces of Ophiopogon japonicus and Rheum palmatum L. by Electron Beam Irradiation. J. Nucl. Agric. Sci. 2022, 36, 1579–1588. [Google Scholar]
- Luo, D.Q.; Zhao, S.S.; Tang, Y.R.; Wang, Q.J.; Liu, H.J.; Ma, S.C. Analysis of the Effect of 60Co-γ Irradiation Sterilization Technology on the Chemical Composition of Saffron Using UPLC and UPLC/Q-TOF-MS. J. Anal. Methods Chem. 2018, 2018, 2402676. [Google Scholar] [CrossRef] [PubMed]
- Badr, P.; Daneshamouz, S.; Mohammadi, A.A.; Akbarizadeh, A.R.; Afsharypuor, S. The effect of 60Co-gamma radio-sterilization on Boswellia carterii essential oil composition. Res. J. Pharmacogn. 2016, 3, 67–74. [Google Scholar]
- Gao, K.; Chen, J.B.; Wang, Y.H.; Qi, Y.L.; Chen, L.X.; Li, S.S.; Sun, Y.S. Effects of 60Co-γ and Electron Beam Irradiation on Storage Quality of Panax ginseng. Food Bioprocess Technol. 2018, 11, 1627–1638. [Google Scholar] [CrossRef]
- Wehr, J.B.; Kirchhof, G. Gamma Irradiation with 50 kGy Has a Limited Effect on Agronomic Properties of Air-Dry Soil. Soil Syst. 2021, 5, 28. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, P.; Cardador, M.J.; Ríos-Reina, R.; Sánchez-Carvajal, J.M.; Galán-Relaño, Á.; Jurado-Martos, F.; Luque, I.; Arce, L.; Gómez-Laguna, J.; Rodríguez-Estévez, V. Detection of Mycobacterium tuberculosis complex field infections in cattle using fecal volatile organic compound analysis through gas chromatography-ion mobility spectrometry combined with chemometrics. Microbiol. Spectr. 2023, 11, e0174323. [Google Scholar] [CrossRef] [PubMed]
Sterilization Methods | Advantages | Disadvantages |
---|---|---|
Dry heat sterilization | (1) It is suitable for items that are resistant to high temperatures. | (1) Compared with moist heat sterilization, the sterilization effect is poor. |
Saturated steam sterilization | (1) It has a good sterilization effect and is suitable for items that should not be changed or damaged when exposed to high temperatures and humidity. | (1) Chinese medicine powder is likely to absorb moisture and the sterilization, which is conducted using saturated steam, is more likely to cause it to agglomerate, which may increase the time required for the drying process or cause secondary pollution. |
Drug sterilization | (1) It can reduce the number of microorganisms and provide a certain level of sterility. (2) It is suitable for surface sterilization and environmental sterilization. | (1) It is only effective on microbial reproductive bodies and cannot kill spores. (2) There is a risk of drug residues. (3) It is mostly used for sterilizing pieces and medicinal materials and there is almost no sterilization effect for powders. |
Ultraviolet sterilization | (1) Ultraviolet sterilization is the most suitable for surface sterilization and environmental sterilization. | (1) Other than surface sterilization and environmental sterilization, other sterilization is not often used. |
Count | Compound | CAS# | Molecular Formula | MW | RI | Rt/s | Dt/ms |
---|---|---|---|---|---|---|---|
1 | pentyl hexanoate | C540078 | C11H22O2 | 186.3 | 1510.4 | 979.146 | 2.17211 |
2 | Pentyl hexanoate D | C540078 | C11H22O2 | 186.3 | 1528.7 | 1017.409 | 1.53722 |
3 | n-octyl acetate | C112141 | C10H20O2 | 172.3 | 1483.9 | 926.536 | 2.16943 |
4 | 2-Decanone D | C693549 | C10H20O | 156.3 | 1499.5 | 957.145 | 2.00276 |
5 | 2-Decanone M | C693549 | C10H20O | 156.3 | 1503.9 | 965.997 | 1.46578 |
6 | Benzaldehyde | C100527 | C7H6O | 106.1 | 1519.3 | 997.478 | 1.14899 |
7 | Ethyl octanoate | C106321 | C10H20O2 | 172.3 | 1462.6 | 886.258 | 1.47563 |
8 | Linalool oxide | C1365191 | C10H18O2 | 170.3 | 1452.1 | 867.082 | 1.2651 |
9 | Bornyl acetate M | C76493 | C12H20O2 | 196.3 | 1577.5 | 1126.339 | 1.23104 |
10 | Bornyl acetate D | C76493 | C12H20O2 | 196.3 | 1583.2 | 1139.67 | 2.17616 |
11 | (Z)-4-heptenal | C6728310 | C7H12O | 112.2 | 1245.2 | 530.841 | 1.60822 |
12 | 2-methyl-1-butanol M | C137326 | C5H12O | 88.1 | 1208.3 | 470.58 | 1.23368 |
13 | Geranyl acetate M | C105873 | C12H20O2 | 196.3 | 1724.9 | 1531.62 | 1.22697 |
14 | Geranyl acetate D | C105873 | C12H20O2 | 196.3 | 1728 | 1541.562 | 1.89759 |
15 | L-Menthol M | C2216515 | C10H20O | 156.3 | 1681.3 | 1398.396 | 1.22874 |
16 | L-Menthol D | C2216515 | C10H20O | 156.3 | 1654.6 | 1322.836 | 1.88697 |
17 | Decanoic acid ethyl ester | C110383 | C12H24O2 | 200.3 | 1664.6 | 1350.674 | 1.62156 |
18 | phenylacetaldehyde D | C122781 | C8H8O | 120.2 | 1603.7 | 1189.611 | 1.52955 |
19 | phenylacetaldehyde M | C122781 | C8H8O | 120.2 | 1607.4 | 1198.733 | 1.25911 |
20 | 1-Octanol M | C111875 | C8H18O | 130.2 | 1591.8 | 1160.4 | 1.46872 |
21 | 1-Octanol D | C111875 | C8H18O | 130.2 | 1584.7 | 1143.363 | 1.88349 |
22 | 2-Ethylpyridine D | C100710 | C7H9N | 107.2 | 1280.7 | 596.272 | 1.46193 |
23 | 2-Ethylpyridine M | C100710 | C7H9N | 107.2 | 1282.9 | 600.603 | 1.09944 |
24 | Heptaldehyde | C111717 | C7H14O | 114.2 | 1180.5 | 429.092 | 1.33291 |
25 | 1-hexanal D | C66251 | C6H12O | 100.2 | 1098.4 | 324.74 | 1.56213 |
26 | 1-hexanal M | C66251 | C6H12O | 100.2 | 1089.3 | 315.53 | 1.25353 |
27 | β-Myrcene M | C123353 | C10H16 | 136.2 | 1166.8 | 409.562 | 1.2263 |
28 | β-Myrcene D | C123353 | C10H16 | 136.2 | 1166.4 | 409.008 | 1.65043 |
29 | β-Myrcene P | C123353 | C10H16 | 136.2 | 1167.2 | 410.117 | 1.72986 |
30 | 2-Methylpropyl butanoate | C539902 | C8H16O2 | 144.2 | 1161.5 | 402.204 | 1.33163 |
31 | 1-Butanol, 3-methyl-, acetate M | C123922 | C7H14O2 | 130.2 | 1141.9 | 376.315 | 1.3017 |
32 | 1-Butanol, 3-methyl-, acetate D | C123922 | C7H14O2 | 130.2 | 1141.9 | 376.315 | 1.74601 |
33 | 2-Pentanone | C107879 | C5H10O | 86.1 | 1016.5 | 251.56 | 1.12223 |
34 | Methyl butyrate | C623427 | C5H10O2 | 102.1 | 981.4 | 227.629 | 1.13716 |
35 | (E)-2-hexen-1-al M | C6728263 | C6H10O | 98.1 | 1209.4 | 472.227 | 1.18215 |
36 | (E)-2-hexen-1-al D | C6728263 | C6H10O | 98.1 | 1207 | 468.546 | 1.52541 |
37 | Ethyl heptanoate | C106309 | C9H18O2 | 158.2 | 1306.3 | 639.738 | 1.91244 |
38 | ethyl pentanoate | C539822 | C7H14O2 | 130.2 | 1106.1 | 333.321 | 1.69079 |
39 | ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 130.2 | 1040 | 270.691 | 1.66629 |
40 | Propanoic acid M | C79094 | C3H6O2 | 74.1 | 1567.8 | 1103.773 | 1.10089 |
41 | Propanoic acid D | C79094 | C3H6O2 | 74.1 | 1569.6 | 1108.025 | 1.26778 |
42 | Linalool D | C78706 | C10H18O | 154.3 | 1580.5 | 1133.374 | 1.76497 |
43 | Linalool M | C78706 | C10H18O | 154.3 | 1573.7 | 1117.326 | 1.20039 |
44 | 2-ethyl hexanol D | C104767 | C8H18O | 130.2 | 1503.4 | 965.009 | 1.79735 |
45 | 2-ethyl hexanol M | C104767 | C8H18O | 130.2 | 1503.4 | 965.009 | 1.42224 |
46 | 1-hexanol M | C111273 | C6H14O | 102.2 | 1383.8 | 752.013 | 1.32506 |
47 | 1-hexanol D | C111273 | C6H14O | 102.2 | 1383.1 | 750.874 | 1.63894 |
48 | 1-Octen-3-one D | C4312996 | C8H14O | 126.2 | 1350.8 | 701.962 | 1.67677 |
49 | 1-Octen-3-one M | C4312996 | C8H14O | 126.2 | 1348.3 | 698.397 | 1.26328 |
50 | n-Nonanal M | C124196 | C9H18O | 142.2 | 1410.1 | 794.363 | 1.47424 |
51 | 1-nonanal D | C124196 | C9H18O | 142.2 | 1406.9 | 789.17 | 1.95326 |
52 | 2-hexen-1-ol M | C2305217 | C6H12O | 100.2 | 1368.1 | 727.768 | 1.1783 |
53 | 2-hexen-1-ol D | C2305217 | C6H12O | 100.2 | 1362.2 | 718.886 | 1.51225 |
54 | 1-Hydroxy-2-propanone D | C116096 | C3H6O2 | 74.1 | 1333 | 676.427 | 1.23573 |
55 | 1-Hydroxy-2-propanone M | C116096 | C3H6O2 | 74.1 | 1341.3 | 688.171 | 1.03734 |
56 | 1-Pentanol M | C71410 | C5H12O | 88.1 | 1290.6 | 615.901 | 1.2604 |
57 | 1-Pentanol D | C71410 | C5H12O | 88.1 | 1288.1 | 611.034 | 1.51755 |
58 | 2-methyl-1-butanol D | C137326 | C5H12O | 88.1 | 1215.9 | 482.362 | 1.47147 |
59 | (+)-limonene M | C138863 | C10H16 | 136.2 | 1207.4 | 469.193 | 1.21097 |
60 | Limonene D | C138863 | C10H16 | 136.2 | 1215.9 | 482.395 | 1.29868 |
61 | (+)-limonene P | C138863 | C10H16 | 136.2 | 1224.4 | 496.001 | 1.65214 |
62 | Limonene P | C138863 | C10H16 | 136.2 | 1224.9 | 496.756 | 1.71661 |
63 | 2-Heptanone M | C110430 | C7H14O | 114.2 | 1192.5 | 446.871 | 1.25839 |
64 | 2-Heptanone D | C110430 | C7H14O | 114.2 | 1192 | 446.115 | 1.63832 |
65 | 2-Propanol D | C67630 | C3H8O | 60.1 | 950.7 | 210.887 | 1.20859 |
66 | 2-Propanol M | C67630 | C3H8O | 60.1 | 947.7 | 209.365 | 1.09106 |
67 | 1-Propanol, 2-methyl- | C78831 | C4H10O | 74.1 | 1057.1 | 285.441 | 1.38133 |
68 | 2-Hexanone D | C591786 | C6H12O | 100.2 | 1088.5 | 314.769 | 1.48915 |
69 | 2-Hexanone M | C591786 | C6H12O | 100.2 | 1093.5 | 319.657 | 1.1786 |
70 | Acetic acid butyl ester M | C123864 | C6H12O2 | 116.2 | 1122.9 | 352.895 | 1.22652 |
71 | Acetic acid butyl ester D | C123864 | C6H12O2 | 116.2 | 1118 | 347.029 | 1.60157 |
72 | Ethanol M | C64175 | C2H6O | 46.1 | 951.8 | 211.489 | 1.04662 |
73 | Ethanol D | C64175 | C2H6O | 46.1 | 951.5 | 211.35 | 1.11704 |
74 | (E)-2-octenal | C2548870 | C8H14O | 126.2 | 1423.5 | 816.94 | 1.32526 |
75 | (E)-2-Hexen-1-ol | C928950 | C6H12O | 100.2 | 1443.3 | 851.454 | 1.51189 |
76 | 2-Octanone D | C111137 | C8H16O | 128.2 | 1271.1 | 577.882 | 1.77106 |
77 | 2-Octanone M | C111137 | C8H16O | 128.2 | 1272.4 | 580.411 | 1.33372 |
78 | 1-octanal D | C124130 | C8H16O | 128.2 | 1322.2 | 661.348 | 1.83779 |
79 | 1-Octanal M | C124130 | C8H16O | 128.2 | 1317.2 | 654.506 | 1.39805 |
80 | Hexanoic acid, propyl ester D | C626777 | C9H18O2 | 158.2 | 1305.2 | 638.326 | 1.86479 |
81 | Hexanoic acid, propyl ester M | C626777 | C9H18O2 | 158.2 | 1303.5 | 636.014 | 1.39506 |
Count | Compound | CAS# | Molecular Formula | RX-1 | RX-2 | RX-3 | RX-4 |
---|---|---|---|---|---|---|---|
1 | pentyl hexanoate | C540078 | C11H22O2 | 6166.21 | 4832.44 | 4562.9 | 4525.01 |
2 | Pentyl hexanoate D | C540078 | C11H22O2 | 19689.2 | 18019 | 16901.5 | 16726.6 |
3 | n-octyl acetate | C112141 | C10H20O2 | 11749.2 | 11611.5 | 11459.6 | 11371.2 |
4 | 2-Decanone D | C693549 | C10H20O | 10632 | 10281.3 | 10192.4 | 10197.2 |
5 | 2-Decanone M | C693549 | C10H20O | 374.511 | 338.806 | 404.039 | 414.96 |
6 | Benzaldehyde | C100527 | C7H6O | 709.125 | 1025.71 | 1200.96 | 1199.4 |
7 | Ethyl octanoate | C106321 | C10H20O2 | 1172.34 | 1172.34 | 1202.74 | 1151.07 |
8 | Linalool oxide | C1365191 | C10H18O2 | 2204.96 | 2396.34 | 2593.39 | 2700.51 |
9 | Bornyl acetate M | C76493 | C12H20O2 | 9335.95 | 9498.94 | 9641.87 | 9695.36 |
10 | Bornyl acetate D | C76493 | C12H20O2 | 979.352 | 959.329 | 936.968 | 876.834 |
11 | (Z)-4-heptenal | C6728310 | C7H12O | 15085.3 | 14809.7 | 14686.9 | 14807.7 |
12 | 2-methyl-1-butanol M | C137326 | C5H12O | 1678.08 | 1793.71 | 1870.12 | 1910.35 |
13 | Geranyl acetate M | C105873 | C12H20O2 | 13495.2 | 14007.2 | 14205.4 | 14030.5 |
14 | Geranyl acetate D | C105873 | C12H20O2 | 611.904 | 663.192 | 782.069 | 780.187 |
15 | L-Menthol M | C2216515 | C10H20O | 18963.4 | 19364.7 | 19792.6 | 19953.5 |
16 | L-Menthol D | C2216515 | C10H20O | 718.083 | 845.315 | 804.558 | 852.996 |
17 | Decanoic acid ethyl ester | C110383 | C12H24O2 | 801.752 | 1043.14 | 1185.94 | 1178.22 |
18 | phenylacetaldehyde D | C122781 | C8H8O | 961.065 | 1197.63 | 1240.98 | 1258.83 |
19 | phenylacetaldehyde M | C122781 | C8H8O | 257.619 | 285.83 | 319.445 | 301.018 |
20 | 1-Octanol M | C111875 | C8H18O | 2441.74 | 2150.02 | 2076.51 | 2156.68 |
21 | 1-Octanol D | C111875 | C8H18O | 2381.87 | 2433.27 | 2397.48 | 2369.82 |
22 | 2-Ethylpyridine D | C100710 | C7H9N | 833.436 | 796.274 | 777.981 | 786.681 |
23 | 2-Ethylpyridine M | C100710 | C7H9N | 438.986 | 463.811 | 436.835 | 480.888 |
24 | Heptaldehyde | C111717 | C7H14O | 2188.73 | 2371.51 | 2382.34 | 2460.87 |
25 | 1-hexanal D | C66251 | C6H12O | 183.503 | 206.681 | 227.375 | 230.236 |
26 | 1-hexanal M | C66251 | C6H12O | 177.585 | 170.648 | 167.713 | 167.05 |
27 | β-Myrcene M | C123353 | C10H16 | 1326.28 | 1350.92 | 1420.17 | 1377.39 |
28 | β-Myrcene D | C123353 | C10H16 | 749.866 | 714.263 | 730.025 | 706.984 |
29 | β-Myrcene P | C123353 | C10H16 | 566.134 | 545.741 | 558.405 | 521.838 |
30 | 2-Methylpropyl butanoate | C539902 | C8H16O2 | 144.023 | 151.716 | 150.365 | 166.674 |
31 | 1-Butanol, 3-methyl-, acetate M | C123922 | C7H14O2 | 1137.22 | 1164.71 | 1204.89 | 1194.04 |
32 | 1-Butanol, 3-methyl-, acetate D | C123922 | C7H14O2 | 106.119 | 103.849 | 106.773 | 114.743 |
33 | 2-Pentanone | C107879 | C5H10O | 8824.47 | 9050.13 | 8928.28 | 8841.22 |
34 | Methyl butyrate | C623427 | C5H10O2 | 1577.17 | 1539.72 | 1484.63 | 1494.26 |
35 | (E)-2-hexen-1-al M | C6728263 | C6H10O | 293.772 | 270.11 | 277.362 | 293.657 |
36 | (E)-2-hexen-1-al D | C6728263 | C6H10O | 528.104 | 480.33 | 443.145 | 413.408 |
37 | Ethyl heptanoate | C106309 | C9H18O2 | 4723.98 | 4741.77 | 4687.61 | 4570.13 |
38 | ethyl pentanoate | C539822 | C7H14O2 | 4341.31 | 4355.82 | 4340.36 | 4316.53 |
39 | ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 584.269 | 623.721 | 631.426 | 663.152 |
40 | Propanoic acid M | C79094 | C3H6O2 | 782.116 | 829.134 | 826.948 | 805.403 |
41 | Propanoic acid D | C79094 | C3H6O2 | 459.302 | 579.502 | 607.948 | 600.481 |
42 | Linalool D | C78706 | C10H18O | 651.32 | 701.026 | 696.31 | 699.998 |
43 | Linalool M | C78706 | C10H18O | 882.766 | 871.122 | 960.994 | 981.299 |
44 | 2-ethyl hexanol D | C104767 | C8H18O | 439.375 | 557.98 | 580.149 | 615.102 |
45 | 2-ethyl hexanol M | C104767 | C8H18O | 170.445 | 143.923 | 174.288 | 165.093 |
46 | 1-hexanol M | C111273 | C6H14O | 1158.82 | 1136.34 | 1112.27 | 1087.17 |
47 | 1-hexanol D | C111273 | C6H14O | 744.558 | 768.731 | 790.571 | 783.4 |
48 | 1-Octen-3-one D | C4312996 | C8H14O | 1028.76 | 1088.56 | 1143.76 | 1136.71 |
49 | 1-Octen-3-one M | C4312996 | C8H14O | 761.036 | 764.74 | 757.642 | 731.007 |
50 | n-Nonanal M | C124196 | C9H18O | 1411.83 | 1336.42 | 1332.85 | 1318.52 |
51 | 1-nonanal D | C124196 | C9H18O | 824.871 | 817.941 | 837.099 | 825.528 |
52 | 2-hexen-1-ol M | C2305217 | C6H12O | 6366.4 | 6305.74 | 6260.07 | 6209.13 |
53 | 2-hexen-1-ol D | C2305217 | C6H12O | 646.994 | 678.048 | 718.526 | 725.791 |
54 | 1-Hydroxy-2-propanone D | C116096 | C3H6O2 | 1580.08 | 1754.46 | 1758.74 | 1687.98 |
55 | 1-Hydroxy-2-propanone M | C116096 | C3H6O2 | 398.082 | 390.351 | 377.894 | 372.725 |
56 | 1-Pentanol M | C71410 | C5H12O | 1692.33 | 1745.98 | 1789.17 | 1846.58 |
57 | 1-Pentanol D | C71410 | C5H12O | 734.164 | 731.392 | 737.944 | 727.874 |
58 | 2-methyl-1-butanol D | C137326 | C5H12O | 184.259 | 178.81 | 177.609 | 190.024 |
59 | (+)-limonene M | C138863 | C10H16 | 3811.6 | 4116.81 | 4352.17 | 4622.78 |
60 | Limonene D | C138863 | C10H16 | 275.468 | 287.89 | 319.194 | 310.758 |
61 | (+)-limonene P | C138863 | C10H16 | 3639.86 | 3594.6 | 3702.99 | 3648.12 |
62 | Limonene P | C138863 | C10H16 | 1813.81 | 1742.59 | 1648.43 | 1641.64 |
63 | 2-Heptanone M | C110430 | C7H14O | 404.007 | 426.06 | 431.479 | 419.199 |
64 | 2-Heptanone D | C110430 | C7H14O | 114.195 | 134.984 | 146.059 | 166.078 |
65 | 2-Propanol D | C67630 | C3H8O | 682.751 | 768.506 | 722.871 | 774.708 |
66 | 2-Propanol M | C67630 | C3H8O | 755.315 | 841.222 | 850.021 | 937.544 |
67 | 1-Propanol, 2-methyl- | C78831 | C4H10O | 3808.37 | 3966.91 | 4025.48 | 3998.99 |
68 | 2-Hexanone D | C591786 | C6H12O | 4367.6 | 4836.69 | 4900.91 | 5077.25 |
69 | 2-Hexanone M | C591786 | C6H12O | 484.799 | 517.764 | 503.058 | 502.545 |
70 | Acetic acid butyl ester M | C123864 | C6H12O2 | 6989.78 | 6988.76 | 7063.67 | 7144.74 |
71 | Acetic acid butyl ester D | C123864 | C6H12O2 | 1095.62 | 1094.13 | 1097.9 | 1082.23 |
72 | Ethanol M | C64175 | C2H6O | 907.333 | 919.473 | 905.521 | 914.475 |
73 | Ethanol D | C64175 | C2H6O | 5851.25 | 5569.31 | 5786.19 | 5901.12 |
74 | (E)-2-octenal | C2548870 | C8H14O | 1812.36 | 1813.37 | 1788.66 | 1772.13 |
75 | (E)-2-Hexen-1-ol | C928950 | C6H12O | 1302.66 | 1209.32 | 1163.19 | 1157.15 |
76 | 2-Octanone D | C111137 | C8H16O | 1277.29 | 1266.13 | 1303.78 | 1341.46 |
77 | 2-Octanone M | C111137 | C8H16O | 718.538 | 722.205 | 744.743 | 739.138 |
78 | 1-octanal D | C124130 | C8H16O | 1494.51 | 1403.39 | 1321.47 | 1290.42 |
79 | 1-Octanal M | C124130 | C8H16O | 204.751 | 209.574 | 214.15 | 219.14 |
80 | Hexanoic acid, propyl ester D | C626777 | C9H18O2 | 322.2 | 311.512 | 306.253 | 298.796 |
81 | Hexanoic acid, propyl ester M | C626777 | C9H18O2 | 454.561 | 409.236 | 391.367 | 363.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q.; Liu, S.; He, Y.; Liu, J.; Zhang, X.; Zheng, L.; Huang, D. An Evaluation of the Impact of 60Co Irradiation on Volatile Organic Compounds of Olibanum Using Gas Chromatography Ion Mobility Spectrometry. Molecules 2024, 29, 1671. https://doi.org/10.3390/molecules29071671
Luo Q, Liu S, He Y, Liu J, Zhang X, Zheng L, Huang D. An Evaluation of the Impact of 60Co Irradiation on Volatile Organic Compounds of Olibanum Using Gas Chromatography Ion Mobility Spectrometry. Molecules. 2024; 29(7):1671. https://doi.org/10.3390/molecules29071671
Chicago/Turabian StyleLuo, Qiao, Shanshuo Liu, Ye He, Jiayao Liu, Xinyu Zhang, Liqiu Zheng, and Dan Huang. 2024. "An Evaluation of the Impact of 60Co Irradiation on Volatile Organic Compounds of Olibanum Using Gas Chromatography Ion Mobility Spectrometry" Molecules 29, no. 7: 1671. https://doi.org/10.3390/molecules29071671
APA StyleLuo, Q., Liu, S., He, Y., Liu, J., Zhang, X., Zheng, L., & Huang, D. (2024). An Evaluation of the Impact of 60Co Irradiation on Volatile Organic Compounds of Olibanum Using Gas Chromatography Ion Mobility Spectrometry. Molecules, 29(7), 1671. https://doi.org/10.3390/molecules29071671