Development of a Non-Target Screening and Quantitative Analysis Strategy Based on UPLC-Q-TOF/MS and UPLC-QQQ/MS to Improve the Quality Control of Wuling Capsule
Abstract
:1. Introduction
2. Results and Discussion
2.1. Non-Target Screening and Identification of Flavonoids by UPLC-Q-TOF/MS
2.1.1. Tentative Identification of Flavonoids
2.1.2. Identification of Known Flavonoid
2.2. Quantification of Six Flavonoids by UPLC-QQQ/MS
2.2.1. Optimization of the UPLC-QqQ/MS Conditions
2.2.2. Method Validation
2.2.3. Quality Evaluation of Wuling Samples
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Standard Solution Preparation
3.3. Sample Preparation
3.4. Non-Target Screening of Flavonoids by UPLC-Q-TOF/MS
3.5. Determination of Flavonoids by UPLC-QQQ/MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.T.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharm. 2023, 14, 1265178. [Google Scholar] [CrossRef]
- Shen, M.R.; He, Y.; Shi, S.M. Development of chromatographic technologies for the quality control of Traditional Chinese Medicine in the Chinese Pharmacopoeia. J. Pharm. Anal. 2021, 11, 155–162. [Google Scholar] [CrossRef]
- Xu, C.-X.; Song, P.; Yu, Z.; Wang, Y.-H. Surface-enhanced Raman spectroscopy as a powerful method for the analysis of Chinese herbal medicines. Analyst 2023, 149, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.C.; Zhang, H.; Tang, T.; Zhou, J.; Zhou, W.; Tan, S.; He, B. Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: A critical review. Analyst 2021, 146, 4724–4736. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Gou, M.; Jiang, K.; Wang, L.; Yin, G.; Wang, J.; Wang, P.; Tu, J.; Wang, T. Recent quantitative research of near infrared spectroscopy in traditional Chinese medicine analysis. Appl. Spectrosc. Rev. 2019, 54, 653–672. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Zhang, Y.; Liu, Z.; Wang, X.; He, J.; Jin, H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. J. Ethnopharmacol. 2022, 284, 114760. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.X.; Zhang, H.; Chen, Y.; Gong, X.; Yan, J.; Zhang, H. Applications of Hyperspectral Imaging Technology Combined with Machine Learning in Quality Control of Traditional Chinese Medicine from the Perspective of Artificial Intelligence: A Review. Crit. Rev. Anal. Chem. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.P.; Wang, M.; Saroja, S.G.; Khan, I.A. NMR technique and methodology in botanical health product analysis and quality control. J. Pharm. Biomed. Anal. 2022, 207, 114376. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.L.; Jia, Y.; Shi, S.; Sun, J.; Han, X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Anal. Chem. 2023, 158, 116851. [Google Scholar] [CrossRef]
- Yang, W.Z.; Zhang, Y.; Wu, W.; Huang, L.; Guo, D.; Liu, C. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm. Sin. B 2017, 7, 439–446. [Google Scholar] [CrossRef]
- Li, S.P.; Zhao, J. Key scientific issues in research on quality control of traditional Chinese medicines. Chin. J. Pharm. Anal. 2023, 43, 1104–1109. [Google Scholar]
- Garcia-Reyes, J.F.; Hernando, M.D.; Molina-Dfaz, A.; Fernandez-Alba, A.R. Comprehensive screening of target, non-targct and unknown pesticides in food by LC-TOF-MS. Trends Anal. Chem. 2007, 26, 828–841. [Google Scholar] [CrossRef]
- Ibanez, M.; Sancho, J.V.; McMillan, D.; Rao, R.; Hernandez, F. Rapid non-target screening of organic pollutants in water by ultraperformance liquid chromatography coupled to time-of-light mass spectrometry. Trends Anal. Chem. 2008, 27, 481–489. [Google Scholar] [CrossRef]
- Chen, S.T.; Xiong, Z.; Jing, C.; Xia, R.; Qu, X.; Liu, T.J.; Liu, Y.Y. Screening and identification of active compounds of GanZhiRong granule based on liquid chromatography-mass spectrometry and biomolecular networks. Chin. J. Anal. Chem. 2023, 51, 100294. [Google Scholar] [CrossRef]
- McCullagh, M.; Pereira, C.A.M.; Yariwake, J.H. Use of ion mobility mass spectrometry to enhance cumulative analytical specificity and separation to profile 6-C/8-C-glycosylflavone critical isomer pairs and known–unknowns in medicinal plants. Phytochem. Anal. 2019, 30, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, L.; Wang, M.; Shan, C.; Cui, X.; Wang, J.; Ding, N.; Yu, D.; Tang, Y. Target and non-target identification of chemical components in Lamiophlomis rotata by liquid chromatography/quadrupole time-of-flight mass spectrometry using a three-step protocol. Rapid Commun. Mass Spectrom. 2016, 30, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Qing, L.S.; Xue, Y.; Zhang, J.G.; Zhang, Z.F.; Liang, J.; Jiang, Y.; Liu, Y.M.; Liao, X. Identification of flavonoid glycosides in Rosa chinensis flowers by liquid chromatography–tandem mass spectrometry in combination with 13C nuclear magnetic resonance. J. Chromatogr. A 2012, 1249, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.L.; Chen, G.F.; Zhang, L.S.; Hu, X.Y. Mechanisms of Wuling mycelia powder on memory retrieval impairment in rats with chronic epilepsy. China J. Chin. Mater. Med. 2012, 37, 2156–2159. [Google Scholar]
- Li, D.M.; Zheng, J.; Wang, M.; Feng, L.; Liu, Y.; Yang, N.; Zuo, P. Wuling powder prevents the depression-like behavior in learned helplessness mice model through improving the TSPO mediatedmitophagy. J. Ethnopharmacol. 2016, 186, 181–188. [Google Scholar] [CrossRef]
- Jiang, H.; Qian, L.; Xi, S.; Peng, L.; Yang, Z.; Zhao, Y. Effects of Wu Ling Powder on Blood Pressure and Renin Angiotensin Aldosterone System in Spontaneously Hypertensive Rats. Chin. J. Basic Med. Trad. Chin. Med. 2016, 22, 1319–1322. [Google Scholar]
- Zou, X.D.; Zhang, Z.; Cheng, Y.; Li, Z.; Wang, H.; Hu, Z. Effect of Wuling Capsule on cognitive function of mice. Chin. J. Clin. Pharm. 2018, 34, 2421–2423. [Google Scholar]
- Wang, H.P.; Chen, H.; Gao, Y.; Wang, S.; Wang, X.; Tang, X.; Fang, W.; Shi, X.; Yao, J.; Chen, Q. The effect of wuling capsule on depression in Type 2 diabetic patients. Biosci. Rep. 2020, 40, BSR20191260. [Google Scholar] [CrossRef]
- Zhou, H.F.; Zhao, Y.; Peng, W.; Han, W.; Wang, D.; Wang, Z.; Ren, X.; Pan, G.; Lin, Q.; Wang, X. Efficacy and safety of Wuling capsule for insomnia disorder: A systematic review and meta-analysis of randomized controlled trials. Sleep Med. 2022, 93, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Rao, L.; Qing, L.; Liang, J.; Yao, Y. Simultaneous determination of ten nucleosides in Wuling Capsules/Wuling fungus powder by UPLC-MS/MS. Chin. Trad. Pat. Med. 2023, 45, 2144–2148. [Google Scholar]
- Chen, Y.; Lu, J.; Zhu, M.; Luo, L. Determination of multiple constituents in Wuling capsules by HPLC simultaneously. China J. Chin. Mater. Med. 2012, 37, 218–221. [Google Scholar]
- Li, L.; Ma, S.; Wang, J.; Miu, S.; Chen, Y.; Wen, A.; Shi, X. Determination of three components in Xylaria Nigrips powder by HPLC. China Pharm. 2018, 21, 527–529. [Google Scholar]
- Tian, Z.; Liu, S.B.; Wang, Y.C.; Li, X.Q.; Zheng, L.H.; Zhao, M.G. Neuroprotective Effects of Formononetin Against NMDA-Induced Apoptosis in Cortical Neurons. Phytother. Res. 2013, 27, 1770–1775. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, Z.N.; Zhang, S.J.; Sun, Y.; Zheng, F.J.; Li, Y.H. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front. Pharm. 2022, 13, 1022053. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Z.; Robinson, M.; Ding, X.; Geetha, T.; Al-Nakkash, L.; Broderick, T.L.; Babu, J.R. Genistein: A focus on several neurodegenerative diseases. J. Food Biochem. 2022, 46, e14155. [Google Scholar] [CrossRef]
- Lhuillier, A.; Fabre, N.; Moyano, F.; Martins, N.; Claparols, C.; Fouraste, I.; Moulis, C. Comparison of flavonoid profiles of Agauria salicifolia (Ericaceae) by liquid chromatography-UV diode array detection–electrospray ionisation mass spectrometry. J. Chromatogr. A 2007, 1160, 13–20. [Google Scholar] [CrossRef]
- Yuan, T.; Guo, X.F.; Shao, S.Y.; An, R.M.; Wang, J.; Sun, J. Characterization and identification of flavonoids from Bambusa chungii leaves extract by UPLC-ESI-Q-TOF-MS/MS. Acta Chromatogr. 2021, 33, 281–294. [Google Scholar] [CrossRef]
- Ma, Y.L.; Li, Q.M.; VandenHeuvel, H.; Claeys, M. Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1357–1364. [Google Scholar] [CrossRef]
- Ohta, N.; Kuwata, G.; Akahori, H.; Watanabe, T. Isoflavonoid Constituents of Soybeans and Isolation ofa New Acetyl Daidzin. Agric. Biol. Chem. 1979, 43, 1415–1419. [Google Scholar]
- Tang, Y.; Li, S.; Li, S.; Yang, X.; Qin, Y.; Zhang, Y.; Liu, C. Screening and isolation of potential lactate dehydrogenase inhibitors from five Chinese medicinal herbs: Soybean, Radix pueraria, Flos pueraria, Rhizoma belamcandae, and Radix astragali. J. Sep. Sci. 2016, 39, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Gianazza, E.; Tremoli, E.; Banfi, C. The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: Clinical applications in the cardiovascular diseases. Expert Rev. Proteom. 2014, 11, 771–788. [Google Scholar] [CrossRef] [PubMed]
NO. | Retention Time (min) | ESI Mode | Molecular Formula | Theoretical (m/z) | Experimental (m/z) | Error (ppm) | Fragment Ions (m/z) | Tentative Identification |
---|---|---|---|---|---|---|---|---|
1 | 10.56 | [M+H]+ | C22H22O10 | 447.1286 | 447.1297 | 2.6 | 285.0764, 270.0562 | Glycitin |
2 | 11.29 | [M+H]+ | C21H20O10 | 433.1129 | 433.1135 | 1.3 | 271.0595, 215.0702, 159.0428 | Genistin |
3 | 11.57 | [M+H]+ | C23H22O10 | 459.1286 | 459.1289 | 0.7 | 255.0652, 227.0679, 199.0759 | Acetyldaidzin |
4 | 11.81 | [M−H]− | C16H12O6 | 299.0561 | 299.0564 | 0.9 | 284.0343, 256.0352, 239.0336, 212.0489, 200.0487, 148.0142 | Unknown |
5 | 12.27 | [M−H]− | C15H10O6 | 285.0405 | 285.0413 | 3 | 241.0523, 213.0551, 185.0605, 171.0589, 156.0625 | Unknown |
6 | 12.59 | [M−H]− | C16H12O6 | 299.0561 | 299.0565 | 1.1 | 284.0339, 256.0383, 231.0223, 210.9797, 192.9927,183.0437, 166.9822, 154.9918 | Unknown |
7 | 13.23 | [M−H]− | C15H10O6 | 285.0405 | 285.0403 | −0.5 | 257.0460, 241.0492, 229.0489, 212.0505 | Scutellarein |
8 | 13.4 | [M−H]− | C15H10O4 | 253.0506 | 253.0507 | 0.3 | 224.0484, 208.0539, 196.0523, 180.0589, 133.0297, 91.0197 | Daidzein |
9 | 13.42 | [M−H]− | C19H16O7 | 355.0823 | 355.0822 | −0.4 | 314.9869, 295.0048, 253.0489, 231.0052, 211.0426, 135.0046 | Unknown |
10 | 13.66 | [M−H]− | C16H12O5 | 283.0612 | 283.0616 | 1.6 | 268.0375, 240.0425, 211.0388, 196.0531, 184.0518 | Glycitein |
11 | 13.82 | [M+H]+ | C17H14O6 | 315.0863 | 315.0868 | 1.5 | 297.0441, 255.0649 | Unknown |
12 | 13.99 | [M+H]+ | C19H16O7 | 357.0969 | 357.0966 | −0.7 | 311.0981, 255.0647, 237.0502, 199.0781, 181.0615, 137.0278 | Unknown |
13 | 14.11 | [M−H]− | C15H10O6 | 285.0405 | 285.0407 | 0.9 | 241.0488, 213.0559, 187.0397, 157.0663, 145.0631, 123.0094, 95.0146 | Luteolin |
14 | 14.2 | [M−H]+ | C15H10O5 | 269.0456 | 269.0458 | 0.9 | 241.0527, 224.0492, 133.0301, 107.0149 | Genistein |
15 | 14.21 | [M−H]− | C16H12O6 | 299.0561 | 299.0563 | 0.5 | 284.0358, 255.0350, 183.0465, 137.0032 | Unknown |
16 | 14.63 | [M−H]− | C15H10O6 | 285.0405 | 285.0410 | 1.8 | 257.0466, 229.0519, 185.0595, 149.0255 | Kaempferol |
17 | 15.29 | [M−H]− | C16H12O4 | 267.0663 | 267.0665 | 1 | 252.0431, 223.0404, 208.0526, 132.0238 | Formononetin |
18 | 16.69 | [M−H]− | C20H18O4 | 321.1132 | 321.1135 | 0.9 | 252.0434, 223.0396, 195.0456 | Neobavaisoflavone |
Analyte | Retention Time (min) | Detection Mode | Parent Ion (m/z) | Product Ion (m/z) | DP (V) | CE (eV) |
---|---|---|---|---|---|---|
Glycitin (1) | 6.24 | [M+H]+ | 447 | 385 #, 285 * | 39 | 26, 28 |
Genistin (2) | 6.63 | [M+H]+ | 433 | 271 *# | 52 | 41 |
Daidzein (8) | 3.12 | [M−H]− | 253 | 132 *, 91 # | −66 | −46, −53 |
Glycitein (10) | 3.20 | [M−H]− | 283 | 268 *, 240 # | −50 | −24, −34 |
Genistein (14) | 3.49 | [M−H]− | 269 | 159 #, 133 * | −65 | −34, −42 |
Formononetin (17) | 4.20 | [M−H]− | 267 | 252 *, 223 # | −60 | −29, −45 |
Analyte | Regression Equation, r | Linear Range (ng∙mL−1) | LOD (ng∙mL−1) | Precision (RSD) | Repeatability (n = 6) | Recovery (n = 6) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (%) (n = 6) | Inter-Day (%) (n = 18) | Mean (μg∙g−1) | RSD (%) | Mean (%) | RSD (%) | ||||||||
Low | Medium | High | Low | Medium | High | ||||||||
Glycitin (1) | y = 66.98x + 328.49, 0.9998 | 9.6~960 | 4.80 | 3.80 | 2.47 | 1.84 | 4.23 | 3.45 | 2.71 | 8.77 | 3.40 | 99.02 | 4.73 |
Genistin (2) | y = 88.328x + 66.149, 0.9999 | 9.3~930 | 2.33 | 4.46 | 2.75 | 1.02 | 4.66 | 3.20 | 1.40 | 0.93 | 3.84 | 97.48 | 3.93 |
Daidzein (8) | y = 135.86x + 81.416, 0.9998 | 2.55~255 | 1.02 | 3.59 | 2.95 | 1.85 | 4.51 | 2.36 | 2.49 | 70.72 | 3.94 | 100.41 | 2.70 |
Glycitein (10) | y = 782x − 146, 0.9999 | 1.02~102 | 0.25 | 4.20 | 3.17 | 0.72 | 4.81 | 3.55 | 1.64 | 32.85 | 2.47 | 95.66 | 4.54 |
Genistein (14) | y = 207.22x − 11.976, 0.9999 | 4.85~970 | 2.43 | 1.87 | 3.37 | 1.55 | 3.60 | 4.71 | 2.99 | 154.88 | 1.17 | 104.51 | 3.53 |
Formononetin (17) | y = 620.1x + 323.56, 0.9998 | 0.95~47.5 | 0.48 | 3.79 | 1.14 | 0.87 | 4.23 | 3.11 | 2.43 | 0.17 | 4.89 | 95.90 | 4.54 |
Batch | Glycitin (1) | Genistin (2) | Daidzein (8) | Glycitein (10) | Genistein (14) | Formononetin (17) |
---|---|---|---|---|---|---|
210117 | 6.21 | 0.63 | 107.55 | 29.06 | 191.38 | 0.12 |
230110 | 8.75 | 0.95 | 69.08 | 31.71 | 157.57 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.-F.; Xue, Y.; Liang, J.; Yong, L. Development of a Non-Target Screening and Quantitative Analysis Strategy Based on UPLC-Q-TOF/MS and UPLC-QQQ/MS to Improve the Quality Control of Wuling Capsule. Molecules 2024, 29, 2598. https://doi.org/10.3390/molecules29112598
Huang X-F, Xue Y, Liang J, Yong L. Development of a Non-Target Screening and Quantitative Analysis Strategy Based on UPLC-Q-TOF/MS and UPLC-QQQ/MS to Improve the Quality Control of Wuling Capsule. Molecules. 2024; 29(11):2598. https://doi.org/10.3390/molecules29112598
Chicago/Turabian StyleHuang, Xiao-Feng, Ying Xue, Jian Liang, and Li Yong. 2024. "Development of a Non-Target Screening and Quantitative Analysis Strategy Based on UPLC-Q-TOF/MS and UPLC-QQQ/MS to Improve the Quality Control of Wuling Capsule" Molecules 29, no. 11: 2598. https://doi.org/10.3390/molecules29112598
APA StyleHuang, X. -F., Xue, Y., Liang, J., & Yong, L. (2024). Development of a Non-Target Screening and Quantitative Analysis Strategy Based on UPLC-Q-TOF/MS and UPLC-QQQ/MS to Improve the Quality Control of Wuling Capsule. Molecules, 29(11), 2598. https://doi.org/10.3390/molecules29112598