A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Search Results
2.1.1. Time Period Covered in Papers Included and Their Origin
2.1.2. Passiflora Species and Parts Studied
2.2. Methods and Techniques Employed for Carotenoid Analysis in Passiflora
2.2.1. Carotenoid Extraction and Pre-Chromatographic Methods
2.2.2. Carotenoid Separation and Identification
2.2.3. Carotenoid Quantification
2.3. Carotenoid Composition of Parts of Passiflora Plants
2.4. Analysis of the Risk of Bias in Carotenoid Identification from Passiflora
3. Methodology
3.1. Search Strategy and Eligibility Criteria
3.2. Data Synthesis
3.3. Risk of Bias
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Santos, J.T.d.C.; Petry, F.C.; Tobaruela, E.d.C.; Mercadante, A.Z.; Gloria, M.B.A.; Costa, A.M.; Lajolo, F.M.; Hassimotto, N.M.A. Brazilian Native Passion Fruit (Passiflora Tenuifila Killip) Is a Rich Source of Proanthocyanidins, Carotenoids, and Dietary Fiber. Food Res. Int. 2021, 147, 110521. [Google Scholar] [CrossRef]
- Silva, S.R.; Mercadante, A.Z. Composição de Carotenóides de Maracujá-Amarelo (Passiflora edulis Flavicarpa) in Natura. Ciência Tecnol. Aliment. 2002, 22, 254–258. [Google Scholar] [CrossRef]
- Ramaiya, S.; Bujang, J.; Zakaria, M. Nutritive Values of Passion Fruit (Passiflora Species) Seeds and Its Role in Human Health. J. Agric. Food Dev. 2018, 4, 23–30. [Google Scholar] [CrossRef]
- Gadioli, I.L.; da Cunha MD, S.B.; de Carvalho MV, O.; Costa, A.M.; Pineli, L.D.L.D.O. A Systematic Review on Phenolic Compounds in Passiflora Plants: Exploring Biodiversity for Food, Nutrition, and Popular Medicine. Crit. Rev. Food Sci. Nutr. 2018, 58, 785–807. [Google Scholar] [CrossRef]
- Lucas-González, R.; Capanoglu, E.; Pateiro, M.; Mousavi Khaneghah, A.; Hano, C.; Lorenzo, J.M. Current Trends in Passiflora Genus Research: Obesity and Fermented Foods Systematic Review. Trends Food Sci. Technol. 2022, 127, 143–155. [Google Scholar] [CrossRef]
- da Fonseca, L.R.; Rodrigues, R.d.A.; Ramos, A.d.S.; Da Cruz, J.D.; Ferreira, J.L.P.; Silva, J.R.d.A.; Amaral, A.C.F. Herbal Medicinal Products from Passiflora for Anxiety: An Unexploited Potential. Sci. World J. 2020, 2020, 6598434. [Google Scholar] [CrossRef]
- Al-kuraishy, H.M.; Al-windy, S.; Al-Gareeb, A.I. Beneficial Neuro-Pharmacological Effect of Passionflower (Passiflora incarnate L.). Online J. Neurol. Brain Disord. 2020, 3, 285–289. [Google Scholar] [CrossRef]
- Mishra, A.; Mishra, P.S.; Bandopadhyay, R.; Khurana, N.; Angelopoulou, E.; Paudel, Y.N.; Piperi, C. Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders. Molecules 2021, 26, 6456. [Google Scholar] [CrossRef] [PubMed]
- Agência Nacional de Vigilância Sanitária (ANVISA). Formulário de Fitoterápicos, 2nd ed.; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2021. [Google Scholar]
- Government of United Kingdom; Medicines and Healthcare Products Regulatory Agency (MHRA). Herbal Medicines Granted a Traditional Herbal Registration (THR). Available online: https://www.gov.uk/government/publications/herbal-medicines-granted-a-traditional-herbal-registration-thr/herbal-medicines-granted-a-traditional-herbal-registration (accessed on 9 September 2023).
- Duarte, I.d.A.E.; Milenkovic, D.; Borges, T.K.d.S.; Rosa, A.J.d.M.; Morand, C.; de Oliveira, L.d.L.; Costa, A.M. Acute Effects of the Consumption of Passiflora setacea Juice on Metabolic Risk Factors and Gene Expression Profile in Humans. Nutrients 2020, 12, 1104. [Google Scholar] [CrossRef] [PubMed]
- Duarte, I.; de Souza, M.C.M.; Curinga, R.M.; Mendonça, H.M.; de Lacerda de Oliveira, L.; Milenkovic, D.; Hassimotto, N.M.A.; Costa, A.M.; Malaquias, J.V.; dos Santos Borges, T.K. Effect of Passiflora setacea Juice and Its Phenolic Metabolites on Insulin Resistance Markers in Overweight Individuals and on Microglial Cell Activity. Food Funct. 2022, 13, 6498–6509. [Google Scholar] [CrossRef] [PubMed]
- Denny, A.; Buttriss, J. Plant Foods and Health: Focus on Plant Bioactives; Norwich: Norfolk, UK, 2007. [Google Scholar]
- Pan, W.H.; Yeh, N.H.; Yang, R.Y.; Lin, W.H.; Wu, W.C.; Yeh, W.T.; Sung, M.K.; Lee, H.S.; Chang, S.J.; Huang, C.J.; et al. Vegetable, Fruit, and Phytonutrient Consumption Patterns in Taiwan. J. Food Drug Anal. 2018, 26, 145–153. [Google Scholar] [CrossRef]
- He, X.; Luan, F.; Yang, Y.; Wang, Z.; Zhao, Z.; Fang, J.; Wang, M.; Zuo, M.; Li, Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front. Pharmacol. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.A.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.D.; Rocha, S.M. Purple Passion Fruit (Passiflora edulis f. Edulis): A Comprehensive Review on the Nutritional Value, Phytochemical Profile and Associated Health Effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef] [PubMed]
- Pereira, Z.C.; Cruz, J.M.d.A.; Corrêa, R.F.; Sanches, E.A.; Campelo, P.H.; Bezerra, J.d.A. Passion Fruit (Passiflora Spp.) Pulp: A Review on Bioactive Properties, Health Benefits and Technological Potential. Food Res. Int. 2023, 166, 112626. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, S.; Hou, G.; Zhao, F.; Meng, Q.; Tan, S. Phytochemistry, Nutritional Composition, Health Benefits and Future Prospects of Passiflora: A Review. Food Chem. 2023, 428, 136825. [Google Scholar] [CrossRef] [PubMed]
- Britton, G. Carotenoids: Handbook; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Basel: Basel, Switzerland, 2004; ISBN 978-3-7643-6180-8. [Google Scholar]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital Roles of Carotenoids in Plants and Humans to Deteriorate Stress with Its Structure, Biosynthesis, Metabolic Engineering and Functional Aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Mercadante, A.Z.; Mariutti, L.R.B. Marigold Carotenoids: Much More than Lutein Esters. Food Res. Int. 2019, 119, 653–664. [Google Scholar] [CrossRef]
- Mitra, S.; Rauf, A.; Tareq, A.M.; Jahan, S.; Emran, T.B.; Shahriar, T.G.; Dhama, K.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Rebezov, M.; et al. Potential Health Benefits of Carotenoid Lutein: An Updated Review. Food Chem. Toxicol. 2021, 154, 112328. [Google Scholar] [CrossRef]
- Lem, D.W.; Davey, P.G.; Gierhart, D.L.; Rosen, R.B. A Systematic Review of Carotenoids in the Management of Age-Related Macular Degeneration. Antioxidants 2021, 10, 1255. [Google Scholar] [CrossRef]
- Kim, J.A.; Jang, J.H.; Lee, S.Y. An Updated Comprehensive Review on Vitamin a and Carotenoids in Breast Cancer: Mechanisms, Genetics, Assessment, Current Evidence, and Future Clinical Implications. Nutrients 2021, 13, 3162. [Google Scholar] [CrossRef]
- Konecki, T.; Juszczak, A.; Cichocki, M. Can Diet Prevent Urological Cancers? An Update on Carotenoids as Chemopreventive Agents. Nutrients 2022, 14, 1367. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.P.M.; Souza, A.C.R.; Vasconcelos, A.R.; Prado, P.S.; Name, J.J. Antioxidant and Anti-Inflammatory Mechanisms of Action of Astaxanthin in Cardiovascular Diseases (Review). Int. J. Mol. Med. 2021, 47, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Riaz, S.; Shahzaib Nadeem, M.; Mubeen, U.; Maham, K. Role of Carotenoids in Cardiovascular Disease. In Carotenoids; Martínez-Espinosa, R.M., Brzozowski, T., Eds.; IntechOpen: London, UK, 2022. [Google Scholar]
- Kan, B.; Guo, D.; Yuan, B.; Vuong, A.M.; Jiang, D.; Zhang, M.; Cheng, H.; Zhao, Q.; Li, B.; Feng, L.; et al. Dietary Carotenoid Intake and Osteoporosis: The National Health and Nutrition Examination Survey, 2005–2018. Arch Osteoporos 2022, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Britton, G. Carotenoid Research: History and New Perspectives for Chemistry in Biological Systems. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158699. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Martinez, A.J.; Stinco, C.M.; Liu, C.; Wang, X.D. A Simple HPLC Method for the Comprehensive Analysis of Cis/Trans (Z/E) Geometrical Isomers of Carotenoids for Nutritional Studies. Food Chem. 2013, 138, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.d.L.; Sanchez, B.A.O.; Celestino, I.C.; Costa Celestino, S.M.C.; de Alencar, E.R.; Costa, A.M. Shelf Life and Retention of Bioactive Compounds in Storage of Pasteurized Passiflora setacea Pulp, an Exotic Fruit from Brazilian Savannah. LWT 2022, 159, 113202. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- do Nascimento Silva, N.R.R.; Cavalcante, R.B.M.; da Silva, F.A. Nutritional Properties of Buriti (Mauritia flexuosa) and Health Benefits. J. Food Compos. Anal. 2023, 117, 105092. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera Indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Structures and Analysis of Carotenoid Molecules. In Carotenoids in Nature; Rodriguez-Amaya, D.B., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 71–108. [Google Scholar]
- Altendorf, S. Minor Tropical Fruits: Mainstreaming a Niche Market. 2018. Available online: https://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Tropical_Fruits/Documents/Minor_Tropical_Fruits_FoodOutlook_1_2018.pdf (accessed on 15 August 2023).
- Instituto Brasileiro de Geografia e Estatística (IBGE) Produção de Maracujá. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/maracuja/br (accessed on 20 February 2024).
- de O Pineli, L.d.L.; Rodrigues, J.d.S.Q.; Costa, A.M.; de Lima, H.C.; Chiarello, M.D.; Melo, L. Antioxidants and Sensory Properties of the Infusions of Wild Passiflora from Brazilian Savannah: Potential as Functional Beverages. J. Sci. Food Agric. 2015, 95, 1500–1506. [Google Scholar] [CrossRef]
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Rede Passitec: Desenvolvimento Tecnológico Para Uso Funcional e Medicinal Das Passifloras Silvestres. Available online: https://www.cpac.embrapa.br/Passitec/ (accessed on 27 August 2023).
- Jaramillo, E.H. de Bioeconomía: El Futuro Sostenible. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2018, 42, 188. [Google Scholar] [CrossRef]
- Viera, W.; Shinohara, T.; Samaniego, I.; Sanada, A.; Terada, N.; Ron, L.; Suárez-Tapia, A.; Koshio, K. Phytochemical Composition and Antioxidant Activity of Passiflora Spp. Germplasm Grown in Ecuador. Plants 2022, 11, 328. [Google Scholar] [CrossRef]
- Faleiro, F.G.; Junqueira, N.T.V.; Costa, A.M. Ações de Pesquisa e Desenvolvimento para o Uso Diversificadode Espécies Comerciais e Silvestres de Maracujá (Passiflora Spp.); Embrapa Cerrados: Planaltina, DF, Brazil, 2015. [Google Scholar]
- Castillo, N.R.; Ambachew, D.; Melgarejo, L.M.; Blair, M.W. Morphological and Agronomic Variability among Cultivars, Landraces, and Genebank Accessions of Purple Passion Fruit, Passiflora edulis f. Edulis. HortScience 2020, 55, 768–777. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Desarrollo Rural. Cadena Del Pasifloras. Indicadores e Instrumentos. Primer Trimestre 2021. Available online: https://sioc.minagricultura.gov.co/Pasifloras/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf (accessed on 15 August 2023).
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Revisão de Literatura Completa. Available online: http://www.cpac.embrapa.br/passitec/revisaodeliteraturacompleta/ (accessed on 27 August 2023).
- Ramaiya, S.D.; Bujang, J.B.; Zakaria, M.H.; Saupi, N. Nutritional, Mineral and Organic Acid Composition of Passion Fruit (Passiflora Species). Food Res. 2019, 3, 231–240. [Google Scholar] [CrossRef]
- Biswas, S.; Mishra, R.; Bist, A.S. Passion to Profession: A Review of Passion Fruit Processing. Aptisi Trans. Technopreneurship 2021, 3, 48–56. [Google Scholar] [CrossRef]
- dos Reis, L.C.R.; Facco, E.M.P.; Flôres, S.H.; Rios, A.d.O. Stability of Functional Compounds and Antioxidant Activity of Fresh and Pasteurized Orange Passion Fruit (Passiflora caerulea) during Cold Storage. Food Res. Int. 2018, 106, 481–486. [Google Scholar] [CrossRef]
- dos Reis, L.C.R.; Facco, E.M.P.; Salvador, M.; Flôres, S.H.; de Oliveira Rios, A. Antioxidant Potential and Physicochemical Characterization of Yellow, Purple and Orange Passion Fruit. J. Food Sci. Technol. 2018, 55, 2679–2691. [Google Scholar] [CrossRef]
- García-Ruiz, A.; Girones-Vilaplana, A.; León, P.; Moreno, D.A.; Stinco, C.M.; Meléndez-Martínez, A.J.; Ruales, J. Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity. Molecules 2017, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Balladares, D.; Castañeda-Terán, M.; Granda-Albuja, M.G.; Tejera, E.; Iturralde, G.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Chemical Composition and Antioxidant Activity of the Main Fruits, Tubers and Legumes Traditionally Consumed in the Andean Regions of Ecuador as a Source of Health-Promoting Compounds. Plant Foods Hum. Nutr. 2019, 74, 350–357. [Google Scholar] [CrossRef]
- Guevara, M.; Tejera, E.; Granda-Albuja, M.G.; Iturralde, G.; Chisaguano-Tonato, M.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Chemical Composition and Antioxidant Activity of the Main Fruits Consumed in the Western Coastal Region of Ecuador as a Source of Health-Promoting Compounds. Antioxidants 2019, 8, 387. [Google Scholar] [CrossRef]
- Carlosama, A.R.; Faleiro, F.G.; Morera, M.P.; Costa, A.M. Pasifloras: Especies Cultivadas En El Mundo, 1st ed.; Carlosama, A.R., Faleiro, F.G., Morera, M.P., Costa, A.M., Eds.; ProImpress—Gráfica e Comunicação Visual: Brasília, DF, Brazil, 2020. [Google Scholar]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Analysis of Rutin, Β-carotene, and Lutein Content and Evaluation of Antioxidant Activities of Six Edible Leaves on Free Radicals and Reactive Oxygen Species. J. Food Biochem. 2018, 42, e12579. [Google Scholar] [CrossRef]
- Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of Vegetables and Fruits from Panama for Rich Sources of Lutein and Zeaxanthin. Food Chem. 2010, 122, 167–172. [Google Scholar] [CrossRef]
- Homnava, A.; Rogers, W.; Eitenmiller, R.R. Provitamin A Activity of Specialty Fruit Marketed in the United States. J. Food Compos. Anal. 1990, 3, 119–133. [Google Scholar] [CrossRef]
- Godoy, H.T.; Rodriguez-Amaya, D.B. Occurrence of Cis-Isomers of Provitamin A in Brazilian Fruits. J. Agric. Food Chem. 1994, 42, 1306–1313. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Britton, G.; Rodriguez-Amaya, D.B. Carotenoids from Yellow Passion Fruit (Passiflora edulis). J. Agric. Food Chem. 1998, 46, 4102–4106. [Google Scholar] [CrossRef]
- Wondraceck, D.C.; Faleiro, F.G.; Sano, S.M.; Vieira, R.F.; Agostini-Costa, T.d.S. Composição de Carotenoides Em Passifloras Do Cerrado. Rev. Bras. Frutic. 2011, 33, 1222–1228. [Google Scholar] [CrossRef]
- Konta, E.M.; Almeida, M.R.; Do Amaral, C.L.; Darin, J.D.C.; De Rosso, V.V.; Mercadante, A.Z.; Antunes, L.M.G.; Bianchi, M.L.P. Evaluation of the Antihypertensive Properties of Yellow Passion Fruit Pulp (Passiflora edulis Sims f. Flavicarpa Deg.) in Spontaneously Hypertensive Rats. Phytother. Res. 2014, 28, 28–32. [Google Scholar] [CrossRef]
- de Oliveira, G.A.; de Castilhos, F.; Renard, C.M.-G.C.; Bureau, S. Comparison of NIR and MIR Spectroscopic Methods for Determination of Individual Sugars, Organic Acids and Carotenoids in Passion Fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Pertuzatti, P.B.; Sganzerla, M.; Jacques, A.C.; Barcia, M.T.; Zambiazi, R.C. Carotenoids, Tocopherols and Ascorbic Acid Content in Yellow Passion Fruit (Passiflora edulis) Grown under Different Cultivation Systems. LWT 2015, 64, 259–263. [Google Scholar] [CrossRef]
- Samyor, D.; Deka, S.C.; Das, A.B. Physicochemical and Phytochemical Properties of Foam Mat Dried Passion Fruit (Passiflora edulis Sims) Powder and Comparison with Fruit Pulp. J. Food Sci. Technol. 2021, 58, 787–796. [Google Scholar] [CrossRef]
- de Rosso, V.V.; Mercadante, A.Z. Identification and Quantification of Carotenoids, By HPLC-PDA-MS/MS, from Amazonian Fruits. J. Agric. Food Chem. 2007, 55, 5062–5072. [Google Scholar] [CrossRef] [PubMed]
- Schiedt, K.; Liaaen-Jensen, S. Isolation and Analysis. In Carotenoids: Isolation and Analysis; Britton, G., Pfander, H., Liaaen-Jensen, S., Eds.; Birkhäuser: Basel, Switzerland, 1995; Volume 1A, pp. 81–103. [Google Scholar]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI PRESS: Washington, DC, USA, 2001. [Google Scholar]
- Petry, F.C.; Mercadante, A.Z. New Method for Carotenoid Extraction and Analysis by HPLC-DAD-MS/MS in Freeze-Dried Citrus and Mango Pulps. J. Braz. Chem. Soc. 2018, 29, 205–215. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Food Carotenoids: Chemistry, Biology and Technology, 1st ed.; Rodriguez-Amaya, D., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9781118733301. [Google Scholar]
- Mercadante, A.Z. Chromatographic Separation of Carotenoids. Arch. Latinoam. Nutr. 1999, 49, 52S–57S. [Google Scholar]
- Chutia, H.; Mahanta, C.L. Green Ultrasound and Microwave Extraction of Carotenoids from Passion Fruit Peel Using Vegetable Oils as a Solvent: Optimization, Comparison, Kinetics, and Thermodynamic Studies. Innov. Food Sci. Emerg. Technol. 2021, 67, 102547. [Google Scholar] [CrossRef]
- Menezes Silva, J.V.; Silva Santos, A.; Araujo Pereira, G.; Campos Chisté, R. Ultrasound-Assisted Extraction Using Ethanol Efficiently Extracted Carotenoids from Peels of Peach Palm Fruits (Bactris Gasipaes Kunth) without Altering Qualitative Carotenoid Profile. Heliyon 2023, 9, e14933. [Google Scholar] [CrossRef]
- Kultys, E.; Kurek, M.A. Green Extraction of Carotenoids from Fruit and Vegetable Byproducts: A Review. Molecules 2022, 27, 518. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Esquivel, P.; Meléndez-Martínez, A.J. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023, 12, 4080. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.d.A.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed]
- Murador, D.C.; Braga, A.R.C.; Martins, P.L.G.; Mercadante, A.Z.; de Rosso, V.V. Ionic Liquid Associated with Ultrasonic-Assisted Extraction: A New Approach to Obtain Carotenoids from Orange Peel. Food Res. Int. 2019, 126, 108653. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H.; King, W.S.; Shaffiq Sahrir, M.A. Sugars, Ascorbic Acid, Total Phenolic Content and Total Antioxidant Activity in Passion Fruit (Passiflora) Cultivars. J. Sci. Food Agric. 2013, 93, 1198–1205. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento—MAPA/Secretaria de Defesa Agropecuária. Instrução Normativa No 37, de 1o de Outubro de 2018; Ministério da Agricultura, Pecuária e Abastecimento—MAPA/Secretaria de Defesa Agropecuária: Brasília, DF, Brazil, 2018. [Google Scholar]
- Kimura, M.; Rodriguez-Amaya, D.B.; Godoy, H.T. Assessment of the Saponification Step in the Quantitative Determination of Carotenoids and Provitamins A. Food Chem. 1990, 35, 187–195. [Google Scholar] [CrossRef]
- Scotter, M. Review and Evaluation of Available Methods of Extraction and Analysis for Approved Natural Colours in Food and Drink; DEFRA Food and Environment Research Agency: London, UK, 2010. [Google Scholar]
- Hong, H.T.; Takagi, T.; O’Hare, T.J. An Optimal Saponification and Extraction Method to Determine Carotenoids in Avocado. Food Chem. 2022, 387, 132923. [Google Scholar] [CrossRef] [PubMed]
- Stinco, C.M.; Benítez-González, A.M.; Hernanz, D.; Vicario, I.M.; Meléndez-Martínez, A.J. Development and Validation of a Rapid Resolution Liquid Chromatography Method for the Screening of Dietary Plant Isoprenoids: Carotenoids, Tocopherols and Chlorophylls. J. Chromatogr. A 2014, 1370, 162–170. [Google Scholar] [CrossRef]
- Nunes, I.L.; Mercadante, A.Z.; Mercadante, A.Z. Vantagens e Desvantagens Das Colunas C 18 e C 30 Para a Separação de Carotenóides Por CLAE. Rev. Bras. De Ciências Farm. 2006, 42, 539–546. [Google Scholar] [CrossRef]
- Sander, L.C.; Epler Sharpless, K.; Craft, N.E.; Wise, S.A. Development of Engineered Stationary Phases for the Separation of Carotenoid Isomers. Anal. Chem. 1994, 66, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Emenhiser, C.; Englertb, G.; Sanderc, L.C.; Ludwigd, B.; Schwartzaq, S.J. Isolation and Structural Elucidation of the Predominant Geometrical Isomers of Cy-Carotene. J. Chromatogr. Ai 1996, 719, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.M.; Canela-Garayoa, R. Analytical Tools for the Analysis of Carotenoids in Diverse Materials. J. Chromatogr. A 2012, 1224, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, M.-S.; Yang, F.-L.; Wang-Hsu, G.-S.; Chen, B.-H. Determination of Major Carotenoids in Human Serum by Liquid Chromatography. J. Food Drug Anal. 2004, 12, 79–83. [Google Scholar] [CrossRef]
- Ligor, M.; Kováčová, J.; Gadzała-Kopciuch, R.M.; Studzińska, S.; Bocian, S.; Lehotay, J.; Buszewski, B. Study of RP HPLC Retention Behaviours in Analysis of Carotenoids. Chromatographia 2014, 77, 1047–1057. [Google Scholar] [CrossRef]
- Tai, C.-Y.; Chen, B.H. Analysis and Stability of Carotenoids in the Flowers of Daylily ( Hemerocallis d Isticha ) as Affected by Various Treatments. J. Agric. Food Chem. 2000, 48, 5962–5968. [Google Scholar] [CrossRef]
- Turcsi, E.; Nagy, V.; Deli, J. Study on the Elution Order of Carotenoids on Endcapped C18 and C30 Reverse Silica Stationary Phases. A Review of the Database. J. Food Compos. Anal. 2016, 47, 101–112. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023, 28, 3215. [Google Scholar] [CrossRef]
- Cebi, N.; Bekiroglu, H.; Erarslan, A. Nondestructive Metabolomic Fingerprinting: FTIR, NIR and Raman Spectroscopy in Food Screening. Molecules 2023, 28, 7933. [Google Scholar] [CrossRef] [PubMed]
- Quijano-Ortega, N.; Fuenmayor, C.A.; Zuluaga-Dominguez, C.; Diaz-Moreno, C.; Ortiz-Grisales, S.; García-Mahecha, M.; Grassi, S. FTIR-ATR Spectroscopy Combined with Multivariate Regression Modeling as a Preliminary Approach for Carotenoids Determination in Cucurbita Spp. Appl. Sci. 2020, 10, 3722. [Google Scholar] [CrossRef]
- Giuffrida, D.; Zoccali, M.; Mondello, L. Recent Developments in the Carotenoid and Carotenoid Derivatives Chromatography-Mass Spectrometry Analysis in Food Matrices. TrAC Trends Anal. Chem. 2020, 132, 116047. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Acquisition of Mass Spectrometry Data of Carotenoids: A Focus on Big Data Management. In Plant and Food Carotenoids: Methods and Protocols, Methods in Molecular Biology; Rodríguez-Concepción, M., Welsch, R., Eds.; Springer Science+Business Media, LLC, part of Springer Nature: New York, NY, USA, 2020; Volume 2083, pp. 135–144. [Google Scholar]
- Arathi, B.P.; Sowmya, P.R.-R.; Vijay, K.; Baskaran, V.; Lakshminarayana, R. Metabolomics of Carotenoids: The Challenges and Prospects—A Review. Trends Food Sci. Technol. 2015, 45, 105–117. [Google Scholar] [CrossRef]
- Petry, F.C.; Mercadante, A.Z. Quantification and Method Validation. In Carotenoid Esters in Foods: Physical, Chemical and Biological Properties; Mercadante, A.Z., Ed.; The Royal Society of Chemistry: London, UK, 2019; pp. 351–372. [Google Scholar]
- de Oliveira, E.C.; Muller, E.I.; Abad, F.; Dallarosa, J.; Adriano, C. Internal Standard versus External Standard Calibration: An Uncertainty Case Study of a Liquid Chromatography Analysis. Quim. Nova 2010, 33, 984–987. [Google Scholar] [CrossRef]
- Durojaye, B.O.; Riedl, K.M.; Curley, R.W.; Harrison, E.H. Uptake and Metabolism of β-Apo-8′-Carotenal, β-Apo-10′-Carotenal, and β-Apo-13-Carotenone in Caco-2 Cells. J. Lipid Res. 2019, 60, 1121–1135. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, C.; Requena-Ramírez, M.D.; Hornero-Méndez, D.; Atienza, S.G. The Breeder’s Tool-Box for Enhancing the Content of Esterified Carotenoids in Wheat: From Extraction and Profiling of Carotenoids to Marker-Assisted Selection of Candidate Genes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2022; Volume 671, pp. 99–125. [Google Scholar]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Mariutti, L.R.B. Carotenoid Esters in Foods—A Review and Practical Directions on Analysis and Occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef]
- Liaan-Jensen, S. Basic Carotenoid Chemistry. In Carotenoids in Health and Disease; Krinsky, N.I., Mayne, S.T., Sies, H., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 1–30. [Google Scholar]
- Rodriguez-Amaya, D.B. Quantitative Analysis, in Vitro Assessment of Bioavailability and Antioxidant Activity of Food Carotenoids—A Review. J. Food Compos. Anal. 2010, 23, 726–740. [Google Scholar] [CrossRef]
- O’Neil, C.A.; Schwartz, S.J. Chromatographic Analysis of Cis/Trans Carotenoid Isomers. J. Chromatogr. A 1992, 624, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tang, X.; Lu, Y.; Xu, J.; Chen, J.; Chen, H. An Improved Method for the Separation of Carotenoids and Carotenoid Isomers by Liquid Chromatography–Mass Spectrometry. J. Sep. Sci. 2021, 44, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, A.Z. Identificación de Carotenoides. In Carotenoides en Agroalimentación y Salud; Meléndez-Martínez, A.J., Ed.; Editorial Terracota: Mexico City, Mexico, 2017; pp. 78–94. [Google Scholar]
- Furr, H.C. Analysis of Retinoids and Carotenoids: Problems Resolved and Unsolved. J. Nutr. 2004, 134, 281S–285S. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.; Grune, T. The Contribution of Β-carotene to Vitamin A Supply of Humans. Mol. Nutr. Food Res. 2012, 56, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Shankar, P.; Yao, Y.; Su, X.; Kim, J.E. Effect of Xanthophyll-Rich Food and Supplement Intake on Visual Outcomes in Healthy Adults and Those with Eye Disease: A Systematic Review, Meta-Analysis, and Meta-Regression of Randomized Controlled Trials. Nutr. Rev. 2024, 82, 34–46. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Mapelli-Brahm, P.; Benítez-González, A.; Stinco, C.M. A Comprehensive Review on the Colorless Carotenoids Phytoene and Phytofluene. Arch. Biochem. Biophys. 2015, 572, 188–200. [Google Scholar] [CrossRef]
- Liaaen-Jensen, S. Combined Approach: Identification and Structure Elucidation of Carotenoids. In Carotenoids Volume 1B: Spectroscopy; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser: Basel, Switzerland, 1995; pp. 343–354. [Google Scholar]
- Pfander, H.; Riesen, R.; Niggli, U. HPLC and SFC of Carotenoids: Scope and Limitations. Pure Appl. Chem. 1994, 66, 947–954. [Google Scholar] [CrossRef]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Marson, B.M.; Concentino, V.; Junkert, A.M.; Fachi, M.M.; Vilhena, R.O.; Pontarolo, R. Validation of Analytical Methods in a Pharmaceutical Quality System: An Overview Focused on HPLC Methods. Quim. Nova 2020, 43, 1190–1203. [Google Scholar] [CrossRef]
- Ministério da Saúde—MS; Agência Nacional de Vigilância Sanitária—ANVISA. Resolução da Diretoria Colegiada—RDC NO 166, 24 July 2017; Ministério da Saúde—MS: Brasília, Brazil; Agência Nacional de Vigilância Sanitária—ANVISA: Brasília, Brazil, 2017. [Google Scholar]
- ICH Harmonised Tripartite Guideline Validation of Analitical Procedures: Text and Methodology Q2(R1). 2005. Available online: https://somatek.com/wp-content/uploads/2014/06/sk140605h.pdf (accessed on 19 February 2024).
- Ribani, M.; Beatriz, C.; Bottoli, G.; Collins, C.H.; Sales, I.C.; Jardim, F. Validação Em Métodos Cromatográficos e Eletroforéticos. Qímica Nova 2004, 27, 771–780. [Google Scholar] [CrossRef]
- Kruve, A.; Rebane, R.; Kipper, K.; Oldekop, M.-L.; Evard, H.; Herodes, K.; Ravio, P.; Leito, I. Tutorial Review on Validation of Liquid Chromatography–Mass Spectrometry Methods: Part II. Anal. Chim. Acta 2015, 870, 8–28. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. 2002. Available online: https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER20-7/Validation_Methods/d-AOAC_Guidelines_For_Single_Laboratory_Validation_Dietary_Supplements_and_Botanicals.pdf (accessed on 28 February 2024).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- The Joanna Briggs Institute. The Joanna Briggs Institute Reviewers’ Manual—2014; The Joanna Briggs Institute: Adelaide, Australia, 2014. [Google Scholar]
Sample | Extraction | Pre-Chromatographic or Pre-HPLC Steps | HPLC Separation | Identification | Quantification | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
Passiflora Species | Plant Part | Solvent | Method | Saponification | Other Methods | Column | Mobile Phase | |||
P. edulis (yellow and purple) | Pulp | Hexane containing 0.01% BHT | Homogenization (blender) | Saturated KOH, overnight, at room temperature | Not performed | C18 (5 µm, 250 × 4.6 mm, Zorbax) | ACN:CH2Cl2: 0.001%TEA in MeOH (350:150:1) Isocratic Flow rate: 1.0 mL/min | HPLC-UV–Vis and HPLC-DAD | DAD, using external calibration curves | [56] |
P. edulis | Pulp | Acetone | Homogenization (blender) | Not performed | OCC with MgO:HyfloSupercel® (1:2, w/w) and elution with petroleum ether and acetone. Recromatographed on Ca(OH)2 column to separate E/Z isomers | C18 (5 µm, 250 × 4.6 mm, Vydac) | MeOH:H2O (98:2) Isocratic Flow rate: unspecified | HPLC-DAD | UV–VIS spectrophotometer, using the absorption coefficients of carotenoids | [57] |
P. edulis flavicarpa | Pulp | Acetone | Maceration (mortar and pestle) | Methanolic KOH (10%), overnight | OCC with alumina and elution with either petroleum ether, or diethyl ether in petroleum ether, or ethanol in ether | Carotenes: C18 (5 µm; 250 × 4.6 mm, Vydac) Xanthophylls: Nitrile (5 µm; 250 × 4.6 mm, Nucleosyl) | Carotenes: MeOH Xanthophylls: EtOAc:hexane (20:80) Isocratic Flow rate: 1.0 mL/min | HPLC-DAD-MS/MS (quadrupole analyser) NMR for prolycopene | Not performed | [58] |
P. edulis flavicarpa | Pulp | Acetone | Homogenization (blender) | Methanolic KOH (10%), overnight, at room temperature | Not performed | C18 (4 µm; 300 × 3.9 mm, Nova-Pak) at 29 °C | ACN:MeOH:EtOAc (75:15:10) Isocratic Flow rate: 1.0 mL/min | HPLC-DAD | DAD, using external calibration curves | [2] |
P. edulis | Edible parts | Acetone containing NaHCO3 | Maceration (mortar and pestle) | Methanolic KOH (5%), under N2 atmosphere, 2 h | Not performed | C18 (5 µm, 250 × 4.6 mm) | ACN:dichloromethane:MeOH (82:13:5) Isocratic Flow rate: 1.5 mL/min | HPLC-DAD | DAD, using external calibration curves | [55] |
P. cincinnata P. nitida P. setacea P. edulis (yellow and purple) | Pulp | Acetone containing BHT | Maceration (mortar and pestle) | Methanolic KOH (10%), overnight, at room temperature | Not performed | C18 (3 µm, 150 × 4.6 mm, Waters) | 0.05%TEA in ACN:MeOH:EtOAc Gradient Flow rate: 0.5 mL/min | HPLC-DAD + TLC | DAD, using external calibration curves | [59] |
P. edulis | Pulp | Acetone | Maceration (mortar and pestle) | Methanolic KOH (10%), overnight, at room temperature | Not performed | C30 # (3 µm, 250 × 4.6 mm) at 22 °C | 0.1% TEA in MeOH:MTBE Gradient Flow rate: 0.9 mL/min | HPLC-DAD-MS/MS (ion-trap analyser) | DAD, using external calibration curves | [60] |
P. edulis f. flavicarpa | Pulp | Saturated NaCl:hexane (2:1); dichloromethane; EtOAc | Mixing and centrifugation | Not performed | Not performed | C30 (3 µm, 250 × 4.6 mm, YMC) at 30 °C | MeOH and MTBE Gradient Flow rate: 1.4 mL/min | HPLC-DAD MIR NIR | DAD, internal standardization | [61] |
P. edulis | Pulp | Acetone + petroleum ether | Mixing and centrifugation | Ethanolic KOH (1.5 N), overnight | Not performed | C18 (4 µm, 150 × 4.6 mm, Shim-pak) | MeOH:ACN (30:70), MeOH:ACN:EtOAc (10:80:10), and MeOH:ACN:EtOAc (5:80:15) Gradient Flow rate: 1.0 mL/min | HPLC-UV–Vis | UV–Vis, using external calibration curves | [62] |
P. mollissima | Pulp | MeOH:H2O (60:40, v/v), followed by dichloromethane | Vortex and ultrasonic bath | Not performed | Not performed | C18 (2.7 µm, 50 × 4.6 mm, Agilent) at 28 °C | ACN:MeOH:EtOAc Gradient Flow rate: 1.0 mL/min | RRLC-DAD | DAD, using external calibration curves | [50] |
P. edulis | Leaves | Acetone | Maceration (mortar and pestle) | Not performed | Not performed | C8 (5 µm, 250 × 4 mm, Lichrospher | ACN:MeOH:CH2Cl2 (60:20:20) containing 0.1% ammonium acetate Isocratic Flow rate: 1.0 mL/min | HPLC-DAD | DAD, using external calibration curves | [54] |
P. edulis s. flavicarpa P. edulis s. edulis P. caerulea | Pulp and peel | Acetone | Maceration (mortar and pestle) | Methanolic KOH (10%), overnight | Not performed | C30 (3 µm, 250 × 4.6 mm, YMC) at 33 °C | H2O:MeOH:MTBE Gradient Flow rate: 1.0 mL/min | HPLC-UV–Vis | UV–Vis, using external calibration curves | [49] |
P. caerulea | Pulp | Acetone | Maceration (mortar and pestle) | Methanolic KOH (10%), overnight | Not performed | C30 (3 µm, 250 × 4.6 mm, YMC) at 33 °C | H2O:MeOH:MTBE Gradient Flow rate: 1.0 mL/min | HPLC-UV–Vis | UV–Vis, using external calibration curves | [48] |
P. quadrangularis | Edible parts | Acetone | Maceration (mortar and pestle) | Methanolic KOH (10%) overnight | Not performed | C18 (5 µm, 250 × 4.6 mm, Eclipse Plus) | MeOH:isopropanol (35:65) Isocratic Flow rate: 1.0 mL/min | HPLC-DAD | DAD, using external calibration curves | [52] |
P. ligularis Juss. P. mollissima | Edible parts | Chloroform | Agitation | Methanolic KOH (5%), for 4 h at 50 °C | Not performed | C18 (5 µm, 250 × 4.6 mm, Eclipse Plus) | MeOH:isopropanol (35:65) Isocratic Flow rate: 1.0 mL/min | HPLC-DAD | DAD, using external calibration curves | [51] |
P. edulis Sims | Pulp | MeOH | Homogenization and centrifugation | Not performed | Not performed | C18 (5 µm, 250 × 4.6 mm, unspecified brand) | MeOH:ACN (20:80) Isocratic Flow rate: 0.8 mL/min | HPLC-UV–Vis | Unclear | [63] |
P. tenuifila | Whole fruit | Acetone | Maceration (mortar and pestle) | Not performed | Not performed | C30 (5 µm, 250 × 4.6 mm, YMC) | MeOH:MTBE:H2O Gradient Flow rate: 1.0 mL/min | HPLC-DAD-MS/MS (ion-trap analyser) | DAD, using external calibration curves | [1] |
Sample | Carotenoid Profile 1 | Carotenoid Content | Ref. | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Passiflora Species | Plant Part | ||||||||||||||||
P. edulis (yellow and purple) | Pulp | µg/g sample fw | [56] | ||||||||||||||
Yellow 1 | Yellow 2 | Purple 1 | Purple 2 | ||||||||||||||
β-carotene | 7.50 ± 0.36 | 3.00 ± 1.40 | 3.36 ± 0.02 | 11.50 ± 0.9 | |||||||||||||
α-carotene | 0.70 ± 0.08 | nd | nd | nd | |||||||||||||
β-cryptoxanthin | 0.53 ± 0.03 | 0.40 ± 0.11 | 0.42 ± 0.006 | 0.40 ± 0.13 | |||||||||||||
P. edulis | Pulp | µg/g sample fw | [57] | ||||||||||||||
(all-E)-β-carotene | 4.70 ± 1.00 | ||||||||||||||||
P. edulis flavicarpa | Pulp | µg/g sample fw | [58] | ||||||||||||||
Phytoene | Not quantified | ||||||||||||||||
Phytofluene | |||||||||||||||||
β-carotene | |||||||||||||||||
ζ-carotene | |||||||||||||||||
Prolycopene | |||||||||||||||||
Neurosporene | |||||||||||||||||
Lycopene | |||||||||||||||||
Monoepoxi-β-carotene | |||||||||||||||||
β-cryptoxanthin | |||||||||||||||||
β-citraurin | |||||||||||||||||
Antheraxanthin | |||||||||||||||||
Violaxanthin | |||||||||||||||||
Neoxanthin | |||||||||||||||||
P. edulis flavicarpa 2 | Pulp | µg/g sample fw | [2] | ||||||||||||||
Batch 1 | Batch 2 | Batch 3 | Batch 4 | Batch 5 | |||||||||||||
β-cryptoxanthin | 0.69 ± 0.02 | 0.45 ± 0.01 | 1.27 ± 0.04 | 1.75 ± 0.03 | 2.65 ± 0.09 | ||||||||||||
Prolycopene | 1.71 ± 0.03 | 2.25 ± 0.06 | 0.30 ± 0.00 | 3.02 ± 0.07 | 2.59 ± 0.04 | ||||||||||||
Neurosporene | tr | tr | nd | nd | nd | ||||||||||||
Mixture 3 | 3.69 ± 0.03 | 4.59 ± 0.02 | 0.63 ± 0.02 | 3.34 ± 0.04 | 2.91 ± 0.08 | ||||||||||||
γ-carotene | nd | nd | Tr | nd | nd | ||||||||||||
(Z)-ζ-carotene | 4.45 ± 0.07 | 2.82 ± 0.06 | 0.74 ± 0.02 | 7.38 ± 0.07 | 2.59 ± 0.04 | ||||||||||||
ζ-carotene | 7.78 ± 0.21 | 12.86 ± 0.46 | 1.26 ± 0.04 | 3.93 ± 0.08 | 3.05 ± 0.08 | ||||||||||||
β-carotene | 4.48 ± 0.07 | 2.39 ± 0.03 | 10.79 ± 0.40 | 6.77 ± 0.12 | 13.35 ± 0.31 | ||||||||||||
(13Z)-β-carotene | tr | tr | 0.36 ± 0.01 | tr | tr | ||||||||||||
Phytoene | nq | nq | nq | nq | nq | ||||||||||||
Phytofluene | nq | nq | nq | nq | nq | ||||||||||||
P. edulis | Edible parts | µg/g sample fw | [54] | ||||||||||||||
Lutein | 0.1 ± 0.1 | ||||||||||||||||
Zeaxanthin | 0.2 ± 0.1 | ||||||||||||||||
P. cincinnata P. nitida P. setacea P. edulis (native yellow and purple and commercial a and b) | Pulp | µg/g sample fw | [59] | ||||||||||||||
P. cincinnata | P. nitida | P. setacea | P. edulis n.y | P. edulis n.p | P. edulisc.a | P. edulisc.b | |||||||||||
Neoxanthin | nq | nd | nd | nd | nd | nq | nq | ||||||||||
Antheraxanthin | nq | nq | nq | nq | nq | nq | nq | ||||||||||
Lutein | nq | nd | nq | nd | nd | nd | nd | ||||||||||
Zeaxanthin | nd | nd | nq | nq | nd | nq | nq | ||||||||||
Phytofluene | nd | nd | nd | nq | nq | nq | nq | ||||||||||
(all-E)-violaxanthin | tr-0.02 ± 0.00 | nd | tr | 0.50 ± 0.05 | nd | 0.60 ± 0.08 | 0.50 ± 0.10 | ||||||||||
(Z)-violaxanthin | nd | nd | 0.18 ± 0.06 | nd | nd | 1.20 ± 0.16 | 1.21 ± 0.20 | ||||||||||
β-cryptoxanthin | nd | nd | nd | 0.24 ± 0.02 | 0.20 ± 0.03 | 1.75 ± 0.08 | 1.80 ± 0.20 | ||||||||||
Prolycopene | nd | nd | nd | 3.03 ± 0.08 | 5.90 ± 0.50 | 5.43 ± 0.18 | 0.87 ± 0.09 | ||||||||||
Poly-(Z)-carotene | nd | nd | nd | 1.30 ± 0.10 | 3.40 ± 0.20 | 4.93 ± 0.18 | 1.27 ± 0.06 | ||||||||||
(Z)-ζ-carotene | nd | nd | tr | 6.28 ± 0.15 | 12.10 ± 0.70 | 6.83 ± 0.25 | 2.00 ± 0.10 | ||||||||||
(all-E)-ζ-carotene | nd | nd | nd | 5.40 ± 0.28 | 10.95 ± 0.30 | 11.40 ± 0.40 | 2.30 ± 0.10 | ||||||||||
(all-E)-β-carotene | 0.03–0.06 ± 0.00–0.01 | 0.005 ± 0.00 | 0.66 ± 0.09 | 2.84 ± 0.06 | 2.60 ± 0.10 | 3.60 ± 0.10 | 7.80 ± 0.80 | ||||||||||
(13Z)-β-carotene | nd | nd | 0.08 ± 0.00 | 0.38 ± 0.08 | tr | 0.40 ± 0.00 | 0.37 ± 0.02 | ||||||||||
P. edulis f. flavicarpa | Pulp | µg/g sample fw | [60] | ||||||||||||||
ζ-carotene | 16.7 ± 0.3 | ||||||||||||||||
β-carotene | 13.8 ± 0.2 | ||||||||||||||||
P. edulis f. flavicarpa | Pulp | µg/g sample dw | [61] | ||||||||||||||
β-carotene | 60.00 ± 60.00 | ||||||||||||||||
Phytoene | 50.00 ± 30.00 | ||||||||||||||||
Phytofluene | 20.00 ± 10.00 | ||||||||||||||||
P. edulis f. flavicarpa | Pulp | Organic * | Conventional * | [62] | |||||||||||||
Lutein + Zeaxanthin | 0.01 | 0.01 | |||||||||||||||
β-cryptoxanthin | 139.40 | 249.90 | |||||||||||||||
Lycopene | 0.02 | 0.28 | |||||||||||||||
β-carotene | 0.56 | 0.77 | |||||||||||||||
P. mollissima | Pulp | µg/g sample dw | [50] | ||||||||||||||
α-carotene | 1.64 ± 0.50 | ||||||||||||||||
β-carotene | 79.74 ± 30.38 | ||||||||||||||||
Zeaxanthin | 1.86 ± 0.49 | ||||||||||||||||
P. edulis | Leaves | µg/g sample dw | [54] | ||||||||||||||
β-carotene | 240.00 ± 5.00 | ||||||||||||||||
Lutein | 240.00 ± 1.00 | ||||||||||||||||
P. edulis S. flavicarpa, P. edulis S. edulis, P. caerulea | Pulp and peel | µg/g sample dw | [49] | ||||||||||||||
Pulp | Peel | ||||||||||||||||
P. edulis Sims flavicarpa | P. edulis Sims edulis | P. caerulea | P. edulis Sims flavicarpa | P. edulis Sims edulis | P.caerulea | ||||||||||||
Lutein | 0.44 ± 0.02 | 0.11 ± 0.001 | 1.05 ± 0.03 | 5.05 ± 0.25 | 3.67 ± 0.18 | 28.81 ± 1.49 | |||||||||||
Zeaxanthin | 0.66 ± 0.01 | 0.75 ± 0.001 | 0.91 ± 0.02 | 0.66 ± 0.002 | 0.49 ± 0.03 | 3.24 ± 0.11 | |||||||||||
Cryptoxanthin | 2.54 ± 0.03 | 0.31 ± 0.001 | nd | 0.75 ± 0.001 | 0.75 ± 0.001 | 6.17 ± 0.38 | |||||||||||
α-carotene | 0.86 ± 0.05 | 0.68 ± 0.02 | nd | nd | 0.37 ± 0.01 | 4.20 ± 0.15 | |||||||||||
β-carotene | 13.34 ± 0.79 | 1.72 ± 0.02 | 7.44 ± 0.16 | 2.73 ± 0.12 | 7.16 ± 0.31 | 212.74 ± 6.76 | |||||||||||
Lycopene | nd | nd | 44.05 ± 1.35 | nd | nd | nd | |||||||||||
P. caerulea | Pulp (juice) | sample fw # | [48] | ||||||||||||||
Lutein | 8.59 ± 0.41 | ||||||||||||||||
Zeaxanthin | 10.20 ± 0.25 | ||||||||||||||||
β-cryptoxanthin | 35.33 ± 1.60 | ||||||||||||||||
α-carotene | 7.02 ± 0.26 | ||||||||||||||||
β-carotene | 37.98 ± 1.78 | ||||||||||||||||
Lycopene | 108.39 ± 3.29 | ||||||||||||||||
P. quadrangularis | Edible parts | µg/100 g sample fw * | [52] | ||||||||||||||
β-carotene | <5.0 | ||||||||||||||||
Lycopene | nd | ||||||||||||||||
Lutein | nd | ||||||||||||||||
P. ligularis Juss. P. mollissima | Edible parts | µg/g sample fw | [51] | ||||||||||||||
P. ligularis Juss | P. mollissima (Kunth) L.H. Bailey | ||||||||||||||||
β-carotene | 1.68 ± 0.26 | 16.25 ± 2.17 | |||||||||||||||
Lutein | 2.56 ± 0.48 | 45.37 ± 0.47 | |||||||||||||||
P. edulis Sims | Pulp | µg/g sample fw * | [63] | ||||||||||||||
Fresh pulp | Pulp powder | ||||||||||||||||
β-carotene | 117.90 | 132.60 | |||||||||||||||
P. tenuifila | Whole fruit | µg/g sample fw | [1] | ||||||||||||||
Batch 1 | Batch 2 | Batch 3 | |||||||||||||||
Ripe | Mature-green | Ripe | Mature-green | Ripe | |||||||||||||
(all-E)-violaxanthin | 1.54 ± 0.02 | 3.20 ± 0.07 | 1.43 ± 0.04 | 3.05 ± 0.18 | 1.86 ± 0.09 | ||||||||||||
Not identified mixture | 1.50 ± 0.05 | 1.75 ± 0.08 | 1.47 ± 0.06 | 1.63 ± 0.06 | 1.66 ± 0.06 | ||||||||||||
(all-E)-antheraxanthin | 1.69 ± 0.03 | 2.21 ± 0.08 | 1.63 ± 0.06 | 2.10 ± 0.09 | 2.01 ± 0.11 | ||||||||||||
(13Z)-lutein and/or (13′Z)-lutein | 1.45 ± 0.01 | 1.61 ± 0.02 | 1.47 ± 0.04 | 1.57 ± 0.04 | 1.60 ± 0.06 | ||||||||||||
(all-E)-lutein | 6.93 ± 0.65 | 13.24 ± 0.30 | 5.52 ± 0.12 | 11.86 ± 0.90 | 10.09 ± 0.52 | ||||||||||||
(all-E)-zeaxanthin | 2.97 ± 0.04 | 2.44 ± 0.05 | 2.46 ± 0.15 | 2.10 ± 0.08 | 2.38 ± 0.06 | ||||||||||||
(9Z)-lutein | 1.41 ± 0.01 | 1.50 ± 0.01 | 1.42 ± 0.01 | 1.50 ± 0.02 | 1.48 ± 0.02 | ||||||||||||
(all-E)-violaxanthin-myristate | 1.39 ± 0.03 | 1.42 ± 0.02 | 1.43 ± 0.02 | 1.40 ± 0.03 | 1.47 ± 0.01 | ||||||||||||
Not identified carotenoid-myristate | 1.46 ± 0.01 | 1.52 ± 0.02 | 1.44 ± 0.03 | 1.47 ± 0.02 | 1.48 ± 0.01 | ||||||||||||
(all-E)-violaxanthin-palmitate | 1.36 ± 0.03 | 1.49 ± 0.01 | 1.44 ± 0.02 | 1.41 ± 0.01 | 1.46 ± 0.01 | ||||||||||||
(13Z)- or (15Z)-β-carotene | nd | nd | 1.84 ± 0.04 | nd | 1.73 ± 0.09 | ||||||||||||
(all-E)-luteina-3′-O-myristate | 1.69 ± 0.07 | 1.54 ± 0.02 | 1.75 ± 0.06 | 1.53 ± 0.02 | 1.78 ± 0.02 | ||||||||||||
(all-E)-β-carotene | 8.38 ± 0.11 | 10.95 ± 0.51 | 8.38 ± 0.48 | 9.78 ± 0.84 | 11.10 ± 0.17 | ||||||||||||
(9Z)-β-carotene | 1.80 ± 0.05 | 1.92 ± 0.02 | 2.10 ± 0.12 | 1.82 ± 0.06 | 2.07 ± 0.05 | ||||||||||||
Not identified | 1.70 ± 0.02 | 1.46 ± 0.01 | 1.49 ± 0.01 | 1.41 ± 0.02 | 1.64 ± 0.01 | ||||||||||||
(all-E)-lutein-dimyristate | 1.44 ± 0.02 | 1.38 ± 0.01 | 1.43 ± 0.01 | 1.32 ± 0.01 | 1.42 ± 0.01 | ||||||||||||
Not identified | 1.44 ± 0.01 | nd | 1.36 ± 0.03 | nd | 1.32 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, M.d.M.R.; Bobrowski Rodrigues, D.; Brison, R.; Nepomuceno, F.; Bento, M.L.; Oliveira, L.d.L.d. A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules 2024, 29, 1585. https://doi.org/10.3390/molecules29071585
Leite MdMR, Bobrowski Rodrigues D, Brison R, Nepomuceno F, Bento ML, Oliveira LdLd. A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules. 2024; 29(7):1585. https://doi.org/10.3390/molecules29071585
Chicago/Turabian StyleLeite, Marina de Macedo Rodrigues, Daniele Bobrowski Rodrigues, Raquel Brison, Fernanda Nepomuceno, Maria Lua Bento, and Lívia de Lacerda de Oliveira. 2024. "A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species" Molecules 29, no. 7: 1585. https://doi.org/10.3390/molecules29071585
APA StyleLeite, M. d. M. R., Bobrowski Rodrigues, D., Brison, R., Nepomuceno, F., Bento, M. L., & Oliveira, L. d. L. d. (2024). A Scoping Review on Carotenoid Profiling in Passiflora spp.: A Vast Avenue for Expanding the Knowledge on the Species. Molecules, 29(7), 1585. https://doi.org/10.3390/molecules29071585