Optimization of HS-SPME/GC-MS Method for Determining Volatile Organic Compounds and Sensory Profile in Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. HS-SPME Optimization
2.2. Characterization of Volatile Organic Compounds
Group | Compound | Odor Description | tR (min) | LRIEXP a | LRILIT b | CCN51 | PS1319 | SJ02 | Parazinho |
---|---|---|---|---|---|---|---|---|---|
Acids | |||||||||
1 | octanoic acid | Sweet, cheese, oily, fatty [26,27] | 38.971 | 1183 | 1185 | 0.20 | 0.01 | 0.02 | 0.09 |
2 | nonanoic acid * | Green, fatty [26] | 42.820 | 1271 | 1272 | 0.42 | 0.03 | 0.09 | 0.22 |
3 | dodecanoic acid * | Rancid, fatty, metal [26] | 52.850 | 1562 | 1562 | 0.56 | 0.83 | 0.62 | 0.70 |
4 | tetradecanoic acid * | 58.444 | 1758 | 1759 | 0.42 | 0.27 | 0.38 | 0.64 | |
5 | pentadecanoic acid * | 61.002 | 1855 | 1857 | 2.73 | 0.14 | 0.20 | 0.27 | |
6 | palmitic acid * | 63.814 | 1961 | 1960 | 13.10 | 5.13 | 8.27 | 7.72 | |
Alcohols | |||||||||
7 | 2-pentanol | Fruity [28] | 5.050 | 687 | 685 | 2.23 | 2.43 | 3.52 | 4.12 |
8 | 2-heptanol | Citrus, fresh, lemon-grasslike [24], sweet, citrusy [26,27,29] | 20.987 | 901 | 901 | 0.93 | 2.06 | 0.37 | 0.05 |
9 | 1-heptanol * | 27.384 | 980 | 975 | - | - | 0.03 | - | |
10 | 2-ethyl-1-hexanol | 30.912 | 1031 | 1030 | - | - | 0.01 | - | |
11 | 2-nonanol | Fruity [4,30] | 34.677 | 1099 | 1098 | 0.50 | 2.26 | 0.11 | 0.00 |
12 | 1-dodecanol * | 50.001 | 1470 | 1469 | 0.13 | 0.09 | 0.12 | 0.33 | |
13 | 1-tetradecanol | 56.075 | 1672 | 1672 | 0.12 | 0.08 | 0.07 | 0.18 | |
14 | 1-hexadecanol * | 61.485 | 1874 | 1879 | 0.29 | 0.15 | 0.14 | 0.41 | |
15 | (Z)-9-octadecen-1-ol | 67.671 | 2054 | 2060 | 2.54 | 0.74 | 1.27 | 1.91 | |
Aldehydes | |||||||||
16 | furfural | Bread, almond, sweet [28] | 12.882 | 832 | 835 | 0.22 | 0.16 | 0.30 | 0.15 |
17 | benzaldehyde * | Bitter [24,27], candy, almond, burnt sugar [27] | 25.925 | 964 | 961 | 0.70 | 0.27 | 0.38 | 0.42 |
18 | octanal * | Citrus-like [25] | 29.290 | 1000 | 1000 | 0.25 | 0.20 | 0.26 | 0.04 |
19 | benzeneacetaldehyde | 31.370 | 1040 | 1049 | 0.43 | - | - | 0.17 | |
20 | (E)-2-octenal * | 32.322 | 1057 | 1062 | 0.62 | 0.31 | 0.33 | 0.27 | |
21 | decanal | 39.977 | 1202 | 1202 | 0.39 | 0.24 | 0.43 | 0.23 | |
22 | 2,5-dimethylbenzaldehyde | 40.300 | 1210 | 1208 | 0.85 | - | 0.63 | 0.27 | |
23 | (E)-2-decenal | 42.353 | 1260 | 1263 | 1.71 | 0.86 | 1.45 | 0.97 | |
24 | (E)-cinnamaldehyde | 42.723 | 1269 | 1266 | 0.14 | 0.08 | 0.14 | 0.16 | |
25 | (E,E)-2,4-decadienal | Tallow, fatty [25] | 44.505 | 1313 | 1314 | 1.28 | 1.01 | 0.49 | 0.55 |
26 | 2-undecenal | Tallowy, sweet [25] | 46.256 | 1361 | 1363 | 1.24 | 0.65 | 1.00 | 0.31 |
27 | (E)-2-dodecenal | 49.756 | 1463 | 1462 | 0.14 | 0.13 | 0.13 | 0.03 | |
28 | tetradecanal | 54.256 | 1608 | 1608 | 0.07 | 0.05 | 0.06 | 0.05 | |
Esters | |||||||||
29 | 1-methylbutyl acetate | Fruity [4] | 14.810 | 852 | 843 | 11.92 | 15.66 | 23.87 | 14.18 |
30 | pentyl propanate | 24.939 | 952 | 952 | 0.11 | 0.08 | 0.08 | 0.06 | |
31 | (Z)-3-hexen-1-ol acetate | 28.241 | 989 | 988 | 0.03 | - | 0.05 | 0.01 | |
32 | hexyl ethanoate | 30.097 | 1016 | 1016 | 0.02 | 0.01 | 0.01 | 0.04 | |
33 | 2-heptyl acetate | Fruity [30] | 31.688 | 1046 | 1047 | 5.95 | 10.89 | 3.78 | 1.24 |
34 | 2,3-butanediyl diacetate | Floral [4] | 33.437 | 1077 | 1065 | 0.07 | 0.11 | 0.07 | 0.16 |
35 | 1,3-butylene diacetate | 35.729 | 1120 | 1124 | 2.32 | 3.29 | - | 6.26 | |
36 | benzyl ethanoate | Floral, jasmine [27,31] fresh [27] | 38.044 | 1166 | 1170 | 0.27 | 0.14 | 0.09 | 0.19 |
37 | gardenol | Sweet, fruity [29] | 39.581 | 1194 | 1186 | 1.19 | 2.16 | 2.72 | 6.87 |
38 | neryl acetate | 40.979 | 1227 | 1221 | 0.18 | 0.34 | 0.32 | 0.19 | |
39 | 3-phenyl-1-propyl acetate | 46.512 | 1368 | 1373 | - | 0.14 | 0.17 | 0.43 | |
40 | decyl acetate | 48.626 | 1429 | 1418 | - | 0.10 | 0.02 | - | |
41 | (E)-cinnamyl acetate | 49.067 | 1442 | 1452 | - | 0.10 | - | 0.10 | |
42 | hexyl benzoate | 53.573 | 1585 | 1580 | 0.95 | 1.63 | 0.35 | 0.16 | |
43 | methyl jasmonate | 55.351 | 1647 | 1644 | 0.66 | 0.30 | 0.30 | 0.52 | |
44 | methyl (3-oxo-2-[(2Z)-2-pentenyl]cyclopentyl)acetate | 56.221 | 1677 | 1684 | 0.44 | 0.18 | 0.21 | 0.43 | |
45 | benzyl benzoate | 58.590 | 1763 | 1763 | 0.31 | 0.08 | 0.05 | - | |
46 | 2-ethylhexyl salicylate * | 59.673 | 1803 | 1807 | 0.40 | 0.59 | 0.55 | 0.70 | |
47 | isopropyl myristate | 60.116 | 1820 | 1823 | - | 0.04 | - | 0.04 | |
48 | methyl palmitate | 62.652 | 1918 | 1921 | 0.02 | 0.03 | 0.04 | 0.04 | |
49 | propyl palmitate | 68.400 | 2068 | 2065 | 0.07 | 0.07 | 0.08 | - | |
Ketones | |||||||||
50 | 2-heptanone * | Fruity [31], cheese-like [24], flowery [26], pear, grape, brandy [27] | 19.334 | 889 | 889 | 0.69 | 0.97 | 0.37 | 0.48 |
51 | acetophenone | Sweet, almond, flowery [31], must-like [24,26], almond | 32.560 | 1062 | 1062 | 0.15 | 0.38 | 0.64 | 2.00 |
52 | 2-nonanone | Flowery, fruit, musty [27] | 34.142 | 1089 | 1090 | 0.96 | 1.75 | 0.49 | 0.30 |
53 | geranyl acetone * | 49.333 | 1450 | 1452 | 0.21 | 0.30 | 0.24 | 0.26 | |
54 | nerylacetone | 51.706 | 1524 | 1535 | - | 0.10 | - | - | |
Monoterpene | |||||||||
55 | 7-endo-ethenyl-bicyclo[4,2,0]-oct-1-ene | 30.206 | 1018 | 1029 | - | - | 0.04 | - | |
56 | β-cymene | 30.291 | 1019 | 1025 | - | 0.01 | - | - | |
57 | D-limonene * | Citrus, orange, sweet [31] | 30.517 | 1024 | 1027 | 0.04 | 0.12 | 0.12 | 0.05 |
58 | (Z)-ocimene | Floral [30] | 31.350 | 1039 | 1039 | - | - | 0.34 | - |
59 | 3-carene | 31.823 | 1048 | 1040 | - | 0.21 | 0.18 | - | |
60 | linalol * | Flowery, lavender, rose [28] | 34.557 | 1096 | 1099 | 1.21 | 2.45 | 2.76 | 0.78 |
61 | allo-ocimene | 36.158 | 1129 | 1131 | - | 0.07 | - | - | |
62 | (E,E)-cosmene | 36.170 | 1129 | 1130 | 0.05 | - | 0.15 | 0.07 | |
63 | (Z)-geraniol | Floral, rose, fruity [31] | 42.100 | 1254 | 1254 | 0.78 | 0.70 | 0.74 | 0.49 |
64 | piperitone | 43.796 | 1294 | 1285 | 0.04 | 0.05 | - | 0.11 | |
Oxygenated monoterpene | |||||||||
65 | (Z)-linalool oxide | Sweet, nutty [24,31] | 32.992 | 1069 | 1068 | 0.48 | 0.22 | 1.04 | 0.94 |
66 | (E)-linalool oxide | Floral [24] | 33.831 | 1084 | 1081 | 0.83 | 0.45 | 1.64 | 0.84 |
67 | epoxylinalol | Floral [4] | 38.528 | 1175 | 1163 | - | 0.03 | 0.02 | 0.16 |
68 | α-terpineol | 39.240 | 1188 | 1188 | 0.52 | 0.77 | 0.69 | 0.31 | |
69 | β-phellandrene-8-ol | 40.446 | 1214 | 1215 | - | - | 0.03 | 0.02 | |
70 | (E)-β-damascenone | 47.040 | 1382 | 1385 | 0.20 | 0.13 | 0.58 | 0.34 | |
71 | α-ferulene | 50.106 | 1474 | 1484 | - | 0.02 | 0.02 | - | |
Sesquiterpene | |||||||||
72 | elixene | 48.885 | 1437 | 1445 | 0.03 | - | 0.03 | 0.12 | |
73 | δ-guaiene | 50.469 | 1484 | 1493 | - | 0.03 | 0.03 | - | |
74 | (Z,E)-farnesene | 50.579 | 1488 | 1486 | - | 0.15 | 0.05 | 0.13 | |
75 | germacrene D | 51.666 | 1523 | 1529 | 0.13 | - | - | 0.13 | |
76 | phytane | 59.423 | 1793 | 1795 | 0.11 | 0.07 | 0.05 | 0.15 | |
Oxygenated sesquiterpene | |||||||||
77 | 7,8-dihydro-β-ionone | 48.852 | 1436 | 1433 | - | 0.04 | 0.01 | - | |
78 | γ-eudesmol | Woody [28] | 54.947 | 1632 | 1633 | 0.70 | 0.67 | 0.59 | 0.95 |
79 | bulnesol | Pepper-like [32] | 55.569 | 1654 | 1659 | 0.33 | 0.38 | 0.42 | 0.54 |
80 | thunbergol | 66.710 | 2036 | 2047 | - | 0.80 | - | - | |
Others | |||||||||
81 | 2,2,6-trimethyl-6-vinyltetrahydropyran | 26.926 | 975 | 971 | - | 0.03 | 0.01 | - | |
82 | 2-pyridinemethanamine | 31.839 | 1049 | 1054 | 0.12 | - | - | 0.03 | |
83 | benzothiazole | 40.643 | 1219 | 1224 | 0.03 | - | 0.03 | 0.01 | |
84 | γ-decalactone | Fruity, peach [31] | 49.822 | 1465 | 1463 | - | - | - | 0.08 |
2.3. Multivariate Analysis
2.4. Sensory Evaluation of Cocoa Honey
2.5. Correlation of Sensory Analysis with VOCs
3. Materials and Methods
3.1. Standards and Materials
3.2. Obtaining Cocoa Honey
3.3. HS-SPME Method
3.4. Optimization of the HS-SPME Conditions
3.5. GC-MS Analysis
3.6. Multivariate Data Analysis
3.7. Sensory Evaluation of Cocoa Honey
3.7.1. Microbiological Analysis
3.7.2. Ranking Descriptive Analysis (RDA)
3.7.3. Acceptance
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Cocoa Organization (ICCO). Quarterly Bulletin of Cocoa Statistics, Vol. L, No. 1, Cocoa Year 2023/24. 2024. Available online: https://www.icco.org/wp-content/uploads/Production_QBCS-L-No.-1.pdf (accessed on 29 May 2024).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático da Produção Agrícola. IBGE/LSPA. Tabela 6588—Série Histórica da Estimativa Anual da Área Plantada, Área Colhida, Produção e Rendimento Médio dos Produtos Agrícolas; 2023. Available online: https://sidra.ibge.gov.br/tabela/6588 (accessed on 30 January 2024).
- Serra, W.S.; Sodré, G.A. Manual do Cacauicultor: Perguntas e Respostas. Brasil. Ilhéus, BA, CEPLAC/CEPEC. Boletim Técnico, 2021, nº 221. 190p. Available online: https://www.gov.br/agricultura/pt-br/assuntos/ceplac/publicacoes/boletins-tecnicos-bahia/boletim-tecnico-no-221-2021_compressed.pdf (accessed on 19 May 2024).
- Hegmann, E.; Niether, W.; Phillips, W.; Rohsius, C.; Lieberei, R. Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.). J. Appl. Bot. Food Qual. 2020, 93, 266–275. [Google Scholar] [CrossRef]
- Guirlanda, C.P.; Silva, G.G.; Takahashi, J.A. Cocoa honey: Agroindustrial waste or underutilized cocoa by-product? Future Foods 2021, 4, 100061. [Google Scholar] [CrossRef]
- Santos, C.O.; Bispo, E.S.; Santana, L.R.R.; Carvalho, R.D.S. Use of “cocoa honey” (Theobroma cacao L.) for diet jelly preparation: An alternative technology. Rev. Bras. Frutic. 2014, 36, 749–757. [Google Scholar] [CrossRef]
- Freitas, R.V.S.; Silva, F.L.H.; Cavalcante, J.A.; Costa, I.I.S.; Sarmento, D.H.A.; Braga, R.C.; Silva, F.S.; Barbosa, M.C.F.; Rodrigues, E.A. Evaluation of nutritional composition, characterization and correlation of pulp quality parameters of cocoa. Res. Soc. Dev. 2022, 11, 52511326677. [Google Scholar] [CrossRef]
- Puerari, C.; Magalhães, K.T.; Schwan, R.F. New cocoa pulp-based kefir beverages: Microbiological, chemical composition and sensory analysis. Food Res. Int. 2012, 48, 634–640. [Google Scholar] [CrossRef]
- Neto, B.A.M.; Carvalho, E.A.; Pontes, K.V.; Barretto, W.S.; Sacramento, C.K. Chemical, physico-chemical and sensory characterization of mixed açai (Euterpe oleracea) and cocoa’s honey (Theobroma cacao) jellies. Rev. Bras. Frutic. 2013, 35, 587–593. [Google Scholar] [CrossRef]
- Yulianaa, N.; Nurainya, F.; Sari, G.W.; Sumardi; Widiastuti, E.L. Total microbe, physicochemical property, and antioxidative activity during fermentation of cocoa honey into kombucha functional drink. Appl. Food Res. 2023, 3, 100297. [Google Scholar] [CrossRef]
- Lannes, S.C.D.S.; Silva, M.V.; Silva, E.N.; Ramos, D.D.C.; Su, F. Food Compositions of Chocolate and Edible Ice Cream Containing Cocoa Honey University of São Paulo (USP, Sao Paulo, Brazil) and State University of Southwest Bahia (UESB, Bahia, Brazil). 2013. Available online: https://patents.google.com/patent/BR102013005053B1 (accessed on 10 May 2024).
- Rodrigues, L.B.O.; Dias, J.C.T.; Uetanabaro, A.P.T.; Bonomo, P. Produção de Cerveja Artesanal Utilizando Mel de Cacau Como Adjunto. 2019. Available online: https://patents.google.com/patent/BR102019008742A2/pt?oq=BR+102019008742 (accessed on 10 May 2024).
- Mohammadi, A.; Yamini, Y.; Alizadeh, N. Dodecylsulfate-doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. J. Chromatogr. A. 2005, 1063, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dutcosky, S.D. Análise Sensorial de Alimentos, 5th ed.; Coleção Exatas; PUCPRESS: Curitiba, Brazil, 2019; Volume 4, pp. 40–41. [Google Scholar]
- Richter, V.B.; Almeida, T.C.A.; Prudencio, S.H.; Benassi, M.T. Proposing a ranking descriptive sensory method. Food Qual. Prefer. 2010, 21, 611–620. [Google Scholar] [CrossRef]
- Silva, R.C.S.N.; Minim, V.P.R.; Carneiro, J.D.S.; Nascimento, M.; Lucia, S.M.D.; Minim, L.A. Quantitative sensory description using the optimized descriptive profile: Comparison with conventional and alternative methods for evaluation of chocolate. Food Qual. Prefer. 2013, 30, 169–179. [Google Scholar] [CrossRef]
- Brokl, M.; Bishop, L.; Wright, C.G.; Liu, C.; McAdam, K.; Focant, J.F. Multivariate analysis of mainstream tobacco smoke particulate phase by headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. A 2014, 1370, 216–229. [Google Scholar] [CrossRef]
- Valdeci, S.B.; Thais, M.U.; Neyde, A.B.; Claudia, M.R.; Vânia, M.F.P.; Eduardo, M.D.A. Dynamics of volatile compounds in TSH 565 cocoa clone fermentation and their role on chocolate flavor in Southeast Brazil. J. Food Sci. Technol. 2019, 56, 2874–2887. [Google Scholar] [CrossRef]
- Andrade, A.B.; Cruz, M.L.; Oliveira, F.A.S.; Soares, S.E.; Druzian, J.I.; Santana, L.R.; Souza, C.O.; Bispo, E.S. Influence of under-fermented cocoa mass in chocolate production: Sensory acceptance and volatile profile characterization during the processing. LWT-Food Sci. Technol. 2021, 149, 112048. [Google Scholar] [CrossRef]
- Rojas, E.O.; Rúales, F.H.; Perdomo, D.A.; Mora, J.P.J. Evaluación del método de extracción SPME-GC-MS para el análisis de compuestos orgánicos volátiles en licor de cacao de Nariño-Colombia. Rev. ION 2022, 35, 103–116. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem. 2015, 166, 125–132. [Google Scholar] [CrossRef]
- Haase, T.B.; Schweiggert-Weisz, U.; Ortner, E.; Zorn, H.; Naumann, S. Aroma Properties of Cocoa Fruit Pulp from Different Origins. Molecules 2021, 26, 7618. [Google Scholar] [CrossRef] [PubMed]
- Pino, J.A.; Ceballos, L.; Quijano, C.E. Headspace Volatiles of Theobroma cacao L. Pulp from Colombia. J. Essent. Oil Res. 2010, 22, 113–115. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Flamini, G.; Tessieri, C.; Pistelli, L. From the raw seed to chocolate: Volatile profile of blanco de Criollo in different phases of the processing chain. Microchem. J. 2017, 133, 474–479. [Google Scholar] [CrossRef]
- Chetschik, I.; Kneubul, M.; Chatelain, K.; Schluter, A.; Bernath, K.; Huhn, T. Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. J. Agric. Food Chem. 2017, 66, 2467–2472. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Utrilla-Vázquez, M.; Rodríguez-Campos, J.; Avendaño-Arazate, C.H.; Gschaedler, A.; Lugo-Cervantes, E. Analysis of volatile compounds of five varieties of Maya cocoa during fermentation and drying processes by Venn diagram and PCA. Food Res. Int. 2020, 129, 108834. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Hashidume, S.; Takahashi, T.; Kikuchi, T. Aroma evaluation of Gamazumi (Viburnum dilatatum) by aroma extract dilution analysis and odour activity value. Phytochem. Anal. 2012, 23, 208–213. [Google Scholar] [CrossRef]
- Velasquez-Reyes, D.; Gschaedler, A.; Kirchmayr, M.; Avendano-Arrazate, C.; Rodríguez-Campos, J.; Calva-Estrada, S.J.; Lugo-Cervantes, E. Cocoa bean turning as a method for redirecting the aroma compound profile in artisanal cocoa fermentation. Heliyon 2021, 7, 07694. [Google Scholar] [CrossRef]
- Rottiers, H.; Sosa, D.A.T.; Winne, A.; Ruales, J.; Clippeleer, J.; Leersnyder, I.; Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur. Food Res. Technol. 2019, 245, 1595–1610. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products—An Overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G. A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem. J. 2010, 95, 127–139. [Google Scholar] [CrossRef]
- Bryant, R.J.; McClung, A.M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC–MS. Food Chem. 2011, 124, 501–513. [Google Scholar] [CrossRef]
- Owusu, M.; Petersen, M.A.; Heimdal, H. Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. J. Food Process. Preserv. 2012, 36, 446–456. [Google Scholar] [CrossRef]
- Janek, K.; Niewienda, A.; Wöstemeyer, J.; Voigt, J. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors. Food Chem. 2016, 211, 320–328. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Andersson, R. A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J Am Oil Chem Soc. 1997, 74, 375–380. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Utrilla-Vázquez, M.; Vallejo-Cardona, A.; Roblero-Pérez, D.B.; Lugo-Cervantes, E. Thermal properties and volatile compounds profile of commercial dark chocolates from different genotypes of cocoa beans (Theobroma cacao L.) from Latin America. Food Res. Int. 2020, 136, 109594. [Google Scholar] [CrossRef]
- Nascimento, M.B.; Souza, T.L.; Maia, D.L.S.; Amorim, L.R.; Ribeiro, A.S.L.; Mamede, M.E.O.; Maciel, L.F.; Santos Júnior, A.F.; Mesquita, P.R.R.; Soares, S.E. Determination of Mineral Profile Using MIP OES and Physicochemical Composition of Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.). Food Anal. Methods 2024, 17, 2660. [Google Scholar] [CrossRef]
- Papalexandratou, Z.; Nielsen, D.S. It’s gettin’ hot in here: Breeding robust yeast starter cultures for cocoa fermentation. Trends Microbiol. 2016, 24, 168–170. [Google Scholar] [CrossRef]
- Eskes, A.B.; Guarda, D.; Garcia, L.; Garcia, P. Is genetic variation for sensory traits of cocoa pulp related to fine flavor cocoa traits? INGENIC Newsl. 2007, 11, 22–28. [Google Scholar]
- Boza, E.J.; Motamayor, J.C.; Amores, F.; Cedeno-Amador, S.; Tondo, C.L.; Livingstone, D.S.; Schnell, R.; Gutiérrez, O. Genetic characterization of the cacao cultivar CCN 51: Its impact and significance on global cacao improvement and production. J. Am. Soc. Hortic. Sci. 2014, 139, 219–229. [Google Scholar] [CrossRef]
- Sukha, D.A.; Butler, D.R.; Umaharan, P.E.; Boulton, E. The use of an optimised organoleptic assessment protocol to describe and quantify different flavour attributes of cocoa liquors made from Ghana and Trinitario beans. Eur. J. Food Sci. Technol. 2008, 226, 405–413. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; Van deWalle, D.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- ICCO. Fine or Flavour Cocoa. 2023. Available online: https://www.icco.org/fine-or-flavor-cocoa/ (accessed on 12 April 2024).
- Mesquita, P.R.R.; Nunes., E.C.; Santos, F.N.; Bastos, L.P.; Costa, M.A.P.C.; Rodrigues, F.M.; Andrade, J.B. Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC–MS and chemometric analysis. Microchem. J. 2017, 130, 79–87. [Google Scholar] [CrossRef]
- Brereton, R.G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant, 1st ed.; Wiley: Chichester, UK, 2003. [Google Scholar]
- ANVISA. Instrução Normativa—IN Nº 161. ANEXO I: Padrões Microbiológicos para Alimentos, Com Exceção dos Alimentos Comercialmente Estéreis. 2022. Available online: http://antigo.anvisa.gov.br/documents/10181/2718376/IN_161_2022_.pdf/b08d70cb-add6-47e3-a5d3-fa317c2d54b2 (accessed on 10 April 2024).
- Silva, N.; Junqueira, V.C.A.; Silveira, N.F.A.; Taniwaki, M.H.; Gomes, R.A.R.G.; Okazaki, M.M. Manual de Métodos de Análise Microbiológica de Alimentos e Água, 6th ed.; Editora Edgard Blücher Ltda: São Paulo, Brazil, 2021. [Google Scholar]
Attributes | Varieties | ||||
---|---|---|---|---|---|
CCN51 | PS1319 | SJ02 | Parazinho | Vcritical | |
Appearance | |||||
Yellow color | 80 a | 164 b | 199 c | 157 b | 22 |
Greenish color | 202 a | 131 b | 120 b | 147 c | 22 |
Aroma | |||||
Acid | 169 a | 172 a | 128 b | 131 b | 22 |
Sweetened | 149 a | 187 b | 149 a | 115 c | 22 |
Cocoa/cocoa pulp | 168 a | 182 a | 128 b | 123 b | 22 |
Fruity | 169 a | 172 a | 135 b | 124 b | 22 |
Minty/refreshing | 166 a | 174 a | 141 b | 119 b | 22 |
Floral | 157 a | 181 b | 133 c | 129 c | 22 |
Flavor | |||||
Sour taste | 187 a | 123 b | 118 b | 172 a | 22 |
Sweet taste | 150 a | 174 b | 191 b | 86 c | 22 |
Cocoa/cocoa pulp | 164 a | 156 a | 165 a | 115 b | 22 |
Fruity | 166 a | 159 a | 167 a | 107 b | 22 |
Astringency | 168 a | 136 b | 125 b | 171 a | 22 |
Texture | |||||
Viscosity | 126 a | 176 b | 153 a | 145 a | 22 |
Softness | 129 a | 167 b | 171 b | 133 a | 22 |
Attributes | Varieties | |||
---|---|---|---|---|
CCN51 | PS1319 | SJ02 | Parazinho | |
Sensory acceptance | ||||
Appearance | 6.6 ± 1.67 a | 6.63 ± 1.71 a | 6.75 ± 1.61 a | 6.66 ± 1.47 a |
Aroma | 6.41 ± 1.66 a | 6.47 ± 1.84 a | 6.22 ± 1.63 a | 6.31 ± 1.62 a |
Flavor | 7.11 ± 1.59 a | 6.95 ± 1.98 ab | 7.13 ± 1.89 a | 6.42 ± 1.92 b |
Consistency | 6.88 ± 1.77 a | 7.02± 1.72 a | 6.94 ± 1.82 a | 6.52 ± 1.90 a |
Overall quality | 7.08 ± 1.55 ab | 6.93 ± 1.84 ab | 7.21 ± 1.52 a | 6.53 ± 1.71 b |
Purchase intention | ||||
3.56 ± 1.17 a | 3.39 ± 1.36 ab | 3.71 ± 1.23 a | 2.99 ± 1.27 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, M.B.; Amorim, L.R.; Nonato, M.A.S.; Roselino, M.N.; Santana, L.R.R.; Ferreira, A.C.R.; Rodrigues, F.M.; Mesquita, P.R.R.; Soares, S.E. Optimization of HS-SPME/GC-MS Method for Determining Volatile Organic Compounds and Sensory Profile in Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.). Molecules 2024, 29, 3194. https://doi.org/10.3390/molecules29133194
Nascimento MB, Amorim LR, Nonato MAS, Roselino MN, Santana LRR, Ferreira ACR, Rodrigues FM, Mesquita PRR, Soares SE. Optimization of HS-SPME/GC-MS Method for Determining Volatile Organic Compounds and Sensory Profile in Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.). Molecules. 2024; 29(13):3194. https://doi.org/10.3390/molecules29133194
Chicago/Turabian StyleNascimento, Manuela B., Lívia R. Amorim, Marcos A. S. Nonato, Mariana N. Roselino, Ligia R. R. Santana, Adriana C. R. Ferreira, Frederico M. Rodrigues, Paulo R. R. Mesquita, and Sergio E. Soares. 2024. "Optimization of HS-SPME/GC-MS Method for Determining Volatile Organic Compounds and Sensory Profile in Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.)" Molecules 29, no. 13: 3194. https://doi.org/10.3390/molecules29133194
APA StyleNascimento, M. B., Amorim, L. R., Nonato, M. A. S., Roselino, M. N., Santana, L. R. R., Ferreira, A. C. R., Rodrigues, F. M., Mesquita, P. R. R., & Soares, S. E. (2024). Optimization of HS-SPME/GC-MS Method for Determining Volatile Organic Compounds and Sensory Profile in Cocoa Honey from Different Cocoa Varieties (Theobroma cacao L.). Molecules, 29(13), 3194. https://doi.org/10.3390/molecules29133194