Liquid Chromatography with Tandem Mass Spectrometry Analysis of Carboxymethyl Lysine in Indonesian Foods †
Abstract
:1. Introduction
2. Results
2.1. LCMS Optimization and Method Validation
2.1.1. Method Validation on Four Types of Food
2.1.2. The Recovery of CML-Spiked Samples
2.1.3. Quality Testing
The Reliability of the Measurement Was Analyzed with Duplicate Measurements
Quality Control
2.2. Measurement of Indonesian Foods
2.3. Estimated versus Directly Measured CML Content
3. Discussion
4. Materials and Methods
4.1. Selection of Foods
4.2. Storage of Samples
4.3. Determination of CML in Foods
4.3.1. Preparation of Samples
- c: CML content from LC MS/MS detection;
- df: dilution factor;
- v: sample volume (L);
- W: sample weight (kg).
4.3.2. Instrumentation
4.3.3. LC-MS/MS Analytical Parameters
4.3.4. Method Validation
Optimization of LCMS/MS Conditions
Preparation of Calibration Standard and Linearity of the Calibration Curve
Precision
Extraction Recovery
4.3.5. Quality Testing
Reliability of Measurement
Quality Control
4.4. Determination of Protein Content
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galiniak, S.; Biesiadecki, M. Influence of food-derived advanced glycation end products on health. Eur. J. Clin. Exp. Med. 2018, 16, 330–334. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Prevention of protein glycation by natural compounds. Molecules 2015, 20, 3309–3334. [Google Scholar] [CrossRef] [PubMed]
- Snelson, M.; Coughlan, M.T. Dietary advanced glycation end products: Digestion, metabolism and modulation of gut microbial ecology. Nutrients 2019, 11, 215. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhuang, Y.; Zou, X.; Chen, M.; Cui, B.; Jiao, Y.; Cheng, Y. Advanced Glycation End Products: A comprehensive review of their detection and occurrence in food. Foods 2023, 12, 2103. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, T.L. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J. Immunotoxicol. 2021, 18, 93–104. [Google Scholar] [CrossRef]
- Zgutka, K.; Tkacz, M.; Tomasiak, P.; Tarnowski, M. A role for advanced glycation end products in molecular ageing. Int. J. Mol. Sci. 2023, 24, 9881. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y. Blood and tissue advanced glycation end products as determinants of cardiometabolic disorders focusing on human studies. Nutrients 2023, 15, 2002. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, X.; Shi, L.; Liu, W. Comprehensive analyses of advanced glycation end products and heterocyclic amines in peanuts during the roasting process. Molecules 2023, 28, 7012. [Google Scholar] [CrossRef]
- Monteiro-Alfredo, T.; Matafome, P. Gut metabolism of sugars: Formation of glycotoxins and their intestinal absorption. Diabetology 2022, 3, 596–605. [Google Scholar] [CrossRef]
- Pinto, R.S.; Minanni, C.A.; de Araújo Lira, A.L.; Passarelli, M. Advanced Glycation End Products: A sweet flavor that embitters cardiovascular disease. Int. J. Mol. Sci. 2022, 23, 2404. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Thorpe, S.R.; Baynes, J.W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 1986, 261, 4889–4894. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.; Assar, S.H.; Ames, J.M. Formation of N(epsilon)-(carboxymethyl)lysine and loss of lysine in casein glucose-fatty acid model systems. J. Agric. Food Chem. 2010, 58, 1954–1958. [Google Scholar] [CrossRef] [PubMed]
- Nagai, R.; Ikeda, K.; Higashi, T.; Sano, H.; Jinnouchi, Y.; Araki, T.; Horiuchi, S. Hydroxyl radical mediates N epsilon-(carboxymethyl)lysine formation from Amadori product. Biochem. Biophys. Res. Commun. 1997, 234, 167–172. [Google Scholar] [CrossRef]
- Rungratanawanich, W.; Qu, Y.; Wang, X.; Essa, M.M.; Song, B.-J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021, 53, 168–188. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, J.L.J.M.; Hanssen, N.M.J.; van Greevenbroek, M.M.; Van der Kallen, C.J.; Feskens, E.J.M.; Stehouwer, C.D.A.; Schalkwijk, C.G. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin. Nutr. 2018, 37, 919–925. [Google Scholar] [CrossRef]
- Semba, R.D.; Ang, A.; Talegawkar, S.; Crasto, C.; Dalal, M.; Jardack, P.; Traber, M.G.; Ferrucci, L.; Arab, L. Dietary intake associated with serum versus urinary carboxymethyl-lysine, a major advanced glycation end product, in adults: The Energetics Study. Eur. J. Clin. Nutr. 2012, 66, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, J.; Cai, W.; Sandu, O.; Peppa, M.; Goldberg, T.; Vlassara, H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann. N. Y. Acad. Sci. 2005, 1043, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Deo, P.; Clifton, P.M. Differential effects of dietary patterns on advanced glycation end products: A randomized crossover study. Nutrients 2020, 12, 1767. [Google Scholar] [CrossRef]
- Guilbaud, A.; Niquet-Leridon, C.; Boulanger, E.; Tessier, F.J. How Can Diet Affect the Accumulation of Advanced Glycation End-Products in the Human Body? Foods 2016, 5, 84. [Google Scholar] [CrossRef]
- Ottum, M.S.; Mistry, A.M. Advanced glycation end products: Modifiable environmental factors profoundly mediate insulin resistance. J. Clin. Biochem. Nutr. 2015, 57, 1–12. [Google Scholar] [CrossRef]
- Sayej, W.N.; Knight, P.R., 3rd; Guo, W.A.; Mullan, B.; Ohtake, P.J.; Davidson, B.A.; Khan, A.; Baker, R.D.; Baker, S.S. Advanced glycation end products induce obesity and hepatosteatosis in CD-1 wild-type mice. BioMed Res. Int. 2016, 2016, 7867852. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Sharifi-Zahabi, E.; Lari, A.; Fatahi, S.; Shidfar, F. The impact of low advanced glycation end products diet on obesity and related hormones: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 22194. [Google Scholar] [CrossRef]
- Liman, P.B.; Anastasya, K.S.; Salma, N.M.; Yenny, Y.; Faradilla, M.A. Research trends in advanced glycation end products and obesity: Bibliometric analysis. Nutrients 2022, 14, 5255. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, S.; Shi, Y.; Wang, P.; Wu, Y.; Li, G. Dietary advanced glycation end products (dAGEs): An insight between modern diet and health. Food Chem. 2023, 415, 135735. [Google Scholar] [CrossRef]
- Zawada, A.; Machowiak, A.; Rychter, A.M.; Ratajczak, A.E.; Szymczak-Tomczak, A.; Dobrowolska, A.; Krela-Kaźmierczak, I. Accumulation of advanced glycation end-products in the body and dietary habits. Nutrients 2022, 14, 3982. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yao, H.P.; Sun, Z. N(ε)-(carboxymethyl)lysine promotes lipid uptake of macrophage via cluster of differentiation 36 and receptor for advanced glycation end products. World J. Diabetes 2023, 14, 222–233. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.J.; Cleland, T.P.; Sroga, G.E.; Vashishth, D. Accumulation of carboxymethyl-lysine (CML) in human cortical bone. Bone 2018, 110, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.J. Advanced Glycation End Products (AGEs) may be a striking link between modern diet and health. Biomolecules 2019, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Koschinsky, T.; He, C.-J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef]
- Hellwig, M.; Geissler, S.; Matthes, R.; Peto, A.; Silow, C.; Brandsch, M.; Henle, T. Transport of free and peptide-bound glycated amino acids: Synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chembiochem 2011, 12, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Ma, Y.; Wang, Y.; Sun, C.; Chen, F.; Cheng, K.W.; Liu, B. Contents and correlations of N(ε)-(carboxymethyl)lysine, N(ε)-(carboxyethyl)lysine, acrylamide and nutrients in plant-based meat analogs. Foods 2023, 12, 1967. [Google Scholar] [CrossRef] [PubMed]
- Baylan, U.; Baidoshvili, A.; Simsek, S.; Schalkwijk, C.G.; Niessen, H.; Krijnen, P. Increased accumulation of the advanced glycation endproduct Ne(carboxymethyl) lysine in the intramyocardial vasculature in patients with epicarditis. Int. J. Exp. Pathol. 2023, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zeng, M.; He, Z.; Zheng, Z.; Qin, F.; Tao, G.; Zhang, S.; Chen, J. Increased accumulation of protein-bound N(ε)-(carboxymethyl)lysine in tissues of healthy rats after chronic oral N(ε)-(carboxymethyl)lysine. J. Agric. Food Chem. 2015, 63, 1658–1663. [Google Scholar] [CrossRef]
- Wu, R.; Jia, C.; Rong, J.; Xiong, S.; Liu, R. Effect of Pretreatment Methods on the Formation of Advanced Glycation End Products in Fried Shrimp. Foods 2023, 12, 4362. [Google Scholar] [CrossRef]
- Niu, L.; Kong, S.; Chu, F.; Huang, Y.; Lai, K. Investigation of advanced glycation end-products, alpha;-dicarbonyl compounds, and their correlations with chemical composition and salt levels in commercial fish products. Foods 2023, 12, 4324. [Google Scholar] [CrossRef]
- Hull, G.L.J.; Woodside, J.V.; Ames, J.M.; Cuskelly, G.J. Ne-(carboxymethyl) lysine content of foods commonly consumed in a Western style diet. Food Chem. 2012, 131, 170–174. [Google Scholar] [CrossRef]
- Scheijen, J.L.J.M.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 2016, 190, 1145–1150. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916. [Google Scholar] [CrossRef]
- Takeuchi, M.; Takino, J.-I.; Furuno, S.; Shirai, H.; Kawakami, M.; Muramatsu, M.; Kobayashi, Y.; Yamagishi, S.-I. Assessment of the concentrations of various advanced glycation end-products in beverages and foods that are commonly consumed in Japan. PLoS ONE 2015, 10, e0118652. [Google Scholar] [CrossRef]
- Liman, P.B.; Djuwita, R.; Agustina, R. Database development of carboxymethyl lysine content in foods consumed by Indonesian women in two selected provinces. J. Int. Dent. Med. Res. 2019, 12, 268–277. [Google Scholar]
- Liman, P.B.; Agustina, R.; Djuwita, R.; Umar, J.; Permadhi, I.; Helmizar; Hidayat, A.; Feskens, E.J.M.; Abdullah, M. Dietary and plasma carboxymethyl lysine and tumor necrosis factor-α as mediators of body mass index and waist circumference among women in Indonesia. Nutrients 2019, 11, 3057. [Google Scholar] [CrossRef]
- Wijaya, S. Indonesian food culture mapping: A starter contribution to promote Indonesian culinary tourism. J. Ethn. Foods 2019, 6, 9. [Google Scholar] [CrossRef]
- Lipoeto, N.I.; Agus, Z.; Oenzil, F.; Masrul, M.; Wattanapenpaiboon, N.; Wahlqvist, M.L. Contemporary Minangkabau food culture in West Sumatra, Indonesia. Asia Pac. J. Clin. Nutr. 2001, 10, 10–16. [Google Scholar] [CrossRef]
- Budiningsih, S.; Ohnot, Y.; Prihartono, J.; Dillon, D.S.; Tjahjadi, G.; Soetrisno, E.; Hardjolukito, E.; Ramli, M.; Darwis, I.; Tjindarbumi, D.; et al. Breast cancer risk factors among Sundanese and other ethnic groups in Indonesia. Med. J. Indones. 1999, 8, 128–132. [Google Scholar] [CrossRef]
- He, J.; Zeng, M.; Zheng, Z.; He, Z.; Chen, J. Simultaneous determination of Nε-(carboxymethyl) lysine and Nε-(carboxyethyl) lysine in cereal foods by LC–MS/MS. Eur. Food Res. Technol. 2013, 238, 367–374. [Google Scholar] [CrossRef]
- Hartkopf, J.; Pahlke, C.; Lüdemann, G.; Erbersdobler, H. Determination of N-carboxymethyllysine by a reversed-phase high-performance liquid chromatography method. J. Chromatogr. A 1994, 672, 242–246. [Google Scholar] [CrossRef]
- Assar, S.H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J.M. Determination of Nepsilon-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 2009, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.J.; Smith, J.S. Determination of advanced glycation endproducts in cooked meat products. Food Chem. 2015, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Rini; Azima, F.; Sayuti, K.; Novelina. The evaluation of nutritional value of rendang Minangkabau. Agric. Agric. Sci. Procedia 2016, 9, 335–341. [Google Scholar] [CrossRef]
- Zhao, S.; Hu, H.; Xie, J.; Shen, M. Investigation into the contents of nutrients, Nε-carboxymethyllysine and Nε-carboxyethyllysine in various commercially canned fishes to find the correlation between them. J. Food Compos. Anal. 2021, 96, 103737. [Google Scholar] [CrossRef]
- Yacoub, R.; Nugent, M.; Cai, W.; Nadkarni, G.N.; Chaves, L.D.; Abyad, S.; Honan, A.M.; Thomas, S.A.; Zheng, W.; Valiyaparambil, S.A.; et al. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS ONE 2017, 12, e0184789. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Gebauer, S.K.; Baer, D.J.; Sun, K.; Turner, R.; Silber, H.A.; Talegawkar, S.; Ferrucci, L.; Novotny, J.A. Dietary intake of advanced glycation end products did not affect endothelial function and inflammation in healthy adults in a randomized controlled trial. J. Nutr. 2014, 144, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Fluhler, E.; Vazvaei, F.; Singhal, P.; Vinck, P.; Li, W.; Bhatt, J.; de Boer, T.; Chaudhary, A.; Tangiuchi, M.; Rezende, V.; et al. Repeat analysis and incurred sample reanalysis: Recommendation for best practices and harmonization from the global bioanalysis consortium harmonization team. AAPS J. 2014, 16, 1167–1174. [Google Scholar] [CrossRef]
- Mahmud, M.K.; Hermana; Zulfianto, N.A.; Apriyantoro, R.R.; Ngadiarti, I.; Hartati, B.; Bernadus; Tinexcelly. Tabel Komposisi Pangan Indonesia [Indonesian Food Composition Table]; Mahmud, M.K., Zulfianto, N.A., Eds.; PT Elex Media Komputindo: Jakarta, Indonesia, 2009. [Google Scholar]
- Institute of Nutrition Mahidol University. ASEAN Food Composition Database, Electronic Version 1. February 2014. Available online: http://www.inmu.mahidol.ac.th/aseanfoods/composition_data.html (accessed on 10 February 2019).
- United States Departement of Agriculture, Beltsville Human Nutrition Research Center. USDA Food Composition Databases v.3.8.6.4 2017-10-02. Available online: https://fdc.nal.usda.gov (accessed on 25 February 2019).
Food Matrices | Recovery (%) | ||
---|---|---|---|
50 (µg/kg) | 100 (µg/kg) | 300 (µg/kg) | |
Fried tilapia | 86.50–97.20 | 83.66–94.24 | 87.87–93.37 |
Cornflakes | 95.52–97.58 | 101.30–111.55 | 103.43–106.27 |
Instant noodles | 106.95–110.05 | 100.54–105.81 | 81.70–96.11 |
Pangek sasau | 98.94–108.14 | 90.24–102.95 | 102.62–104.77 |
Food Matrices | Precision (%) | |
---|---|---|
Intraday | Interday | |
Fried tilapia | 0.49–0.56 | 3.09–6.0 |
Cornflakes | 0.63–2.40 | 4.17–12.83 |
Instant noodles | 1.10–8.16 | 2.70–8.16 |
Pangek sasau | 1.08–4.54 | 2.88–5.97 |
Food Groups | mg CML/100 g Edible Food | mg CML/kg Protein | mg CML/Average Portion Size | |
---|---|---|---|---|
Cereals | Mean | 0.52 | 209.96 | 0.36 |
Range | 0.01–5.35 | 1.00–7535.21 | <0.01–5.29 | |
Standard deviation | 0.83 | 878.23 | 0.76 | |
Starchy foods | Mean | 0.21 | 113.71 | 0.14 |
Range | 0.06–0.82 | 31.25–220.00 | 0.01–0.58 | |
Standard deviation | 0.22 | 59.56 | 0.15 | |
Legumes | Mean | 0.9 | 98.59 | 0.38 |
Range | 0.02–4.30 | 1.69–477.40 | 0.01–1.45 | |
Standard deviation | 0.97 | 129.50 | 0.39 | |
Meat and poultry | Mean | 1.06 | 57.05 | 0.75 |
Range | 0.04–4.41 | 4.32–229.58 | 0.01–3.40 | |
Standard deviation | 1.02 | 62.54 | 0.95 | |
Fish, shellfish, and shrimp | Mean | 0.77 | 41.41 | 0.32 |
Range | 0.02–5.19 | 0.37–281.45 | 0.01–2.34 | |
Standard deviation | 1.05 | 61.33 | 0.49 | |
Eggs | Mean | 0.61 | 39.88 | 0.19 |
Range | 0.04–2.10 | 3.17–108.81 | 0.02–0.53 | |
Standard deviation | 0.56 | 31.04 | 0.16 | |
Milk products and coffee | Mean | 0.42 | 73.54 | 0.15 |
Range | 0.13–0.95 | 7.82–161.02 | 0.01–0.46 | |
Standard deviation | 0.36 | 63.07 | 0.17 |
Food Name, English | Food Name, Indonesian | West Java (mg CML/100 g Edible Food) | West Sumatra (mg CML/100 g Edible Food) |
---|---|---|---|
Chicken, meat, breast, boiled | Ayam, dada, rebus | 0.11 | 0.18 |
Chicken, meat, breast, fried | Ayam, dada, goreng | 0.37 | 2.25 |
Chicken, meat, breast, grilled | Ayam, dada, bakar | 0.7 | 1.33 |
Chips, cassava, home made | Keripik singkong, produk rumahan | 0.02 | 0.09 |
Meat balls, boiled | Bakso polos, daging sapi, rebus | 1.05 | 1.94 |
Noodle, boiled | Mi basah | 4.15 | 0.37 |
Omelet | Telur ayam, dadar | 0.5 | 0.52 |
Peanut sauce | Bumbu kacang | 0.17 | 0.19 |
Rice cake boiled in a rhombus-shaped packet of plaited young coconut leaves | Ketupat | 0.13 | 0.28 |
Tapioca crackers, grilled | Opak bakar | 0.05 | 0.11 |
Tempeh, fried | Tempe goreng | 0.56 | 0.79 |
Vegetable fritters | Bala-bala/bakwan | 0.04 | 0.1 |
White rice, cooked | Nasi putih | 0.24 | 0.73 |
Noodle, yellow, boiled | Mi kuning rebus | 0.17 | 0.28 |
Food Name, English | Food Name, Indonesian | West Java | West Sumatra | UK [36] | European [37] |
---|---|---|---|---|---|
Chicken, meat, breast, boiled | Ayam, dada, rebus | 0.11 | 0.18 | 0.38 | 0.18 |
Chicken, meat, breast, fried | Ayam, dada, goreng | 0.37 | 2.25 | 0.51 | 0.34 |
Cornflakes | Corn flakes | 1.19 | - | 3.47 | 0.66 |
Egg noodles | Mi telur | 0.19 | - | 0.30 | - |
Egg, chicken, fried | Telur ayam goreng | - | 0.84 | 0.63 | 0.42 |
Fried rice with egg | Nasi goreng telur | 0.84 | - | 0.09 | 0.96 |
Meatballs, | Bakso | 1.05 | 1.94 | - | 0.83 |
Omelet | Telur dadar | 0.5 | 0.52 | 0.78 | - |
Chocolate milk | Coklat | 0.79 | - | - | 0.96 |
Tofu, fried | Tahu goreng | 1.13 | - | - | 0.94 |
Ultra-high-temperature pasteurized milk | Susu UHT | 0.23 | - | 0.22 | - |
White bread | Roti tawar | - | 0.52 | 0.66 | 0.24 |
White rice, cooked | Nasi putih | 0.24 | 0.73 | 0.20 | 0.07 |
Compound | Precursor Ion (m/z) | Product Ion (m/z) | Fragmentor (V) | CE (V) | CAV (V) | Dwell (ms) |
---|---|---|---|---|---|---|
CML-d4 | 209.1 | 88.1 | 108 | 13 | 9 | 200 |
CML | 205.1 | 84.1 | 94 | 13 | 9 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liman, P.B.; Mulyana; Yenny; Djuwita, R. Liquid Chromatography with Tandem Mass Spectrometry Analysis of Carboxymethyl Lysine in Indonesian Foods. Molecules 2024, 29, 1304. https://doi.org/10.3390/molecules29061304
Liman PB, Mulyana, Yenny, Djuwita R. Liquid Chromatography with Tandem Mass Spectrometry Analysis of Carboxymethyl Lysine in Indonesian Foods. Molecules. 2024; 29(6):1304. https://doi.org/10.3390/molecules29061304
Chicago/Turabian StyleLiman, Patricia Budihartanti, Mulyana, Yenny, and Ratna Djuwita. 2024. "Liquid Chromatography with Tandem Mass Spectrometry Analysis of Carboxymethyl Lysine in Indonesian Foods" Molecules 29, no. 6: 1304. https://doi.org/10.3390/molecules29061304
APA StyleLiman, P. B., Mulyana, Yenny, & Djuwita, R. (2024). Liquid Chromatography with Tandem Mass Spectrometry Analysis of Carboxymethyl Lysine in Indonesian Foods. Molecules, 29(6), 1304. https://doi.org/10.3390/molecules29061304