Construction of a Visible-Light-Response Photocatalysis–Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol–Formaldehyde Resin
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Preparation of Resorcinol–Formaldehyde (RF) Resin
3.3. Photo-Self-Fenton Degradation Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, W.; Hao, C.; Shi, Y.; Guo, F.; Tang, Y. Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity. Sep. Purif. Technol. 2023, 304, 122337. [Google Scholar] [CrossRef]
- Shi, W.L.; Yang, S.; Sun, H.R.; Wang, J.B.; Lin, X.; Guo, F.; Shi, J.Y. Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light. J. Mater. Sci. 2021, 56, 2226–2240. [Google Scholar] [CrossRef]
- Pan, J.; Guo, F.; Sun, H.; Li, M.; Zhu, X.; Gao, L.; Shi, W. Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity. J. Mater. Sci. 2021, 56, 6663–6675. [Google Scholar] [CrossRef]
- Pan, J.; Guo, F.; Sun, H.; Shi, Y.; Shi, W. Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline. Sep. Purif. Technol. 2021, 263, 118398. [Google Scholar] [CrossRef]
- Shi, Y.; Li, L.; Xu, Z.; Sun, H.; Amin, S.; Guo, F.; Shi, W.; Li, Y. Engineering of 2D/3D architectures type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation. Mater. Res. Bull. 2022, 150, 111789. [Google Scholar] [CrossRef]
- Nguetsa Kuate, L.J.; Chen, Z.; Lu, J.; Wen, H.; Guo, F.; Shi, W. Photothermal-Assisted Photocatalytic Degradation of Tetracycline in Seawater Based on the Black g-C3N4 Nanosheets with Cyano Group Defects. Catalysts 2023, 13, 1147. [Google Scholar] [CrossRef]
- Chu, X.; Sathish, C.I.; Li, M.; Yang, J.-H.; Li, W.; Qi, D.-C.; Chu, D.; Vinu, A.; Yi, J. Anti-Stoke effect induced enhanced photocatalytic hydrogen production. Batter. Energy 2023, 2, 20220041. [Google Scholar] [CrossRef]
- Lu, C.; Wang, J.; Cao, D.; Guo, F.; Hao, X.; Li, D.; Shi, W. Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline. Mater. Res. Bull. 2023, 158, 112064. [Google Scholar] [CrossRef]
- Wang, Z.; Du, Y.; Zhou, P.; Xiong, Z.; He, C.; Liu, Y.; Zhang, H.; Yao, G.; Lai, B. Strategies based on electron donors to accelerate Fe(III)/Fe(II) cycle in Fenton or Fenton-like processes. Chem. Eng. J. 2023, 454, 140096. [Google Scholar] [CrossRef]
- Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions. eScience 2023, 3, 100095. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.; Chen, J.; Chai, S.; Shi, L.; Chen, C.; Wang, Y.; He, C. A novel solar photo-Fenton system with self-synthesizing H2O2: Enhanced photo-induced catalytic performances and mechanism insights. Appl. Surf. Sci. 2020, 512, 145650. [Google Scholar] [CrossRef]
- Palanivel, B.; Hu, C.; Shkir, M.; AlFaify, S.; Ibrahim, F.A.; Hamdy, M.S.; Mani, A. Fluorine doped g-C3N4 coupled NiFe2O4 heterojunction: Consumption of H2O2 for production of hydroxyl radicals towards paracetamol degradation. Colloid. Interface Sci. Commun. 2021, 42, 100410. [Google Scholar] [CrossRef]
- Li, J.; Mei, Y.; Ma, S.; Yang, Q.; Jiang, B.; Xin, B.; Yao, T.; Wu, J. Internal-electric-field induced high efficient type-I heterojunction in photocatalysis-self-Fenton reaction: Enhanced H2O2 yield, utilization efficiency and degradation performance. J. Colloid. Interface Sci. 2022, 608, 2075–2087. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Sun, W.; Liu, Y.; Zhang, K.; Sun, H.; Lin, X.; Hong, Y.; Guo, F. A self-sufficient photo-Fenton system with coupling in-situ production H2O2 of ultrathin porous g-C3N4 nanosheets and amorphous FeOOH quantum dots. J. Hazard. Mater. 2022, 436, 129141. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hu, X.; Chen, Y.; Lin, S.; Wang, C.; Gou, F.; Yang, X.; Zheng, W.; Ma, D.K. 3-Hydroxythiophenol-Formaldehyde Resin Microspheres Modulated by Sulfhydryl Groups for Highly Efficient Photocatalytic Synthesis of H2O2. Adv. Sci. 2023, 2304948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Wang, X.; Yin, Y.; Tian, W.; Zeng, G.; Li, H.; Ye, S.; Wu, L.; Liu, J. Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H2O2 Production with Exceeding 1.2% Efficiency. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218318. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, Y.; Lu, C.; Lin, X.; Fu, Z.; Shi, W.; Guo, F. Photocatalytic Self-Fenton System of g-C3N4-Based for Degradation of Emerging Contaminants: A Review of Advances and Prospects. Molecules 2023, 28, 5916. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, J.; Wang, Z.; Lou, Y.; Pan, C.; Zhu, Y. Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Appl. Catal. B Environ. 2022, 312, 121438. [Google Scholar] [CrossRef]
- Chen, B.; Xu, J.; Dai, G.; Sun, X.; Situ, Y.; Huang, H. Accelerated Fe(III)/Fe(II) cycle couples with in-situ generated H2O2 boosting visible light-induced Fenton-like oxidation. Sep. Purif. Technol. 2022, 299, 121688. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Zhao, C.; Pi, Y.; Li, X.; Jia, Z.; Zhou, S.; Zhao, J.; Wu, L.; Liu, J. Ambient Preparation of Benzoxazine-based Phenolic Resins Enables Long-term Sustainable Photosynthesis of Hydrogen Peroxide. Angew. Chem. Int. Ed. Engl. 2023, 62, e202302829. [Google Scholar] [CrossRef]
- Li, Q.; Wei, G.; Yang, Y.; Gao, L.; Zhang, L.; Li, Z.; Huang, X.; Gan, J. Novel step-scheme red mud based Ag3PO4 heterojunction photocatalyst with enhanced photocatalytic performance and stability in photo-Fenton reaction. Chem. Eng. J. 2021, 424, 130537. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, K.; Chen, Z.; Yuan, H.; Guo, F.; Shi, W. Construction of visible-light-response photocatalysis-self-Fenton system for the efficient degradation of amoxicillin based on industrial waste red mud/CdS S-scheme heterojunction. Sep. Purif. Technol. 2023, 324, 124600. [Google Scholar] [CrossRef]
- Li, Y.; Wei, G.; Shao, L.; Li, Z.; Yu, F.; Liu, J.; Yang, X.; Lu, Q.; Li, A.; Huang, Y.; et al. Green synthesis of red mud based ZnO Fe2O3 composite used for photo-Fenton reaction under visible light. J. Clean. Prod. 2019, 207, 717–727. [Google Scholar] [CrossRef]
- Shi, W.; Ren, H.; Li, M.; Shu, K.; Xu, Y.; Yan, C.; Tang, Y. Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes. Chem. Eng. J. 2020, 382, 122876. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. CdS decorated resorcinol–formaldehyde spheres as an inorganic/organic S-scheme photocatalyst for enhanced H2O2 production. J. Mater. Sci. Technol. 2023, 162, 90–98. [Google Scholar] [CrossRef]
- Liu, B.; Yan, L.; Wen, J.; Liu, X.; Duan, F.; Jia, B.; Liu, X.; Ke, G.; He, H.; Zhou, Y. FeOOH-activating resorcinol–formaldehyde resin nanospheres for the photo-Fenton degradation of organic pollutants. New J. Chem. 2022, 46, 17809–17816. [Google Scholar] [CrossRef]
- Li, X.; He, J.; Lu, J.; Zhou, Y.; Zhou, Y. In-situ production and activation of H2O2 for enhanced degradation of roxarsone by FeS(2) decorated resorcinol-formaldehyde resins. J. Hazard. Mater. 2022, 424, 127650. [Google Scholar] [CrossRef]
- Shi, W.; Ren, H.; Huang, X.; Li, M.; Tang, Y.; Guo, F. Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis. Sep. Purif. Technol. 2020, 237, 116477. [Google Scholar] [CrossRef]
- Shen, W.; Zhou, L.; Liu, Y.; Zhang, J.; Lei, J. Efficient degradation and adsorption of roxarsone by FeOOH quantum decorated resorcinol–formaldehyde resins via Fenton-like process. Res. Chem. Intermed. 2023, 49, 2569–2582. [Google Scholar] [CrossRef]
- An, X.; Hou, Z.; Yu, Y.; Wang, J.; Lan, H.; Liu, H.; Qu, J. Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128461. [Google Scholar] [CrossRef]
- Jiang, L.; Su, M.; Cao, Y.; Yan, C.; Zhang, J. Facile synthesis of Ti3+/Ti4+ co-doped FeOCl with solar-light enhanced Fenton activity. Mater. Lett. 2022, 323, 132585. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Liu, Z.; Yang, X.; Pang, B.; Gao, Y.; Zhou, R.; Xu, D.; Zhang, J.; Zhang, T.; et al. Violet phosphorus-Fe3O4 as a novel photocatalysis-self-Fenton system coupled with underwater bubble plasma to efficiently remove norfloxacin in water. Chem. Eng. J. 2023, 452, 139481. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Guo, F.; Shi, Y.; Li, L.; Xu, Z.; Yan, X.; Shi, W. Fe-doped g-C3N4 derived from biowaste material with Fe-N bonds for enhanced synergistic effect between photocatalysis and Fenton degradation activity in a broad pH range. J. Alloys Compd. 2022, 900, 163410. [Google Scholar] [CrossRef]
- An, B.; Liu, J.; Zhu, B.; Liu, F.; Jiang, G.; Duan, X.; Wang, Y.; Sun, J. Returnable MoS2@carbon nitride nanotube composite hollow spheres drive photo-self-Fenton-PMS system for synergistic catalytic and photocatalytic tetracycline degradation. Chem. Eng. J. 2023, 478, 147344. [Google Scholar] [CrossRef]
- Su, S.; Xing, Z.; Zhang, S.; Du, M.; Wang, Y.; Li, Z.; Chen, P.; Zhu, Q.; Zhou, W. Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance. Appl. Surf. Sci. 2021, 537, 147890. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Che, H.; Gao, X.; Ao, Y.; Wang, P. Boosting 2e− oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2,4-dichlorophenol. Appl. Catal. B Environ. 2022, 307, 121185. [Google Scholar] [CrossRef]
- Yue, J.; Yang, H.; Liu, C.; Zhang, Q.; Ao, Y. Constructing photocatalysis-self-Fenton system over a defective twin C3N4: In-situ producing H2O2 and mineralizing organic pollutants. Appl. Catal. B Environ. 2023, 331, 122716. [Google Scholar] [CrossRef]
- Pan, J.; Wang, L.; Shi, Y.; Li, L.; Xu, Z.; Sun, H.; Guo, F.; Shi, W. Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics. Sep. Purif. Technol. 2022, 284, 120270. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, G.; Xiao, B.; Geng, J.; Yang, Y.; Wang, D.; Li, J.; Wang, J.; Zhu, Y. Iron-based resin heterogeneous photo-self-Fenton system for efficient photocatalytic degradation of antibiotic wastewater. Sep. Purif. Technol. 2024, 330, 125338. [Google Scholar] [CrossRef]
- Tian, Q.; Zeng, X.K.; Zhao, C.; Jing, L.Y.; Zhang, X.W.; Liu, J. Exceptional Photocatalytic Hydrogen Peroxide Production from Sandwich-Structured Graphene Interlayered Phenolic Resins Nanosheets with Mesoporous Channels. Adv. Funct. Mater. 2023, 33, 2213173. [Google Scholar] [CrossRef]
- Sheng, B.; Xie, Y.; Zhao, Q.; Sheng, H.; Zhao, J. Proton reservoirs in polymer photocatalysts for superior H2O2 photosynthesis. Energy Environ. Sci. 2023, 16, 4612–4619. [Google Scholar] [CrossRef]
- Maa, J.; Wanga, K.; Wanga, C.; Chenb, X.; Zhuc, W.; Zhub, G.; Yao, W.; Zhu, Y. Photocatalysis-self-Fenton system with high-fluent degradation and high mineralization ability. Appl. Catal. B-Environ. 2020, 276, 119150. [Google Scholar] [CrossRef]
- Chen, L.; He, X.; Gong, Z.; Li, J.; Liao, Y.; Li, X.; Ma, J. Significantly improved photocatalysis-self-Fenton degradation performance over g-C3N4 via promoting Fe(III)/Fe(II) cycle. Rare Met. 2022, 41, 2429–2438. [Google Scholar] [CrossRef]
- Jian, L.; Zhao, H.; Dong, Y.; Xu, J.; Mao, Q.; Ji, R.; Yan, Z.; Pan, C.; Wang, G.; Zhu, Y. Graphite carbon ring modified carbon nitride with a strong built-in electric field for high photocatalysis-self-Fenton performance. Catal. Sci. Technol. 2022, 12, 7379–7388. [Google Scholar] [CrossRef]
- Sun, K.; Yuan, H.; Yan, Y.; Qin, H.; Sun, L.; Tan, L.; Guo, F.; Du, X.; Shi, W. Visible-light-response 2D/2D Bi2Fe4O9/ZnIn2S4 van der Waals S-scheme heterojunction with efficient photocatalysis-self-Fenton degradation of antibiotics. J. Water Process Eng. 2024, 58, 104803. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, B. H(2)O(2) activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation: Metal dependence of boosting reactive oxygen species generation. J. Hazard. Mater. 2022, 440, 129757. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Hao, C.; Fu, Y.; Guo, F.; Tang, Y.; Yan, X. Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots. Chem. Eng. J. 2022, 433, 133741. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y.; Li, C.; Gao, F.; Liu, F.; Jiang, G.; Zhang, H.; Duan, X. Construction of catalytic ozonation synergistic photo-self-Fenton system and analysis of synergistic catalysis and reaction mechanism activated by modified carbon nitride. Appl. Catal. B Environ. 2024, 342, 123408. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, X.; Ye, S.; Liu, J. Graphene Quantum Dots-Modified Resorcinol-Formaldehyde Resin for Efficient Hydrogen Peroxide Production. Sol. RRL 2022, 6, 2200427. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Jio, M.; Yoshida, K.; Nishiyama, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Nafion-Integrated Resorcinol-Formaldehyde Resin Photocatalysts for Solar Hydrogen Peroxide Production. JACS Au 2023, 3, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Siddique, M.S.; Yang, Y.; Wu, M.; Kang, L.; Yang, H. Facile and scalable synthesis of Fe-based metal organic frameworks for highly efficient photo-Fenton degradation of organic contaminants. J. Clean. Prod. 2022, 374, 134033. [Google Scholar] [CrossRef]
- Zhang, M.M.; Lai, C.; Li, B.S.; Xu, F.H.; Huang, D.L.; Liu, S.Y.; Qin, L.; Fu, Y.K.; Liu, X.G.; Yi, H.; et al. Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation. Chem. Eng. J. 2020, 396, 125343. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Song, G.; You, Z.; Zhang, X.; Liu, L.; Zhang, J.; Ding, L.; Ren, N.; Wang, A.; et al. Construction of S-N-C bond for boosting bacteria-killing by synergistic effect of photocatalysis and nanozyme. Appl. Catal. B Environ. 2023, 325, 122345. [Google Scholar] [CrossRef]
- Shi, W.; Fu, Y.; Hao, C.; Guo, F.; Tang, Y. Heterogeneous photo-Fenton process over magnetically recoverable MnFe2O4/MXene hierarchical heterostructure for boosted degradation of tetracycline. Mater. Today Commun. 2022, 33, 104449. [Google Scholar] [CrossRef]
- Shi, W.; Fu, Y.; Sun, H.; Sun, X.; Hao, C.; Guo, F.; Tang, Y. Construction of 0D/3D CoFe2O4/MIL-101(Fe) complement each other S-scheme heterojunction for effectively boosted photocatalytic degradation of tetracycline. Inorg. Chem. Commun. 2022, 146, 110140. [Google Scholar] [CrossRef]
- Yuan, H.; Sun, X.; Zhang, S.; Shi, W.; Guo, F. Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe) octahedrons. Chin. J. Chem. Eng. 2024, 66, 298–309. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Xiao, B.; Pu, Y.; Yang, Y.; Geng, J.; Wang, D.; Chen, X.; Wei, Y.; Xiong, K.; et al. Resin-based photo-self-Fenton system with intensive mineralization by the synergistic effect of holes and hydroxyl radicals. Appl. Catal. B-Environ. 2022, 315, 121525. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, X.; Yuan, H.; Sun, K.; Shi, W.; Li, C.; Guo, F. Construction of a Visible-Light-Response Photocatalysis–Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol–Formaldehyde Resin. Molecules 2024, 29, 1514. https://doi.org/10.3390/molecules29071514
Lv X, Yuan H, Sun K, Shi W, Li C, Guo F. Construction of a Visible-Light-Response Photocatalysis–Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol–Formaldehyde Resin. Molecules. 2024; 29(7):1514. https://doi.org/10.3390/molecules29071514
Chicago/Turabian StyleLv, Xiangxiu, Hao Yuan, Kaiqu Sun, Weilong Shi, Chunsheng Li, and Feng Guo. 2024. "Construction of a Visible-Light-Response Photocatalysis–Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol–Formaldehyde Resin" Molecules 29, no. 7: 1514. https://doi.org/10.3390/molecules29071514
APA StyleLv, X., Yuan, H., Sun, K., Shi, W., Li, C., & Guo, F. (2024). Construction of a Visible-Light-Response Photocatalysis–Self-Fenton Degradation System of Coupling Industrial Waste Red Mud to Resorcinol–Formaldehyde Resin. Molecules, 29(7), 1514. https://doi.org/10.3390/molecules29071514