[BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation
Abstract
1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Preparation of SnO2 Precursor
2.3. Preparation of Perovskite Precursor
2.4. Preparation of Perovskite Precursors with Different Mass Concentrations of [BMP]+[BF4]−
2.5. Device Fabrication
2.6. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Guo, Y.; Xie, H.; Que, W.; Kong, L.B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL 2019, 3, 1900001. [Google Scholar] [CrossRef]
- Min, H.; Lee, D.Y.; Kim, J.; Kim, G.; Lee, K.S.; Kim, J.; Paik, M.J.; Kim, Y.K.; Kim, K.S.; Kim, M.G.; et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450. [Google Scholar] [CrossRef]
- Laboratory, N.R.E. National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/national-center-for-photovoltaics.html (accessed on 17 January 2024).
- Sun, Z.; Chen, X.; He, Y.; Li, J.; Wang, J.; Yan, H.; Zhang, Y. Toward efficiency limits of crystalline silicon solar cells: Recent progress in high-efficiency silicon heterojunction solar cells. Adv. Energy Mater. 2022, 12, 2200015. [Google Scholar] [CrossRef]
- Kajal, S.; Jeong, J.; Seo, J.; Anand, R.; Kim, Y.; Bhaskararao, B.; Beom Park, C.; Yeop, J.; Hagdfeldt, A.; Young Kim, J.; et al. Coordination modulated passivation for stable organic-inorganic perovskite solar cells. Chem. Eng. J. 2023, 451, 138740. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wu, C.; Hou, Y.; Yang, D.; Ye, T.; Yoon, J.; Sanghadasa, M.; Priya, S. Isothermally crystallized perovskites at room-temperature. Energy Environ. Sci. 2020, 13, 3412–3422. [Google Scholar] [CrossRef]
- Ardimas; Pakornchote, T.; Sukmas, W.; Chatraphorn, S.; Clark, S.J.; Bovornratanaraks, T. Phase transformations and vibrational properties of hybrid organic-inorganic perovskite MAPbI3 bulk at high pressure. Sci. Rep. 2023, 13, 16854. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sheng, W.; Li, R.; Gong, L.; Li, Y.; Tan, L.; Lin, Q.; Chen, Y. Uncovering the mechanism of poly(ionic-liquid)s multiple inhibition of ion migration for efficient and stable perovskite solar cells. Adv. Energy Mater. 2022, 12, 2103652. [Google Scholar] [CrossRef]
- Zhang, H.; Pfeifer, L.; Zakeeruddin, S.M.; Chu, J.; Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023, 7, 632–652. [Google Scholar] [CrossRef]
- Zhu, H.; Teale, S.; Lintangpradipto, M.N.; Mahesh, S.; Chen, B.; McGehee, M.D.; Sargent, E.H.; Bakr, O.M. Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 2023, 8, 569–586. [Google Scholar] [CrossRef]
- Park, S.M.; Wei, M.; Xu, J.; Atapattu, H.R.; Eickemeyer, F.T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Teale, S.; et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 2023, 381, 209–215. [Google Scholar] [CrossRef]
- Abate, S.Y.; Qi, Y.; Zhang, Q.; Jha, S.; Zhang, H.; Ma, G.; Gu, X.; Wang, K.; Patton, D.; Dai, Q. Eco-friendly solvent engineered CsPbI2.77Br0.23 ink for large-area and scalable high performance perovskite solar cells. Adv. Mater. 2023, 36, 2310279. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xue, X.; Wang, K.; Wen, Q.; Han, Y.; Wang, J.; Yao, H.; Lu, H.; Cui, L.; Ma, J.; et al. Intermediate phase modification enables high-performance iodine-rich inorganic perovskite solar cells with 3000-hour stability. Adv. Energy Mater. 2023, 14, 2303193. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, R.; Zhang, W.; Cheng, Q.; Zhou, H.; Zhang, Y. Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance. Angew. Chem. Int. Ed. 2023, 63, e202315717. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yin, X.; Liu, D.; Liu, J.; Zhang, C.; Xie, H.; Yang, Y.; Que, W. Photoinduced self-healing of halide segregation in mixed-halide perovskites. ACS Energy Lett. 2021, 6, 2502–2511. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, X.; Que, M.; Zhang, J.; Wen, S.; Liu, D.; Xie, H.; Que, W. Quantum dot-modified CsPbIBr2 perovskite absorber for efficient and stable photovoltaics. Org. Electron. 2020, 86, 105917. [Google Scholar] [CrossRef]
- Zhang, J.; Hodes, G.; Jin, Z.; Liu, S. All-Inorganic CsPbX3 perovskite solar cells: Progress and prospects. Angew. Chem. Int. Ed. 2019, 58, 15596–15618. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J.Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85. [Google Scholar] [CrossRef]
- Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 2015, 6, 2452–2456. [Google Scholar] [CrossRef]
- Eperon, G.E.; Paternò, G.M.; Sutton, R.J.; Zampetti, A.; Haghighirad, A.A.; Cacialli, F.; Snaith, H.J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695. [Google Scholar] [CrossRef]
- Hutter, E.M.; Sutton, R.J.; Chandrashekar, S.; Abdi-Jalebi, M.; Stranks, S.D.; Snaith, H.J.; Savenije, T.J. Vapour-deposited cesium lead iodide perovskites: Microsecond charge carrier lifetimes and enhanced photovoltaic performance. ACS Energy Lett. 2017, 2, 1901–1908. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Xiang, W.; Tian, Q.; Liu, S. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. 2021, 60, 23164–23170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; He, B.; Zhang, W.; Tui, R.; Chen, H.; Duan, Y.; Huang, H.; Duan, J.; Tang, Q. Defect-dependent crystal plane control on inorganic CsPbBr3 film by selectively anchoring (pseudo-) halide anions for 1.650 V voltage perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2206838. [Google Scholar] [CrossRef]
- Ho-Baillie, A.; Zhang, M.; Lau, C.F.J.; Ma, F.-J.; Huang, S. Untapped potentials of inorganic metal halide perovskite solar cells. Joule 2019, 3, 938–955. [Google Scholar] [CrossRef]
- Yao, Z.; Zhao, W.; Liu, S. Stability of the CsPbI3 perovskite: From fundamentals to improvements. J. Mater. Chem. A 2021, 9, 11124–11144. [Google Scholar] [CrossRef]
- Yang, S.; Duan, Y.; Liu, Z.; Liu, S. Recent advances in CsPbX3 perovskite solar cells: Focus on crystallization characteristics and controlling strategies. Adv. Energy Mater. 2023, 13, 2201733. [Google Scholar] [CrossRef]
- Sutter-Fella, C.M.; Li, Y.; Amani, M.; Ager, J.W., III; Toma, F.M.; Yablonovitch, E.; Sharp, I.D.; Javey, A. High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett. 2016, 16, 800–806. [Google Scholar] [CrossRef]
- Beal, R.E.; Slotcavage, D.J.; Leijtens, T.; Bowring, A.R.; Belisle, R.A.; Nguyen, W.H.; Burkhard, G.F.; Hoke, E.T.; McGehee, M.D. Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. J. Phys. Chem. Lett. 2016, 7, 746–751. [Google Scholar] [CrossRef]
- Hoke, E.T.; Slotcavage, D.J.; Dohner, E.R.; Bowring, A.R.; Karunadasa, H.I.; McGehee, M.D. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Li, W.; Rothmann, M.U.; Liu, A.; Wang, Z.; Zhang, Y.; Pascoe, A.R.; Lu, J.; Jiang, L.; Chen, Y.; Huang, F.; et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv. Energy Mater. 2017, 7, 1700946. [Google Scholar] [CrossRef]
- Rehman, W.; Milot, R.L.; Eperon, G.E.; Wehrenfennig, C.; Boland, J.L.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites. Adv. Mater. 2015, 27, 7938–7944. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, M.; Cai, W.; Zang, Z. Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells. Nano Lett. 2023, 23, 4479–4486. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Teo, S.; Xu, Z.; Zhang, C.; Kamata, Y.; Hayase, S.; Ma, T. Achievable high Voc of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering. J. Mater. Chem. A 2019, 7, 1227–1232. [Google Scholar] [CrossRef]
- An, Y.; Zhang, N.; Zeng, Z.; Cai, Y.; Jiang, W.; Qi, F.; Ke, L.; Lin, F.R.; Tsang, S.W.; Shi, T. Optimizing crystallization in wide-bandgap mixed halide perovskites for high-efficiency solar cells. Adv. Mater. 2023, 2306568. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Ma, J.; Zhu, W.; Chen, D.; Xi, H.; Zhang, J.; Zhang, C.; Hao, Y. Suppressing halide phase segregation in CsPbIBr2 Films by polymer modification for hysteresis-less all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 2868–2878. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.-W.; Lu, T.; Gao, X.; Rothmann, M.U.; Jiang, Y.; Qiang, Z.-Y.; Du, H.-Q.; Guo, C.; Yang, L.-H.; Wang, C.-X.; et al. Heterogeneity of light-induced open-circuit voltage loss in perovskite/si tandem solar cells. ACS Energy Lett. 2024, 9, 1455–1465. [Google Scholar] [CrossRef]
- Liu, D.; Guo, Y.; Yin, X.; Yang, Y.; Que, W. Nucleation Regulation and Anchoring of Halide Ions in All-Inorganic Perovskite Solar Cells Assisted by CuInSe2 Quantum Dots. Adv. Funct. Mater. 2023, 33, 2210754. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Chen, D.; Zhang, Z.; Lin, Z.; Chang, J.; Zhang, J.; Zhang, C.; Hao, Y. Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%. Adv. Energy Mater. 2018, 8, 1802080. [Google Scholar] [CrossRef]
- Sanchez, S.; Christoph, N.; Grobety, B.; Phung, N.; Steiner, U.; Saliba, M.; Abate, A. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Adv. Energy Mater. 2018, 8, 1802060. [Google Scholar] [CrossRef]
Devices | VOC/V | JSC/mA cm−2 | FF | PCE/% |
---|---|---|---|---|
Pristine | 1.14 | 12.06 | 0.52 | 7.13 |
0.5 mg mL−1 | 1.13 | 11.97 | 0.54 | 7.36 |
1 mg mL−1 | 1.21 | 12.32 | 0.57 | 8.44 |
2 mg mL−1 | 1.19 | 11.39 | 0.59 | 8.03 |
3 mg mL−1 | 1.20 | 11.58 | 0.58 | 8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Li, L.; Zhang, J.; Zhang, Y.; Pan, Y.; Xu, J.; Yin, X.; Que, W. [BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules 2024, 29, 1476. https://doi.org/10.3390/molecules29071476
Xie H, Li L, Zhang J, Zhang Y, Pan Y, Xu J, Yin X, Que W. [BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules. 2024; 29(7):1476. https://doi.org/10.3390/molecules29071476
Chicago/Turabian StyleXie, Haixia, Lei Li, Jiawei Zhang, Yihao Zhang, Yong Pan, Jie Xu, Xingtian Yin, and Wenxiu Que. 2024. "[BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation" Molecules 29, no. 7: 1476. https://doi.org/10.3390/molecules29071476
APA StyleXie, H., Li, L., Zhang, J., Zhang, Y., Pan, Y., Xu, J., Yin, X., & Que, W. (2024). [BMP]+[BF4]−-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation. Molecules, 29(7), 1476. https://doi.org/10.3390/molecules29071476