Technofunctional Properties and Rheological Behavior of Quinoa, Kiwicha, Wheat Flours and Their Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Technofunctional Properties
2.2. Proximate Compositions
2.3. Physicochemical Parameters and Rheology
2.4. Chromatic Characteristics of Flours with Their Different Mixtures
2.5. Microphotographs of the Flours
2.6. Evaluation of Flours with Raman Spectroscopy
2.7. Correlation between the Properties of Flours and Doughs
3. Materials and Methods
3.1. Obtaining Flours and Their Different Mixtures
3.2. Technofunctional Properties
3.2.1. Particle Size Distribution or Granulometry (PSD)
3.2.2. Particle Size Index (PTI)
3.2.3. Water Absorption Index (WAI)
3.2.4. Subjective Water Absorption Capacity (SWAC)
3.2.5. Soluble Material Index (SMI)
3.2.6. Swelling Power (SP)
3.3. Proximate Compositions
3.3.1. Moisture
3.3.2. Fat
3.3.3. Ash
3.3.4. Protein
3.3.5. Total Carbohydrates
3.3.6. Crude Fiber
3.4. Physicochemical Parameters
3.4.1. Apparent Density (AD)
3.4.2. Ph
3.4.3. Acidity
3.5. Colorimetric Parameters and Image Analysis
3.5.1. Color
3.5.2. Photomicrographs
3.6. Analysis with Raman Spectrometry
3.7. Rheological Flow Properties of Flour Dough
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vidaurre-Ruiz, J.M.; Días-Rojas, G.; Mendoza-Llamo, E.; Solano-Cornejo, M.Á. Variación del contenido de Betalaínas, compuestos fenólicos y capacidad antioxidante durante el procesamiento de la quinua (Chenopodium quinoa W.). Rev. Soc. Química Perú 2017, 83, 319–330. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Auty, M.; Arendt, E.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 2010, 230, 437–445. [Google Scholar] [CrossRef]
- Schoenlechner, R.; Mandala, I.; Kiskini, A.; Kostaropoulos, A.; Berghofer, E. Effect of water, albumen and fat on the quality of gluten-free bread containing amaranth. Int. J. Food Sci. Technol. 2010, 45, 661–669. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.-M.; Mattila, P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaran. Caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Sáez-Tonacca, L.; Aravena-Narbona, A.; Díaz Ramírez, C.; Sáez-Tonacca, L.; Aravena-Narbona, A.; Díaz Ramírez, C. Uso de harina de hojas de quínoa (Chenopodium quinoa) como ingrediente innovador, para la elaboración de alimentos de uso humano. Idesia 2018, 36, 233–242. [Google Scholar] [CrossRef]
- Pascual Chagman, G.; Zapata Huamán, J. Sustitución parcial de harina de trigo (Triticum aestivum) por harina de kiwicha (Amaranthus caudatus L.) usando el método directo y esponja y masa en la elaboración de pan. Rev. Soc. Química Perú 2010, 76, 377–388. [Google Scholar]
- Peñalver, R.; Ros, G.; Nieto, G. Development of Functional Gluten-Free Sourdough Bread with Pseudocereals and Enriched with Moringa oleifera. Foods 2023, 12, 3920. [Google Scholar] [CrossRef]
- Vidaurre-Ruiz, J.M.; Salas-Valerio, W.F.; Repo-Carrasco-Valencia, R. Propiedades de pasta y texturales de las mezclas de harinas de quinua (Chenopodium quinoa), kiwicha (Amaranthus caudatus) y tarwi (Lupinus mutabilis) en un sistema acuoso. Rev. Investig. Altoandinas 2019, 21, 5–14. [Google Scholar] [CrossRef]
- Sandoval, E.R.; Quintero, A.F.; Aponte, A.A. Reología y textura de masas: Aplicaciones en trigo y maíz. Ing. Investig. 2005, 25, 72–78. [Google Scholar]
- Jin, W.; Xu, W.; Liang, H.; Li, Y.; Liu, S.; Li, B. 1–Nanoemulsions for Food: Properties, Production, Characterization, and Applications. In Emulsions; Grumezescu, M.A., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–36. [Google Scholar]
- Sen Gupta, S.; Ghosh, M. 8—Advanced Nanocarriers for Nutraceuticals Based on Structured Lipid and Nonlipid Components. In Nutraceuticals; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 271–304. [Google Scholar]
- Horst Dieter, T. Fundamentos de Tecnología de los Alimentos, 2nd ed.; Acribia S.A.: Zaragoza, Spain, 2001. [Google Scholar]
- Sharma, S.K.; Mulvaney, S.J.; Rizvi, S.S.H. Ingeniería de Alimentos, 1st ed.; Limusa Wiley: Mexico City, Mexico, 2003. [Google Scholar]
- Sacón-Vera, E.F.; Bernal-Bailón, I.I.; Dueñas-Rivadeneira, A.A.; Cobeña-Ruíz, G.A.; López-Bello, N. Reología de mezclas de harinas de camote y trigo para elaborar pan. Tecnol. Química 2016, 36, 384–394. [Google Scholar]
- Belén, D.R.; Alemán, R.; Alvarez, F.J.; Moreno Alvarez, M.J. Evaluación de algunas propiedades funcionales y reológicas de harinas de coroba (Jessenia Polycarpa Karst). Rev. Fac. Agron. 2004, 21, 161–171. [Google Scholar]
- Sandoval, G.; Álvarez, M.; Paredes, M.; Lascano, A. Estudio reológico de las mezclas de harinas: Trigo (Triticum vulgare), cebada (Hordeum vulgare) y papas (Solanum tuberosum) para la utilización en la elaboración de pan. Sci. Agropecu. 2012, 3, 123–131. [Google Scholar] [CrossRef]
- Cardoso, F.F.; Ascheri, D.P.R.; de Carvalho, C.W.P. Propiedades reológicas y de adsorción de agua de harina extrudida de arroz y bagazo de cebada. Rev. Ceres 2014, 61, 313–322. [Google Scholar] [CrossRef]
- Renoldi, N.; Lucci, P.; Peressini, D. Impact of oleuropein on rheology and breadmaking performance of wheat doughs, and functional features of bread. Food Bioeng. 2022, 57, 2321–2332. [Google Scholar] [CrossRef]
- Fernández-Muñoz, J.L.; San Martín-Martínez, E.; Díaz-Gongora, A.I.; Calderón, A.; Ortíz, H. Evaluación de las Distribuciones de Tamaño de Partícula de Harina de Maíz Nixtamalizado por medio de RVA. Superf. Vacío 2008, 21, 25–30. [Google Scholar]
- Sáez García, R. Caracterización de Polvos de Piel de Mandarina Para su Uso Como Ingrediente Funcional en Alimentos; Universidad Politécnica de Valencia: Valencia, Spain, 2017. [Google Scholar]
- Dussán-Sarria, S.; Hurtado-Hurtado, D.L.; Camacho-Tamayo, J.H. Granulometría, Propiedades Funcionales y Propiedades de Color de las Harinas de Quinua y Chontaduro. Inf. Tecnológica 2019, 30, 3–10. [Google Scholar] [CrossRef]
- Biduski, B.; Maçãs, M.; Vahedikia, N.; O’Connor, P.M.; Hussey, K.; Simpson, J.C.; Mysior, M.M.; Gallagher, E. Dough rheology and internal structure of bread produced with wheat flour partially substituted by buckwheat flour: A step towards enhancing nutritional value. Food Struct. 2024, 39, 100364. [Google Scholar] [CrossRef]
- Cerezal Mezquita, P.; Urtuvia Gatica, V.; Ramírez Quintanilla, V.; Arcos Zavala, R. Desarrollo de producto sobre la base de harinas de cereales y leguminosa para niños celíacos entre 6 y 24 meses; II: Propiedades de las mezclas. Nutr. Hosp. 2011, 26, 161–169. [Google Scholar]
- Peruvian Technical Standard (NTP 205.054:2020); Granos Andinos. Kiwicha en Grano. Requisitos. INACAL: Lima, Peru, 2020.
- Peruvian Technical Standard (NTP 205.062:2021); Granos Andinos. Quinua. Requisitos. INACAL: Lima, Peru, 2021.
- Huamán Castilla, N.L.; Yupanqui, G.; Allcca, E.; Allcca, G. Efecto del contenido de humedad y temperatura sobre la difusividad térmica en granos andino. Rev. Soc. Química Perú 2016, 82, 259–271. [Google Scholar] [CrossRef]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Reyes García, M.; Gomez-Sánchez Prieto, I.; Espinoza Barrientos, C. Tablas Peruanas de Composición de Alimentos; Centro Nacional de Alimentación y Nutrición-Instituto Nacional de Salud, SEGEAR SAC: Lima, Peru, 2017; Volume 3. [Google Scholar]
- García Ochoa, O.E.; Infante, R.; Rivera, C.J. Hacia una definición de fibra alimentaria. An. Venez. De Nutr. 2008, 21, 25–30. [Google Scholar]
- Feitosa, B.F.; Barros, J.H.T.; Feitoza, J.V.F. Pseudocereals—A bibliometric analysis and literature review on the potential for manufacturing flours, bakery products and milk analogues. NFS J. 2024, 34, 2352–3646. [Google Scholar] [CrossRef]
- Peruvian Technical Standard (NTP 205.064:2015); Trigo. Harina de Trigo para Consumo Humano. Requisitos. INDECOPI: Lima, Peru, 2015.
- Varela-Fonseca, S.; Montero-Zeledón, E.; Rojas-Rojas, L.; Varela-Fonseca, A.; Gutiérrez-Fallas, D. Análisis de ADN mediante espectroscopía Raman utilizando el método SERS. Rev. Tecnol. Marcha 2019, 32, 118–125. [Google Scholar] [CrossRef]
- Chamorro Gómez, R.; Repo Carrasco, R.; Ccapa Ramírez, K.; Quispe Jacobo, F. Composición química y compuestos bioactivos de treinta accesiones de kiwicha (Amaran. Caudatus L.). Rev. Soc. Química Perú 2018, 84, 362–374. [Google Scholar]
- Del Mar Oliva-Artega, M.; Lucia Duque-Cifuentes, A.; García-Alzate, L.S. Caracterización fisicoquímica del cereal y almidón de Quinua Chenopodium quinoa. Rev. ION 2018, 31. [Google Scholar] [CrossRef]
- Chen, Y.; McClements, D.J.; He, K.; Peng, X.; Xu, Z.; Meng, M.; Ji, H.; Zhao, J.; Jin, Z.; Chen, L. Effect of phytic acid on the structure, properties and oil absorption of wheat flour. Food Hydrocoll. 2024, 150, 109737. [Google Scholar] [CrossRef]
- Pantoja-Tirado, L.; Prieto-Rosales, G.; Vargas, E.A. Caracterización de la harina de quinua (Chenopodium quinoa Willd.) y la harina de tarwi (Lupinus mutabilis Sweet) para su industrialización. Tayacaja 2020, 3. [Google Scholar] [CrossRef]
- Mason, W.R. Chapter 20—Starch Use in Foods. In Starch, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 745–795. [Google Scholar]
- Bernal Bustos, C.; Ramírez, L.; Duarte, P.; Guzmán, A.M.; Acero, J. Quinua Chenopodium quinua (Willd.) en Colombia. Caracterización de gránulos de almidón nativo de quinua por IR-ATR, MEB, DRX. Ing. Química 2015, 8, 122–131. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Quinoa starch: Structure, properties, and applications. Carbohydr. Polym. 2018, 181, 851–861. [Google Scholar] [CrossRef]
- Romano, A.; Masia, P.; Nicolai, M.A.; Falciano, A.; Ferranti, P. Quinoa (Chenopodium quinoa willd.) flour as novel and safe ingredient in bread formulation. Chem. Eng. 2019, 75, 301–306. [Google Scholar]
- Jekle, M.; Becker, T. Dough microstructure: Novel analysis by quantification using confocal laser scanning microscopy. Food Res. Int. 2011, 44, 984–991. [Google Scholar] [CrossRef]
- An, H.; Zhai, C.; Zhang, F.; Ma, Q.; Sun, J.; Tang, Y.; Wang, W. Quantitative analysis of Chinese steamed bread staling using NIR, MIR, and Raman spectral data fusion. Food Chem. 2023, 405, 134821. [Google Scholar] [CrossRef]
- Sato, S.; Numata, Y. Simultaneous quantitative analysis of quercetin and rutin in Tartary buckwheat flour by Raman spectroscopy and partial least square regression. J. Food Compos. Anal. 2024, 128, 105991. [Google Scholar] [CrossRef]
- Rull, F. Structural investigation of water and aqueous solutions by Raman spectroscopy. Pure Appl. Chem. 2002, 74, 1859–1870. [Google Scholar] [CrossRef]
- Rudolph, W.; Irmer, G. Raman spectroscopic studies and DFT calculations on NaCH3 CO2 and NACD3 CO2 solucions in water and heavy water. RSC Adv. 2015, 5, 21897–21908. [Google Scholar] [CrossRef]
- Udensi, J.; Loskutova, E.; Loughman, J.; Byrne, H.J. Quantitative Raman Analysis of Carotenoid Protein Complexes in Aqueous Solution. Molecules 2022, 27, 4724. [Google Scholar] [CrossRef]
- Li, S.; Li, T.; Cai, Y.; Yao, Z.; He, M. Rapid quantitative analysis of Rongalite adulteration in rice flour using autoencoder and residual-based model associated with portable Raman spectroscopy. Spectrochim. Acta–Part A Mol. Biomol. Spectrosc. 2024, 304, 123382. [Google Scholar] [CrossRef]
- Ramirez-Miranda, M.; Silva-Gonzales, Z.Z.; Calderon-Dominguez, G.; Ribotta, P.D.; Barrera, G.N.; Salgado-Cruz, M.P. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos; Universidad Autónoma de Nuevo León: San Nicolás de los Garza, Mexico, 2016; Volume 1, pp. 412–416. [Google Scholar]
- Cornell, J. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data; Wiley: Hoboken, NJ, USA, 2002; Volume 3. [Google Scholar]
- Miranda-Ramos, K.C.; Haros, C.M. Combined effect of chia, quinoa and amaranth incorporation on the physico-chemical, nutritional and functional quality of fresh bread. Foods 2020, 9, 1859. [Google Scholar] [CrossRef]
- Jamanca-Gonzales, N.C.; Ocrospoma-Dueñas, R.W.; Quintana-Salazar, N.B.; Siche, R.; Silva-Paz, R.J. Influence of preferments on the physicochemical and sensory quality of traditional panettone. Foods 2022, 11, 2566. [Google Scholar] [CrossRef]
- Cannas, M.; Pulina, S.; Conte, P.; Del Caro, A.; Urgeghe, P.P.; Piga, A.; Fadda, C. Effect of substitution of rice flour with quinoa flour on the chemical-physical, nutritional, volatile and sensory parameters of gluten-free ladyfinger biscuits. Foods 2020, 9, 808. [Google Scholar] [CrossRef]
- Moreno-Araiza, O.; Torres-Chávez, P.I.; Ramírez-Wong, B.; Magaña-Barajas, E.; Montaño-Leyva, B.; Medina-Rodriguez, C.L.; Delgado-Rodriguez, J. Calidad proteica en las fracciones de molienda de rodillos de trigo (T. aestivum) a nivel comercial. Biotecnia 2020, 22, 53–60. [Google Scholar]
- Hoyos Sánchez, D.; Palacios Peña, A.G. Utilización de Harinas Compuestas de Maíz y Garbanzo Adicionadas con Fibra de Cáscara de Piña para Sustitución de Harina de Trigo en Productos de Panificación; Universidad del Valle: Cali, Colombia, 2015. [Google Scholar]
- Platt Lucero, L.C. Efectos de la Goma Xantana en las Características Viscoelásticas y Texturales de la Masa y la Tortilla Elaboradas con Harinas Nixtamalizadas de Maíz Obtenidas por el Proceso de Extrusión; Universidad Sonora: Mexico, Mexico, 2006. [Google Scholar]
- Gonzalez Vera, I. Evaluación de Cambios Fisicoquímicos que Sufre el Almidón en el Proceso de Elaboración de Tortillas Utilizando Harina Nixtamalada por Extrusión de Maíz de Alta Calidad Proteica; Universidad de Sonora: Sonora, Mexico, 2006. [Google Scholar]
- Peruvian Technical Standard (NTP 205.037:2016); Harinas. Determinación del Contenido de Humedad: Flours. Determination of Moisture Content. INACAL: Lima, Peru, 2016.
- Latimer, G.W., Jr. (Ed.) Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Peruvian Technical Standard (NTP 205.039:2016); Harinas. Determinación de la Acidez Titulable. Flours. Determination of Titratable Acidity. INACAL: Lima, Peru, 2016.
- Zamora-Peredo, L.; Rodríguez-Jimenez, R.; García González, L.; Hernández Torres, J.; Hernández Quiroz, T.; Zamora-Peredo, L.; Rodríguez-Jimenez, R.; García González, L.; Hernnández Torres, J.; Hernandez Quiroz, T. Estudio del pericarpio de chile habanero (Capsicum chínense Jacq.) por Espectroscopia Raman. Chil. J. Agric. Anim. Sci. 2018, 34, 68–74. [Google Scholar] [CrossRef]
Sample | Particle Size Index (PTI) | Water Absorption Index (g Water/g Dry Sample) | Subjective Water Absorption Capacity (mL Water/100 g Flour) | Soluble Material Index (SMI) | Swelling Power (SP) | Apparent Density (g/mL) |
---|---|---|---|---|---|---|
T1 | 209.62 ± 0.20 b | 0.35 ± 0.04 cd | 0.61 ± 0.01 e | 6.82 ± 0.51 b | 1.90 ± 0.07 cd | 0.84 ± 0.01 c |
T2 | 211.78 ± 0.31 a | 0.58 ± 0.02 abc | 0.69 ± 0.01 b | 9.83 ± 0.03 a | 2.49 ± 0.03 ab | 0.86 ± 0.01 bc |
T3 | 122.76 ± 0.01 g | 0.69 ± 0.02 a | 0.72 ± 0.01 a | 10.63 ± 0.14 a | 2.78 ± 0.03 a | 0.88 ± 0.01 ab |
T4 | 195.08 ± 0.01 c | 0.54 ± 0.03 abc | 0.66 ± 0.01 cd | 10.05 ± 0.33 a | 2.42 ± 0.07 abc | 0.88 ± 0.01 a |
T5 | 193.93 ± 0.04 d | 0.44 ± 0.01 bcd | 0.64 ± 0.01 d | 8.04 ± 0.08 b | 2.13 ± 0.04 bcd | 0.87 ± 0.01 ab |
T6 | 192.16 ± 0.01 e | 0.29 ± 0.14 d | 0.67 ± 0.01 bc | 9.63 ± 0.69 a | 1.85 ± 0.33 d | 0.88 ± 0.01 a |
T7 | 137.71 ± 0.01 f | 0.66 ± 0.06 ab | 0.64 ± 0.01 d | 10.95 ± 0.08 a | 2.72 ± 0.14 a | 0.88 ± 0.01 a |
Coefficients | ||||||
HT | 208.07 | 0.35 | 0.60 | 6.79 | 1.89 | 0.84 |
HQ | 210.23 | 0.57 | 0.68 | 9.81 | 2.48 | 0.86 |
HK | 121.21 | 0.69 | 0.72 | 10.60 | 2.77 | 0.88 |
HT × HQ | 94.79 | −1.63 | 0.34 | −5.41 | −3.83 | 0.13 |
HT × HK | −24.49 | 2.15 | −0.22 | 5.59 | 4.93 | 0.02 |
HQ × HK | −58.69 | −1.04 | −0.34 | 6.67 | −2.01 | 0.09 |
Model | ||||||
Linear | 0.01 | 0.16 | 0.08 | 0.01 | 0.11 | 0.28 |
Quadratic | 0.96 | 0.41 | 0.36 | 0.32 | 0.43 | 0.09 |
Sample | Moisture (g) | Fat (g) | Ash (g) | Crude Fiber (g) | Protein (g) | Total Carbohydrates |
---|---|---|---|---|---|---|
T1 | 13.59 ± 0.23 a | 2.28 ± 0.09 d | 0.35 ± 0.10 c | 1.12 ± 0.17 b | 10.41 ± 0.03 a | 72.17 ± 0.44 ab |
T2 | 10.54 ± 0.26 c | 5.81 ± 0.55 ab | 1.94 ± 0.07 a | 2.09 ± 0.67 ab | 10.67 ± 0.08 a | 68.96 ± 0.13 d |
T3 | 7.57 ± 0.19 e | 7.77 ± 1.03 a | 1.90 ± 0.39 a | 2.93 ± 0.14 a | 9.77 ± 0.05 c | 70.07 ± 0.65 cd |
T4 | 10.77 ± 0.02 c | 5.28 ± 0.13 bc | 1.53 ± 0.14 ab | 1.88 ± 0.58 ab | 9.28 ± 0.04 d | 71.26 ± 0.51 bc |
T5 | 11.86 ± 0.22 b | 3.78 ± 0.01 cd | 1.03 ± 0.04 bc | 1.42 ± 0.17 b | 8.43 ± 0.08 e | 73.48 ± 0.26 a |
T6 | 10.69 ± 0.05 c | 5.55 ± 0.21 bc | 1.54 ± 0.18 ab | 1.46 ± 0.19 b | 10.07 ± 0.09 b | 70.69 ± 0.29 bc |
T7 | 9.22 ± 0.06 d | 6.53 ± 0.58 ab | 1.85 ± 0.01 a | 2.13 ± 0.20 ab | 8.51 ± 0.04 e | 71.77 ± 0.40 b |
Coefficients | ||||||
HT | 13.58 | 2.28 | 0.35 | 1.10 | 10.36 | 72.26 |
HQ | 10.52 | 5.81 | 1.94 | 2.07 | 10.62 | 69.05 |
HK | 7.55 | 7.77 | 1.90 | 2.90 | 9.72 | 70.15 |
HT × HQ | −1.24 | 0.01 | −1.09 | −1.28 | −1.34 | 5.18 |
HT × HK | −1.06 | 0.01 | 2.77 | 1.73 | −14.62 | 11.41 |
HQ × HK | 3.26 | −0.01 | −0.62 | −3.60 | 3.48 | −2.71 |
Model | ||||||
Linear | <0.01 | <0.01 | 0.01 | 0.02 | 0.57 | 0.11 |
Quadratic | 0.52 | 0.91 | 0.14 | 0.59 | 0.37 | 0.58 |
Sample | pH | % Acidity (Expressed in Sulfuric Acid) | Apparent Viscosity (K) (Pa·s) | Flow Index (n) | Intensity to 200 cm−1 |
---|---|---|---|---|---|
T1 | 5.64 ± 0.03 c | 0.13 ± 0.01 e | 1244.90 ± 21.10 b | 0.26 ± 0.01 b | 3555.50 ± 4.95 f |
T2 | 5.29 ± 0.01 e | 0.51 ± 0.01 a | 264.17 ± 0.18 d | 0.33 ± 0.01 a | 42,336.00 ± 131.00 c |
T3 | 5.91 ± 0.01 a | 0.24 ± 0.01 cd | 1980.60 ± 41.80 a | 0.10 ± 0.01 c | 29,391.00 ± 151.00 e |
T4 | 5.66 ± 0.04 c | 0.27 ± 0.02 c | 998.60 ± 76.90 c | 0.26 ± 0.01 b | 34,501.00 ± 183.00 d |
T5 | 5.73 ± 0.04 bc | 0.19 ± 0.01 d | 810.80 ± 75.90 c | 0.16 ± 0.02 c | 46,111.00 ± 533.00 a |
T6 | 5.50 ± 0.04 d | 0.36 ± 0.01 b | 266.70 ± 16.60 d | 0.32 ± 0.02 a | 46,989.00 ± 16.60 a |
T7 | 5.81 ± 0.01 ab | 0.27 ± 0.01 c | 938.40 ± 46.70 c | 0.24 ± 0.03 b | 44,163.00 ± 26.90 b |
Coefficients | |||||
HT | 5.64 | 0.13 | 1211.46 | 0.26 | 4792.32 |
HQ | 5.29 | 0.51 | 230.73 | 0.33 | 43,572.82 |
HK | 5.92 | 0.24 | 1947.16 | 0.10 | 30,627.82 |
HT × HQ | 0.45 | −0.31 | 410.74 | −0.69 | 0.01 |
HT × HK | 0.36 | 0.21 | −1827.44 | −0.30 | 0.01 |
HQ × HK | −0.21 | −0.12 | −2472.25 | 1.16 | −75,607.77 |
Model | |||||
Linear | 0.01 | 0.01 | 0.03 | 0.07 | 0.31 |
Quadratic | 0.48 | 0.13 | 0.73 | 0.12 | 0.61 |
Treatment | Flour Color Parameters | |||||
---|---|---|---|---|---|---|
L* | a* | b* | C* | h* | Color Simulation | |
T1 | 93.33 ± 1.03 a | 0.68 ± 0.28 f | 9.50 ± 0.82 e | 9.53 ± 0.83 e | 85.97 ± 1.28 a | |
T2 | 88.23 ± 0.20 b | 2.62 ± 0.12 e | 12.59 ± 0.12 d | 12.87 ± 0.15 d | 78.27 ± 0.44 b | |
T3 | 79.72 ± 1.42 d | 5.16 ± 0.37 a | 17.79 ± 0.46 a | 18.53 ± 0.54 a | 73.85 ± 0.73 d | |
T4 | 86.56 ± 0.26 b | 3.64 ± 0.13 c | 14.02 ± 0.06 c | 14.49 ± 0.08 c | 75.45 ± 0.42 cd | |
T5 | 86.68 ± 1.04 b | 3.51 ± 0.23 cd | 12.86 ± 0.21 d | 13.32 ± 0.25 d | 74.75 ± 0.75 cd | |
T6 | 88.24 ± 0.49 b | 3.02 ± 0.16 de | 12.13 ± 0.13 d | 12.50 ± 0.13 d | 76.04 ± 0.74 c | |
T7 | 83.63 ± 0.43 c | 4.39 ± 0.08 b | 15.51 ± 0.07 b | 16.12 ± 0.09 b | 74.21 ± 0.19 cd | |
Coefficients | ||||||
HT | 93.28 | 0.70 | 9.47 | 9.50 | 85.84 | |
HQ | 88.18 | 2.64 | 12.57 | 12.84 | 78.14 | |
HK | 79.67 | 5.18 | 17.77 | 18.51 | 73.72 | |
HT × HQ | −16.30 | 7.94 | 4.29 | 5.57 | −38.41 | |
HT × HK | −20.63 | 9.12 | 13.62 | 14.98 | −33.91 | |
HQ × HK | 28.77 | −8.36 | −13.65 | −14.88 | 27.75 | |
Model | ||||||
Linear | 0.01 | 0.03 | 0.01 | 0.01 | 0.18 | |
Quadratic | 0.22 | 0.18 | 0.28 | 0.22 | 0.28 | |
Color parameters of doughs | ||||||
T1 | 85.54 ± 0.58 a | 2.02 ± 0.18 f | 16.07 ± 0.20 e | 16.19 ± 0.22 f | 82.84 ± 0.54 a | |
T2 | 77.77 ± 0.52 b | 6.32 ± 0.13 e | 20.51 ± 0.25 d | 21.46 ± 0.26 e | 72.87 ± 0.30 b | |
T3 | 54.67 ± 0.78 f | 9.76 ± 0.12 a | 23.23 ± 0.51 a | 25.19 ± 0.45 a | 67.20 ± 0.59 f | |
T4 | 67.49 ± 0.67 d | 7.40 ± 0.12 c | 22.58 ± 0.36 ab | 23.76 ± 0.38 bc | 71.86 ± 0.03 cd | |
T5 | 72.66 ± 0.49 c | 6.99 ± 0.18 d | 21.99 ± 0.19 bc | 23.08 ± 0.23 cd | 72.36 ± 0.32 bc | |
T6 | 72.98 ± 0.46 c | 7.23 ± 0.14 cd | 21.32 ± 0.18 cd | 22.51 ± 0.21 d | 71.26 ± 0.19 d | |
T7 | 59.45 ± 0.34 e | 8.67 ± 0.09 b | 22.54 ± 0.19 ab | 24.15 ± 0.21 b | 68.95 ± 0.09 e | |
Coefficients | ||||||
HT | 85.51 | 2.07 | 16.07 | 16.21 | 82.69 | |
HQ | 77.73 | 6.37 | 20.52 | 21.48 | 72.73 | |
HK | 54.63 | 9.81 | 23.23 | 25.21 | 67.05 | |
HT × HQ | −17.45 | 15.23 | 20.64 | 23.47 | −30.61 | |
HT × HK | −41.17 | 11.91 | 19.06 | 20.75 | −24.29 | |
HQ × HK | 9.35 | −11.07 | −15.69 | −17.68 | 22.33 | |
Model | ||||||
Linear | 0.01 | 0.03 | 0.14 | 0.09 | 0.03 | |
Quadratic | 0.09 | 0.29 | 0.01 | 0.06 | 0.40 |
Parameters | Predictive Mathematical Equation | R2 |
---|---|---|
Particle Size Index | ITP = 210.75 × HT + 211.77 × HQ + 118.78 | 0.9219 |
Soluble Material Index | IMS = 7.00 × HT + 10.05 × HQ + 11.21 × HK | 0.9904 |
Moisture | M = 13.53 × HT + 10.62 × HQ + 7.65 × HK | 0.9952 |
Fat | F = 2.28 × HT + 5.80 × HQ + 7.77 × HK | 0.9999 |
Ash | A = 0.44 × HT + 1.91 × HQ + 2.00 × HK | 0.9668 |
Crude fiber | CF = 1.02 × HT + 1.81 × HQ + 2.75 × HK | 0.8653 |
pH | pH = 5.69 × HT + 5.31 × HQ + 5.94 × HK | 0.9689 |
Acidity | A = 0.12 × HT + 0.49 × HQ + 0.23 × HK | 0.9839 |
Apparent viscosity | k = 1050.04 × HT + 47.82 × HQ + 1689.64 × HK | 0.8133 |
L* (Flour) | L* = 91.81 × HT + 88.36 × HQ + 79.70 × HK | 0.9105 |
a* (Flour) | a* = 1.53 × HT + 2.88 × HQ + 5.46 × HK | 0.8190 |
b* (Flour) | b* = 10.19 × HT + 12.38 × HQ + 17.89 × HK | 0.9397 |
C* (Flour) | C* = 10.35 × HT + 12.70 × HQ + 18.68 × HK | 0.9359 |
L* (Doughs) | L* = 82.11 × HT + 76.01 × HQ + 52.12 × HK | 0.9365 |
a* (Doughs) | a* = 1.53 × HT + 2.88 × HQ + 5.46 × HK | 0.8190 |
b*m (Doughs) | b*m = 16.07 × HT + 20.52 × HQ + 23.23 × HK + 20.64 × HT × HQ + 19.06 × HT × HK-15.69 × HQ × HK | 0.9999 |
h* (Doughs) | h* = 79.91 × HT + 71.49 × HQ + 66.03 × HK | 0.8160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamanca-Gonzales, N.C.; Ocrospoma-Dueñas, R.W.; Eguilas-Caushi, Y.M.; Padilla-Fabian, R.A.; Silva-Paz, R.J. Technofunctional Properties and Rheological Behavior of Quinoa, Kiwicha, Wheat Flours and Their Mixtures. Molecules 2024, 29, 1374. https://doi.org/10.3390/molecules29061374
Jamanca-Gonzales NC, Ocrospoma-Dueñas RW, Eguilas-Caushi YM, Padilla-Fabian RA, Silva-Paz RJ. Technofunctional Properties and Rheological Behavior of Quinoa, Kiwicha, Wheat Flours and Their Mixtures. Molecules. 2024; 29(6):1374. https://doi.org/10.3390/molecules29061374
Chicago/Turabian StyleJamanca-Gonzales, Nicodemo C., Robert W. Ocrospoma-Dueñas, Yolanda M. Eguilas-Caushi, Rossy A. Padilla-Fabian, and Reynaldo J. Silva-Paz. 2024. "Technofunctional Properties and Rheological Behavior of Quinoa, Kiwicha, Wheat Flours and Their Mixtures" Molecules 29, no. 6: 1374. https://doi.org/10.3390/molecules29061374