Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Stemona tuberosa Lour
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields and Chemical Composition of the SPSs
2.2. Structural Characterization
2.2.1. Molecular Weights of the SPSs
2.2.2. Monosaccharide Composition
2.2.3. UV Spectroscopic Analysis of the SPSs
2.2.4. FT-IR Spectra of the SPSs
2.2.5. SEM Analysis of the SPSs
2.2.6. Congo Red Assay of the SPSs
2.2.7. Thermal Analysis of the SPSs
2.3. In Vitro Antioxidant Activity of the SPSs
2.3.1. DPPH Radical Scavenging Assay
2.3.2. Ferric-Reducing Antioxidant Power (FRAP)
2.3.3. Structure–Antioxidant Activity Relationship
2.4. In Vitro Anti-Inflammatory Activity of the SPSs
2.5. In Vitro Effect of the SPSs on MUC5AC
3. Materials and Methods
3.1. Biological Materials and Chemicals
3.2. Polysaccharide Extraction and Isolation
3.3. Chemical Composition Analysis
3.4. Determination of the Molecular Weight and Analysis of Monosaccharide Composition
3.5. UV Spectroscopy Analysis and FT-IR Spectroscopic Analyses
3.6. Scanning Electron Microscopy (SEM)
3.7. Congo Red Assay of the SPSs
3.8. Thermal Analysis of the SPSs
3.9. In Vitro Antioxidant Activity
3.9.1. DPPH Radical Scavenging Assay
3.9.2. Ferric-Reducing Antioxidant Power
3.10. In Vitro Anti-Inflammatory Activity
3.10.1. Effects on the Secretion of IL-6 and IL-1β from RAW264.7 Macrophages
3.10.2. Effects of NO Production on RAW264.7 Macrophages
3.11. Effects of the SPSs on High Secretion in NCI-H292 Cells
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MUC5AC | Mucin 5AC |
SPSs | Polysaccharides extracted from Stemona tuberosa Lour |
SPS-L1, SPS-R1, and SPS-S1 | Polysaccharides extracted from Stemona tuberosa Lour’s leaves, roots, and stems with hot water |
SPS-L2, SPS-R2, and SPS-S2 | Polysaccharides extracted from Stemona tuberosa Lour’s leaves, roots, and stems with ultrasonic-assisted method |
Mw | Weight average molecular weight |
NO | Nitric oxide |
IL-6 | Interleukin-6 |
IL-1β | Interleukin-1β |
TNF-α | Tumor necrosis factor-α |
ROS | Reactive oxygen species |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2, 2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
LPS | Lipopolysaccharide |
EGF | Epidermal growth factor |
Fuc | Fucose |
Rha | Rhamnose |
Ara | Arabinose |
Gal | Galactose |
Glc | Glucose |
Xyl | Xylose |
Man | Mannose |
Rib | Ribose |
GalA | Galacturonic acid |
GlcA | Glucuronic acid |
TG | Thermogravimetric |
DTG | Derivative thermogravimetry |
FRAP | Ferric-Reducing Antioxidant Power |
References
- Wang, L.; Wu, H.; Liu, C.; Jiang, T.; Yang, X.; Chen, X.; Tang, L.; Wang, Z. A review of the botany, traditional uses, phytochemistry and pharmacology of Stemonae Radix. Phytochem. Rev. 2021, 21, 835–862. [Google Scholar] [CrossRef]
- Bardají, N.; Sánchez-Izquierdo, F.; Alibes, R.; Font, J.; Busque, F.; Figueredo, M. Flexible Approach to Stemona Alkaloids: Total Syntheses of (-)-Stemospironine and Three New Diastereoisomeric Analogs. Org. Lett. 2012, 14, 4854–4857. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.-Z.; Tao, J.-S. Antibacterial constituents from Stemona sessilifolia. J. Asian Nat. Prod. Res. 2007, 9, 479–485. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Chen, G.; Wei, L.; Zhou, D.; Wang, Y.; Gui, Y.; Wang, C.; Yang, Y.; Sun, L.; et al. Characteristic alkaloids from Stemona sessilifolia with lung protective effects. Bioorg. Chem. 2024, 143, 107033. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Huang, G. Preparation and antioxidant activities of important traditional plant polysaccharides. Int. J. Biol. Macromol. 2018, 111, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Sheng, Z.; Wang, J.; Jiang, Y.; Yang, B. Structure of water-soluble polysaccharides in spore of Ganoderma lucidum and their anti-inflammatory activity. Food Chem. 2022, 373, 131374. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Chen, J.; Yuan, Y.; Zhang, X.; Zhai, Y.; Zhang, Y.; Li, L.; Li, B. Structural characterization of a low-molecular-weight polysaccharide from Plumula Nelumbinis and evaluation of its antioxidant and anti-inflammatory activity. Food Biosci. 2023, 56, 103235. [Google Scholar] [CrossRef]
- Wang, K.-W.; Yang, C.; Yan, S.-N.; Wang, H.; Cao, X.-J.; Cheng, Y. Dendrobium hancockii polysaccharides, structure characterization, modification, antioxidant and antibacterial activity. Ind. Crops Prod. 2022, 188, 115565. [Google Scholar] [CrossRef]
- Li, X.; Hua, Y.; Yang, C.; Liu, S.; Tan, L.; Guo, J.; Li, Y. Polysaccharides extracted from mulberry fruits (Morus nigra L.): Antioxidant effect of ameliorating H2O2-induced liver injury in HepG2 cells. BMC Complement. Med. 2023, 23, 112. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, J.; Chen, Y.; Ma, Y.; Yang, Q.; Fan, Y.; Fu, C.; Limsila, B.; Li, R.; Liao, W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT 2022, 154, 112805. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, G.; Chen, G. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chem. 2021, 361, 130089. [Google Scholar] [CrossRef]
- Liao, D.-W.; Cheng, C.; Liu, J.-P.; Zhao, L.-Y.; Huang, D.-C.; Chen, G.-T. Characterization and antitumor activities of polysaccharides obtained from ginger (Zingiber officinale) by different extraction methods. Int. J. Biol. Macromol. 2020, 152, 894–903. [Google Scholar] [CrossRef]
- Huang, G.; Chen, F.; Yang, W.; Huang, H. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends Food Sci. Technol. 2021, 109, 564–568. [Google Scholar] [CrossRef]
- Guo, P.; Chen, H.; Ma, J.; Zhang, Y.; Chen, H.; Wei, T.; Gao, D.; Li, J. Enzyme-assisted extraction, characterization, and in vitro antioxidant activity of polysaccharides from Potentilla anserina L. Front. Nutr. 2023, 10, 1216572. [Google Scholar] [CrossRef]
- Lasunon, P.; Sengkhamparn, N. Effect of Ultrasound-Assisted, Microwave-Assisted and Ultrasound-Microwave-Assisted Extraction on Pectin Extraction from Industrial Tomato Waste. Molecules 2022, 27, 1157. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: Structural characterization and bile acid-binding capacity. Food Funct. 2017, 8, 3043–3052. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, J.; Zhang, Z.; Xia, B.; Li, Y.; Lin, Y.; Li, M.; Wu, P.; Lin, L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int. J. Biol. Macromol. 2024, 258, 128873. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, D.J.; Picout, D.R.; Ross-Murphy, S.B.; Holland, S.J.; Martini, L.G.; Lawrence, M.J. Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydr. Polym. 2011, 83, 843–851. [Google Scholar] [CrossRef]
- Du, B.; Zeng, H.; Yang, Y.; Bian, Z.; Xu, B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int. J. Biol. Macromol. 2016, 91, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, S.; Wang, Z.; Zhang, G. Ultrasonic-assisted extraction of polysaccharide from Dendrobium officinale: Kinetics, thermodynamics and optimization. Biochem. Eng. J. 2022, 177, 108227. [Google Scholar] [CrossRef]
- Jiang, Y.; Shang, Z.; Lv, X.; Du, M.; Ma, L.; Hou, G.; Chen, J.; Wang, C.; Zhao, F. Structure elucidation and antitumor activity of a water soluble polysaccharide from Hemicentrotus pulcherrimus. Carbohydr. Polym. 2022, 292, 119718. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Song, X.; Jiang, Y.; Yao, J.; Jiang, Y.; Li, Z.; Dai, F. Chemical structure and antioxidant activity of a neutral polysaccharide from Asteris Radix et Rhizoma. Carbohydr. Polym. 2022, 286, 119309. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jędrak, P.; Pierzynowska, K.; et al. Chapter Six—Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol. 2018, 340, 209–344. [Google Scholar] [PubMed]
- Neira-Carrillo, A.; Luengo-Ponce, F.; Vasquez-Quitral, P.; Yazdani-Pedram, M.; Fernández, M.S.; Colfen, H.; Arias, J.L. Sulfonated Polymethylsiloxane as an Additive for Selective Calcium Oxalate Crystallization. Eur. J. Inorg. Chem. 2015, 2015, 1167–1177. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Roth, J.; Barczyk-Kahlert, K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front. Immunol. 2019, 10, 2028. [Google Scholar] [CrossRef]
- Karpuzoglu, E.; Ahmed, S.A. Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 2006, 15, 177–186. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, Z.; Yang, Y. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydr. Polym. 2013, 95, 200–206. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, Y.; Hu, X.; Wang, J. Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra. Carbohydr. Polym. 2021, 265, 118081. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Yu, L.; Wang, N.; Li, X.; Chen, W. IL-1β upregulates Muc5ac expression via NF-κB-induced HIF-1α in asthma. Immunol. Lett. 2017, 192, 20–26. [Google Scholar] [CrossRef]
- Jung, M.-A.; Song, H.-K.; Jo, K.; Lee, A.; Hwang, Y.-H.; Ji, K.-Y.; Jung, D.H.; Cai, M.; Lee, J.Y.; Pyun, B.-J.; et al. Gleditsia sinensis Lam. aqueous extract attenuates nasal inflammation in allergic rhinitis by inhibiting MUC5AC production through suppression of the STAT3/STAT6 pathway. Biomed. Pharmacother. 2023, 161, 114482. [Google Scholar] [CrossRef] [PubMed]
- Kuperman, D.A.; Schleimer, R.P. Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr. Mol. Med. 2008, 8, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Yoon, Y.P.; Woo, K.W.; Kim, J.-H.; Min, S.Y.; Lee, H.J.; Lee, S.K.; Hong, J.-H.; Lee, K.R.; Lee, C.J. Verticine, ebeiedine and suchengbeisine isolated from the bulbs of Fritillaria thunbergii Miq. inhibited the gene expression and production of MUC5AC mucin from human airway epithelial cells. Phytomedicine 2016, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Asgari, K.; Labbafi, M.; Khodaiyan, F.; Kazemi, M.; Hosseini, S.S. High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. Int. J. Biol. Macromol. 2020, 152, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, D.; Meng, X.; Sun, Y.; Liu, R.; Sun, T. Review of isolation, purification, structural characteristics and bioactivities of polysaccharides from Portulaca oleracea L. Int. J. Biol. Macromol. 2024, 257, 128565. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Cao, Y.; Huang, J.; Lin, H.; Zhao, T.; Liu, L.; Shen, P.; Julian McClements, D.; Chen, J.; et al. Extraction and characterization of pectic polysaccharides from Choerospondias axillaris peels: Comparison of hot water and ultrasound-assisted extraction methods. Food Chem. 2023, 401, 134156. [Google Scholar] [CrossRef]
- Fu, Y.; Li, F.; Ding, Y.; Li, H.-Y.; Xiang, X.-R.; Ye, Q.; Zhang, J.; Zhao, L.; Qin, W.; Gan, R.-Y.; et al. Polysaccharides from loquat (Eriobotrya japonica) leaves: Impacts of extraction methods on their physicochemical characteristics and biological activities. Int. J. Biol. Macromol. 2020, 146, 508–517. [Google Scholar] [CrossRef]
- Jiang, X.-Y.; Wang, C.-W.; Zhang, J.; Xu, P.-P.; Xue, Y.-T.; Wang, Q. Effects of different extraction methods on physicochemical characteristics and bioactivities of fig (Ficus carica L.) leaves polysaccharides. Arab. J. Chem. 2023, 16, 105319. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Yu, J.; Li, H.; Huang, G.; Zhang, T. Extraction, purification and antioxidant activity of polysaccharides from different parts of Hibiscus manihot L. J. Mol. Struct. 2024, 1295, 136598. [Google Scholar] [CrossRef]
- Lv, Y.; Yao, L.; Qiu, M.; Li, L.; Qiu, S.; Liu, Y.; Wei, C. Physicochemical properties, structural characteristics and bioactivities of Pyracantha fortuneana polysaccharides prepared by six methods. Ind. Crops Prod. 2024, 208, 117933. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Wang, Z.; Kan, J. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef]
- He, L.; Yan, X.; Liang, J.; Li, S.; He, H.; Xiong, Q.; Lai, X.; Hou, S.; Huang, S. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohydr. Polym. 2018, 198, 101–108. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Ma, H.; He, R. Effect of Ultrasonic Degradation on In Vitro Antioxidant Activity of Polysaccharides from Porphyra yezoensis (Rhodophyta). Food. Sci. Technol. Int. 2008, 14, 479–486. [Google Scholar] [CrossRef]
- Wu, J.; Chen, R.; Tan, L.; Bai, H.; Tian, L.; Lu, J.; Gao, M.; Bai, C.; Sun, H.; Chi, Y. Ultrasonic disruption effects on the extraction efficiency, characterization, and bioactivities of polysaccharides from Panax notoginseng flower. Carbohydr. Polym. 2022, 291, 119535. [Google Scholar] [CrossRef]
- Chen, S.; Shang, H.; Yang, J.; Li, R.; Wu, H. Effects of different extraction techniques on physicochemical properties and activities of polysaccharides from comfrey (Symphytum officinale L.) root. Ind. Crops Prod. 2018, 121, 18–25. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Wei, X. Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. Int. J. Biol. Macromol. 2010, 47, 534–539. [Google Scholar] [CrossRef]
- Ezzati, S.; Ayaseh, A.; Ghanbarzadeh, B.; Heshmati, M.K. Pectin from sunflower by-product: Optimization of ultrasound-assisted extraction, characterization, and functional analysis. Int. J. Biol. Macromol. 2020, 165, 776–786. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Y.; Zhang, R.; Dong, L.; Yi, Y.; Deng, Y.; Wei, Z.; Wang, G.; Zhang, M. Chemical and rheological properties of polysaccharides from litchi pulp. Int. J. Biol. Macromol. 2018, 112, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Mao, F.; Liu, Y.; Wei, X. Purification, characterization and biological activities in vitro of polysaccharides extracted from tea seeds. Int. J. Biol. Macromol. 2013, 62, 508–513. [Google Scholar] [CrossRef]
- Yan, J.-K.; Wang, C.; Yu, Y.-B.; Wang, Z.-W.; Chen, X.; Zhu, J.; Li, L. Preparation, physicochemical and structural characterizations, and bioactivities of polysaccharides from Corbicula fluminea industrial distillate. Food Biosci. 2022, 47, 101708. [Google Scholar] [CrossRef]
- Tian, W.; Dai, L.; Lu, S.; Luo, Z.; Qiu, Z.; Li, J.; Li, P.; Du, B. Effect of Bacillus sp. DU-106 fermentation on Dendrobium officinale polysaccharide: Structure and immunoregulatory activities. Int. J. Biol. Macromol. 2019, 135, 1034–1042. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W.; Zhang, H.; Chen, C.; Liu, R.; Hou, H.; Luo, Q.; Yu, Q.; Ouyang, H.; Feng, Y.; et al. α-D-1,3-glucan from Radix Puerariae thomsonii improves NAFLD by regulating the intestinal flora and metabolites. Carbohydr. Polym. 2023, 299, 120197. [Google Scholar] [CrossRef]
- Hu, J.; Yao, W.; Chang, S.; You, L.; Zhao, M.; Chi-Keung Cheung, P.; Hileuskaya, K. Structural characterization and anti-photoaging activity of a polysaccharide from Sargassum fusiforme. Food Res. Int. 2022, 157, 111267. [Google Scholar] [CrossRef]
- Klaus, A.; Kozarski, M.; Vunduk, J.; Todorovic, N.; Jakovljevic, D.; Zizak, Z.; Pavlovic, V.; Levic, S.; Niksic, M.; Van Griensven, L.J.L.D. Biological potential of extracts of the wild edible Basidiomycete mushroom Grifola frondosa. Food Res. Int. 2015, 67, 272–283. [Google Scholar] [CrossRef]
- Wang, Z.-M.; Cheung, Y.-C.; Leung, P.-H.; Wu, J.-Y. Ultrasonic treatment for improved solution properties of a high-molecular weight exopolysaccharide produced by a medicinal fungus. Bioresour. Technol. 2010, 101, 5517–5522. [Google Scholar] [CrossRef]
- Rozi, P.; Abuduwaili, A.; Ma, S.; Bao, X.; Xu, H.; Zhu, J.; Yadikar, N.; Wang, J.; Yang, X.; Yili, A. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza. Int. J. Biol. Macromol. 2020, 145, 364–371. [Google Scholar] [CrossRef]
- Bai, C.; Chen, R.; Tan, L.; Bai, H.; Tian, L.; Lu, J.; Gao, M.; Sun, H.; Chi, Y. Effects of multi-frequency ultrasonic on the physicochemical properties and bioactivities of polysaccharides from different parts of ginseng. Int. J. Biol. Macromol. 2022, 206, 896–910. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Jiang, P.; Hu, L.; Zhi, Z.; Chen, J.; Ding, T.; Ye, X.; Liu, D. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocoll. 2016, 61, 730–739. [Google Scholar] [CrossRef]
- Yan, J.-K.; Chen, T.-T.; Wang, Z.-W.; Wang, C.; Liu, C.; Li, L. Comparison of physicochemical characteristics and biological activities of polysaccharides from barley (Hordeum vulgare L.) grass at different growth stages. Food Chem. 2022, 389, 133083. [Google Scholar] [CrossRef]
- Zheng, M.; Tian, X.; Li, Z.; Hong, T.; Zhu, Y.; Yang, Y.; Li, Q.; Ni, H.; Jiang, Z. Effects of ultra-high pressure assisted extraction on the structure, antioxidant and hypolipidemic activities of Porphyra haitanensis polysaccharides. Food Chem. 2024, 437, 137856. [Google Scholar] [CrossRef]
- Li, S.; Shah, N.P. Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments. Food Chem. 2016, 197, 240–249. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, J.; Diao, W.; Wang, C. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata). Carbohydr. Polym. 2014, 113, 314–324. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Fan, L.; Ai, L.; Shan, L. Antioxidant activities of polysaccharides from the fruiting bodies of Zizyphus jujuba cv. Jinsixiaozao. Carbohydr. Polym. 2011, 84, 390–394. [Google Scholar] [CrossRef]
- Thbayh, D.K.; Reizer, E.; Kahaly, M.U.; Viskolcz, B.; Fiser, B. Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives. Polymers 2022, 14, 3518. [Google Scholar] [CrossRef]
- Bâldea, I. Two Theorems and Important Insight on How the Preferred Mechanism of Free Radical Scavenging Cannot Be Settled. Comment on Pandithavidana, D.R.; Jayawardana, S.B. Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights. Molecules 2022, 27, 8092. [Google Scholar]
- Wei, D.; Cheng, W.; Wei, Y.; Zhang, L. Phosphorylated modification and in vitro antioxidant activity of Radix Hedysari polysaccharide. Glycoconj. J. 2012, 29, 167–172. [Google Scholar] [CrossRef]
- Yarley, O.P.N.; Kojo, A.B.; Zhou, C.; Yu, X.; Gideon, A.; Kwadwo, H.H.; Richard, O. Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. Int. J. Biol. Macromol. 2021, 183, 2262–2271. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Liu, Z.; Zhao, M.; Liu, P. Purification, Characterization, and Antioxidant Activity of Polysaccharides Isolated from Cortex Periplocae. Molecules 2017, 22, 1866. [Google Scholar] [CrossRef] [PubMed]
- Arango Duque, G.; Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Shi, Y.; Yuan, Z.; Huang, Z.; Cai, F.; Zhu, J.; Zhang, W.; Li, J.; Xiong, Q.; Wang, Y.; et al. Isolation, Identification, and Anti-Inflammatory Activity of Polysaccharides of Typha angustifolia. Biomacromolecules 2021, 22, 2451–2459. [Google Scholar] [CrossRef]
- Peasura, N.; Laohakunjit, N.; Kerdchoechuen, O.; Vongsawasdi, P.; Chao, L.K. Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. Int. J. Biol. Macromol. 2016, 91, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.; Nunes, C.; Lopes, G.R.; Wang, K.; Zhao, L.; Coimbra, M.A.; Hu, Z. In vitro immunomodulatory activity of water-soluble glucans from fresh and dried Longan (Dimocarpus longan Lour.). Carbohydr. Polym. 2021, 266, 118106. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.-F.; Fu, Y.-P.; Chen, X.-F.; Austarheim, I.; Inngjerdingen, K.T.; Huang, C.; Lei, F.-Y.; Song, X.; Li, L.; Ye, G.; et al. Polysaccharides with immunomodulating activity from roots of Gentiana crassicaulis. Carbohydr. Polym. 2017, 172, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, J.; Xu, X.; Yuan, Z.; Song, H.; Yang, L.; Zhu, D. Structure/function relationships of bean polysaccharides: A review. Crit. Rev. Food Sci. 2023, 63, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Jiang, N.; Zheng, J.; Hu, H.; Yang, H.; Lin, A.; Hu, B.; Liu, H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2023, 241, 124386. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-K.; Cheng, J.-J.; Lin, C.-Y.; Chang, C.-C. Purification, structural elucidation, and anti-inflammatory effect of a water-soluble 1,6-branched 1,3-α-d-galactan from cultured mycelia of Poria cocos. Food Chem. 2010, 118, 349–356. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, X.; Pan, W.; Shen, X.; He, Y.; Yin, H.; Zhou, K.; Zou, L.; Chen, S.; Liu, S. Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity. Int. J. Biol. Macromol. 2019, 121, 342–349. [Google Scholar] [CrossRef]
- Kwon, S.H.; Nam, J.I.; Kim, S.H.; Kim, J.H.; Yoon, J.-H.; Kim, K.-S. Kaempferol and quercetin, essential ingredients in Ginkgo biloba extract, inhibit interleukin-1β-induced MUC5AC gene expression in human airway epithelial cells. Phytother. Res. 2009, 23, 1708–1712. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, T.; Matsumoto, H.; Jinnai, M.; Kanemitsu, Y.; Nagasaki, T.; Iwata, T.; Inoue, H.; Nakaji, H.; Oguma, T.; Ito, I.; et al. Pathophysiological relevance of sputum MUC5AC and MUC5B levels in patients with mild asthma. Allergol. Int. 2022, 71, 193–199. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Biochem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bitter, T.; Muir, H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962, 4, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Chen, L.; Yang, G.; Li, Y.; Qiao, Z.; Liu, Y.; Meng, Y.; Zhou, Y.; Sun, L. Structural characterization and immunomodulatory activity of a heterogalactan from Panax ginseng flowers. Food Res. Int. 2021, 140, 109859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yu, L.; Bi, H.; Li, X.; Ni, W.; Han, H.; Li, N.; Wang, B.; Zhou, Y.; Tai, G. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydr. Polym. 2009, 77, 544–552. [Google Scholar] [CrossRef]
- Feng, L.; Han, N.; Han, Y.-B.; Shang, M.-W.; Liang, T.-W.; Liu, Z.-H.; Li, S.-K.; Zhai, J.-X.; Yin, J. Structural analysis of a soluble polysaccharide GSPA-0.3 from the root of Panax ginseng C. A. Meyer and its adjuvant activity with mechanism investigation. Carbohydr. Polym. 2024, 326, 121591. [Google Scholar] [CrossRef]
- Abuduwaili, A.; Nuerxiati, R.; Mutailifu, P.; Gao, Y.; Lu, C.; Yili, A. Isolation, structural modification, characterization, and bioactivity of polysaccharides from Folium Isatidis. Ind. Crops Prod. 2022, 176, 114319. [Google Scholar] [CrossRef]
- Milani, A.; Jouki, M.; Rabbani, M. Production and characterization of freeze-dried banana slices pretreated with ascorbic acid and quince seed mucilage: Physical and functional properties. Food Sci. Nutr. 2020, 8, 3768–3776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-Y.; Wan, Y.; Xu, J.-Y.; Wu, G.-H.; Li, L.; Yao, X.-H. Ultrasound extraction of polysaccharides from mulberry leaves and their effect on enhancing antioxidant activity. Carbohydr. Polym. 2016, 137, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Liu, F.; Raka, R.N.; Xiang, J.; Xiao, J.; Han, T.; Guo, F.; Yang, S.; Wu, H. In vitro and in silico analysis of ‘Taikong blue’ lavender essential oil in LPS-induced HaCaT cells and RAW264.7 murine macrophages. BMC Complement. Med. 2022, 22, 324. [Google Scholar] [CrossRef]
- Wu, D.-T.; He, Y.; Fu, M.-X.; Gan, R.-Y.; Hu, Y.-C.; Peng, L.-X.; Zhao, G.; Zou, L. Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction. Food Hydrocoll. 2022, 122, 107085. [Google Scholar] [CrossRef]
- Choi, B.-S.; Kim, Y.-j.; Choi, J.S.; Lee, H.J.; Lee, C.J. Obtusifolin isolated from the seeds of Cassia obtusifolia regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via affecting NF-κB pathway. Phytother. Res. 2019, 33, 919–928. [Google Scholar] [CrossRef]
SPSs | Yield (%) | Total Sugar (%) | Protein (%) | Uronic Acid (%) |
---|---|---|---|---|
SPS-L1 | 10.49 ± 0.61 a | 34.06 ± 1.99 d | 4.83 ± 0.26 d | 17.91 ± 0.95 c |
SPS-L2 | 8.75 ± 0.27 b | 23.30 ± 1.28 e | 9.24 ± 0.41 b | 14.37 ± 0.91 d |
SPS-R1 | 11.75 ± 1.10 a | 89.98 ± 2.88 a | 1.07 ± 0.18 e | 6.42 ± 0.44 e |
SPS-R2 | 11.46 ± 1.04 a | 80.50 ± 1.80 b | 0.94 ± 0.11 e | 13.09 ± 1.90 d |
SPS-S1 | 7.18 ± 0.25 c | 42.23 ± 1.11 c | 8.37 ± 0.17 c | 50.39 ± 1.39 a |
SPS-S2 | 4.96 ± 0.67 d | 41.18 ± 0.66 c | 10.10 ± 0.17 a | 42.04 ± 1.89 b |
Sample | Peak | Retention Time (min) | Mw (Da) a | Mn (Da) b | Mw/Mn c | Mass Fraction (%) |
---|---|---|---|---|---|---|
SPS-L1 | 1 | 29.64 | 88,093 | 86,088 | 1.02 | 36.98 |
2 | 33.56 | 11,098 | 10,669 | 1.04 | 63.02 | |
SPS-L2 | 1 | 29.65 | 87,478 | 85,487 | 1.02 | 17.75 |
2 | 33.60 | 10,834 | 10,414 | 1.04 | 82.25 | |
SPS-R1 | 1 | 30.91 | 161,027 | 114,627 | 1.41 | 12.20 |
2 | 35.11 | 5575 | 3261 | 1.71 | 87.80 | |
SPS-R2 | 1 | 28.51 | 161,943 | 158,257 | 1.02 | 11.66 |
2 | 35.84 | 3120 | 3049 | 1.02 | 88.34 | |
SPS-S1 | 1 | 27.72 | 248,136 | 242,488 | 1.02 | 11.09 |
2 | 31.80 | 27437 | 26812 | 1.02 | 37.65 | |
3 | 32.49 | 18,918 | 18,487 | 1.02 | 17.55 | |
4 | 33.06 | 13,908 | 13,591 | 1.02 | 24.19 | |
5 | 35.48 | 3792 | 3706 | 1.02 | 9.52 | |
SPS-S2 | 1 | 28.67 | 148,327 | 144,951 | 1.02 | 17.18 |
2 | 31.40 | 34,035 | 33,261 | 1.02 | 24.50 | |
3 | 33.56 | 10,669 | 10,426 | 1.02 | 58.32 |
Sample | SPS-L1 | SPS-L2 | SPS-R1 | SPS-R2 | SPS-S1 | SPS-S2 |
---|---|---|---|---|---|---|
Fuc | nd | nd | 0.13 | nd | nd | nd |
Rha | 2.4 | 4.05 | 1.80 | 1.01 | 4.06 | 3.80 |
Ara | 9.25 | 10.43 | 4.03 | 5.05 | 5.09 | 5.29 |
Gal | 27.89 | 29.48 | 17.71 | 12.22 | 20.61 | 22.30 |
Glc | 8.79 | 11.86 | 69.86 | 55.71 | 3.09 | 4.01 |
Xyl | 2.02 | 2.00 | nd | nd | 2.50 | 2.94 |
Man | 25.39 | 25.03 | nd | nd | 13.35 | 14.78 |
Rib | nd | nd | nd | nd | nd | nd |
GalA | 23.14 | 15.05 | 2.32 | 26.02 | 48.82 | 44.62 |
GlcA | 0.90 | 1.59 | 1.26 | nd | 2.21 | 1.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Ou, Y.; Lu, S.; Liang, Y.; Zhang, Y.; Li, M.; Li, G.; Ma, H.; Wu, Y.; He, Z.; et al. Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Stemona tuberosa Lour. Molecules 2024, 29, 1347. https://doi.org/10.3390/molecules29061347
Qiu X, Ou Y, Lu S, Liang Y, Zhang Y, Li M, Li G, Ma H, Wu Y, He Z, et al. Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Stemona tuberosa Lour. Molecules. 2024; 29(6):1347. https://doi.org/10.3390/molecules29061347
Chicago/Turabian StyleQiu, Xiang, Yanghui Ou, Shengjia Lu, Yibin Liang, Yali Zhang, Mengjie Li, Gang Li, Hongwei Ma, Yanting Wu, Zhaoyu He, and et al. 2024. "Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Stemona tuberosa Lour" Molecules 29, no. 6: 1347. https://doi.org/10.3390/molecules29061347
APA StyleQiu, X., Ou, Y., Lu, S., Liang, Y., Zhang, Y., Li, M., Li, G., Ma, H., Wu, Y., He, Z., Zhang, Z., Yao, H., & Chen, W. -H. (2024). Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Stemona tuberosa Lour. Molecules, 29(6), 1347. https://doi.org/10.3390/molecules29061347