Green Method for the Preparation of Durable Superhydrophobic Antimicrobial Polyester Fabrics with Micro-Pleated Structures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Polydimethylsiloxane (PDMS) Composite Emulsion
2.2. Preparation and Characterization of Superhydrophobic Antimicrobial Fabrics
2.3. Hydrophobicity and Wettability Resistance of Superhydrophobic Antimicrobial Fabric
2.4. Antimicrobial Properties
2.5. Mechanical Robustness and Resistance to Acids and Alkalis
2.6. Antimicrobial Durability
2.7. Self-Cleaning Properties
2.8. Wearability of Superhydrophobic Antimicrobial Fabrics
3. Experimental Section
3.1. Materials
3.2. Preparation and Characterization of Emulsions
3.3. Preparation of Superhydrophobic Antimicrobial Fabrics
3.4. Characterization
3.5. Mechanical Durability and Acid and Alkali Resistance Test
3.6. Antimicrobial Performance Test
3.7. Self-Cleaning Performance
3.8. Wetting Resistance Test
3.9. Tensile Property Test
3.10. Comfort Wearing of the Fabric
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Massella, D.; Giraud, S.; Guan, J.; Ferri, A.; Salaün, F. Textiles for health: A review of textile fabrics treated with chitosan microcapsules. Environ. Chem. Lett. 2019, 17, 1787–1800. [Google Scholar] [CrossRef]
- He, X.; Mao, H.; Wang, S.; Tian, Z.; Zhou, T.; Cai, L. Fabrication of chitosan/phenylboronic acid/SiO2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int. J. Biol. Macromol. 2023, 248, 125926. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.; Hassan, M.S. Erratum to “Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles” [Carbohydr. Polym. 151(October) (2016) 841–850]. Carbohydr. Polym. 2017, 157, 905. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, P.; Zhang, J.; Liu, X.; Chen, F.; Li, H.; Gu, X.; Sun, J.; Zhang, S. Bio-based phytic acid-induced polypyrrole/silver nanowires coating towards multifunctional nylon/cotton blend fabrics. Chem. Eng. J. 2023, 476, 146837. [Google Scholar] [CrossRef]
- Novi, V.T.; Gonzalez, A.; Brockgreitens, J.; Abbas, A. Highly efficient and durable antimicrobial nanocomposite textiles. Sci. Rep. 2022, 12, 17332. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, C.S.F.; Tavaria, F.K. The impact of bioactive textiles on human skin microbiota. Eur. J. Pharm. Biopharm. 2023, 188, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Sherazee, M.; Marvi, P.K.; Ahmed, S.R.; Gedanken, A.; Srinivasan, S.; Rajabzadeh, A.R. Waste-Derived Sustainable Fluorescent Nanocarbon-Coated Breathable Functional Fabric for Antioxidant and Antimicrobial Applications. ACS Appl. Mater. Interfaces 2023, 15, 29425–29439. [Google Scholar] [CrossRef]
- Thottathil, S.; Puttaiahgowda, Y.M.; Kanth, S. Advancement and future perspectives on ampicillin-loaded antimicrobial polymers- A review. J. Drug Deliv. Sci. Technol. 2023, 81, 104227. [Google Scholar] [CrossRef]
- Gulati, R.; Sharma, S.; Sharma, R.K. Antimicrobial textile: Recent developments and functional perspective. Polym. Bull. 2021, 79, 5747–5771. [Google Scholar] [CrossRef]
- Han, A.; Li, X.; Huang, B.; Tsoi, J.K.-H.; Matinlinna, J.P.; Chen, Z.; Deng, D.M. The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation. Int. J. Adhes. Adhes. 2016, 69, 125–132. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Fleming, G.; Aveyard, J.; Fothergill, J.L.; McBride, F.; Raval, R.; D’sa, R.A. Effect of Polymer Demixed Nanotopographies on Bacterial Adhesion and Biofilm Formation. Polymers 2019, 11, 1921. [Google Scholar] [CrossRef]
- Bächle, J.; Merle, C.; Hahnel, S.; Rosentritt, M. Bacterial Adhesion on Dental Polymers as a Function of Manufacturing Techniques. Materials 2023, 16, 2373. [Google Scholar] [CrossRef]
- Spriano, S.; Chandra, V.S.; Cochis, A.; Uberti, F.; Rimondini, L.; Bertone, E.; Vitale, A.; Scolaro, C.; Ferrari, M.; Cirisano, F.; et al. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 74, 542–555. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Shen, H.; Shuai, D.; Xiong, X.; Wang, Y.; Huang, H.; Li, Y. Superior self-cleaning surfaces via the synergy of superhydrophobicity and photocatalytic activity: Principles, synthesis, properties, and applications. J. Clean. Prod. 2023, 428, 139430. [Google Scholar] [CrossRef]
- Cao, Y.; Salvini, A.; Camaiti, M. Multi-functional TiO2-based nanocomposite coating with durable superhydrophobicity and enhanced photocatalytic and antimicrobial properties for the sustainable maintenance of building stones. Constr. Build. Mater. 2023, 404, 133139. [Google Scholar] [CrossRef]
- Wang, H.; Wang, K.; Lu, H.; Parkin, I.P.; Zhang, X. Flexible and Strong Robust Superhydrophobic Monoliths with Antibacterial Property. ACS Appl. Polym. Mater. 2020, 2, 4856–4863. [Google Scholar] [CrossRef]
- Wu, X.H.; Liew, Y.K.; Lim, W.M.; Mai, C.; Then, Y.Y. Blood compatible and noncytotoxic superhydrophobic graphene/titanium dioxide coating with antibacterial and antibiofilm properties. J. Appl. Polym. Sci. 2023, 140, e53629. [Google Scholar] [CrossRef]
- Zhan, Y.; Yu, S.; Amirfazli, A.; Siddiqui, A.R.; Li, W. Recent Advances in Antibacterial Superhydrophobic Coatings. Adv. Eng. Mater. 2021, 24, 2101053. [Google Scholar] [CrossRef]
- Li, M.; Schlaich, C.; Kulka, M.W.; Donskyi, I.S.; Schwerdtle, T.; Unger, W.E.S.; Haag, R. Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion. J. Mater. Chem. B 2019, 7, 3438–3445. [Google Scholar] [CrossRef]
- Wang, G.; Weng, D.; Chen, C.; Chen, L.; Wang, J. Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion. Colloid Interface Sci. Commun. 2019, 34, 100220. [Google Scholar] [CrossRef]
- Dixit, S.; Varshney, S.; Gupta, D.; Sharma, S. Factors affecting biofilm formation by bacteria on fabrics. Int. Microbiol. 2023, 1–13. [Google Scholar] [CrossRef]
- Karypidis, M.; Karanikas, E.; Papadaki, A.; Andriotis, E.G. A Mini-Review of Synthetic Organic and Nanoparticle Antimicrobial Agents for Coatings in Textile Applications. Coatings 2023, 13, 693. [Google Scholar] [CrossRef]
- Ye, Z.; Li, S.; Zhao, S.; Deng, L.; Zhang, J.; Dong, A. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chem. Eng. J. 2020, 420, 127680. [Google Scholar] [CrossRef]
- Pakdel, E.; Sharp, J.; Kashi, S.; Bai, W.; Gashti, M.P.; Wang, X. Antibacterial Superhydrophobic Cotton Fabric with Photothermal, Self-Cleaning, and Ultraviolet Protection Functionalities. ACS Appl. Mater. Interfaces 2023, 15, 34031–34043. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Ge, M.; Huang, J.; Li, S.; Deng, S.; Zhang, S.; Chen, Z.; Zhang, K.; Al-Deyab, S.S.; Lai, Y. Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. J. Mater. Chem. A 2016, 4, 12179–12187. [Google Scholar] [CrossRef]
- Wang, T.; Isimjan, T.T.; Chen, J.; Rohani, S. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties. Nanotechnology 2011, 22, 265708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, B.; Wang, S.; Zhao, L.; Wan, L.; Wang, E. Mechanically robust, thermally stable, highly transparent superhydrophobic coating with low-temperature sol-gel process. RSC Adv. 2017, 7, 47357–47365. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, H.; Wang, H.; Zhao, Y.; Shao, H.; Xu, Z.; Feng, Z.; Liu, D.; Lin, T. Argon Plasma Treatment of Fluorine-Free Silane Coatings: A Facile, Environment-Friendly Method to Prepare Durable, Superhydrophobic Fabrics. Adv. Mater. Interfaces 2017, 4, 1700027. [Google Scholar] [CrossRef]
- Xu, P.; Pershin, L.; Mostaghimi, J.; Coyle, T.W. Efficient one-step fabrication of ceramic superhydrophobic coatings by solution precursor plasma spray. Mater. Lett. 2018, 211, 24–27. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Altiparmak, F.; Nguyen, N.; Tuduri, L.; Ouellet-Plamondon, C.M.; Prud’homme, R.E. Robust Superhydrophobic Cotton Fibers Prepared by Simple Dip-Coating Approach Using Chemical and Plasma-Etching Pretreatments. ACS Omega 2019, 4, 7829–7837. [Google Scholar] [CrossRef]
- Zhu, Y.P.; Guo, C.; Zheng, Y.; Qiao, S.-Z. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts Chem. Res. 2017, 50, 915–923. [Google Scholar] [CrossRef]
- Sun, X.; Bourham, M.; Barrett, D.G.; McCord, M.G.; Pal, L. Transparent and high barrier plasma functionalized acrylic coated cellulose triacetate films. Prog. Org. Coatings 2020, 150, 105988. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Yang, S.; Xu, Z.; Lin, G.; Shi, J.; Zhang, R.; Yu, J.; Ge, D.; Guo, Y. Earthworm-Inspired Ultradurable Superhydrophobic Fabrics from Adaptive Wrinkled Skin. ACS Appl. Mater. Interfaces 2021, 13, 6758–6766. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, F.; Gao, Y. Superhydrophobic and oleophobic dual-function coating with durablity and self-healing property based on a waterborne solution. Appl. Mater. Today 2021, 22, 100970. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Liang, F.; Liu, R.; Zhang, Y.; Zhang, W.; Zhu, T.; Yi, B.; Tang, Y.; Lai, Y. A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nanoscale Horiz. 2019, 5, 65–73. [Google Scholar] [CrossRef]
- Voets, I.K.; de Keizer, A.; Frederik, P.M.; Jellema, R.; Stuart, M.A.C. Environment-sensitive stabilisation of silver nanoparticles in aqueous solutions. J. Colloid Interface Sci. 2009, 339, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Feng, L.; Xu, S.; Zhu, C.; Pan, G.; Yao, L. Universal Preparation Strategy for Ultradurable Antibacterial Fabrics through Coating an Adhesive Nanosilver Glue. Nanomaterials 2022, 12, 2429. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, C.; Li, C.; Han, Y.; Bai, Y.; Xu, K.; Chi, H.; Liu, Y.; Huang, X.; Wang, C.; et al. Oil-in-water high-internal-phase poly(styrene-acrylate) Pickering emulsions and their applications as waterborne damping coatings. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128783. [Google Scholar] [CrossRef]
- Wu, J.; Ma, G. Recent Studies of Pickering Emulsions: Particles Make the Difference. Small 2016, 12, 4633–4648. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Jia, L.; Yan, Z.; Liu, Z.; Liu, Y. Plasma-etched electrospun nanofiber membrane as adsorbent for dye removal. Chem. Eng. Res. Des. 2018, 132, 445–451. [Google Scholar] [CrossRef]
- Li, D.; Guo, Z. Robust superhydrophobic and self-lubricating PTES-TiO2@UHMWPE fabric and its tribological properties. RSC Adv. 2023, 13, 24865–24866. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Kim, K.-D.; Seo, H.O.; Kim, I.H.; Jeon, C.S.; An, J.E.; Kim, J.H.; Uhm, S.; Kim, Y.D. Oil-Water Separation Using Superhydrophobic PET Membranes Fabricated Via Simple Dip-Coating of PDMS-SiO2 Nanoparticles. Macromol. Mater. Eng. 2017, 302, 1700218. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, S.W.; Kim, J.H.; Seo, H.O.; Kim, Y.D. Oil absorption capacity of bare and PDMS-coated PET non-woven fabric; dependency of fiber strand thickness and oil viscosity. Curr. Appl. Phys. 2018, 18, 369–376. [Google Scholar] [CrossRef]
- Soto, D.; Ugur, A.; Farnham, T.A.; Gleason, K.K.; Varanasi, K.K. Short-Fluorinated iCVD Coatings for Nonwetting Fabrics. Adv. Funct. Mater. 2018, 28, 1707355. [Google Scholar] [CrossRef]
- Liu, H.; Yang, L.; Zhan, Y.; Lan, J.; Shang, J.; Zhou, M.; Lin, S. A robust and antibacterial superhydrophobic cotton fabric with sunlight-driven self-cleaning performance for oil/water separation. Cellulose 2021, 28, 1715–1729. [Google Scholar] [CrossRef]
- Qi, L.; Wang, B.; Zhang, W.; Yu, B.; Zhou, M.; Hu, Y.; Xing, W. Durable flame retardant and dip-resistant coating of polyester fabrics by plasma surface treatment and UV-curing. Prog. Org. Coatings 2022, 172, 107066. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, S.; Wang, W.; Tian, M.; Ning, N.; Zhang, L. Polyester (PET) fabrics coated with environmentally friendly adhesive and its interface structure and adhesive properties with rubber. Compos. Sci. Technol. 2020, 195, 108171. [Google Scholar] [CrossRef]
- Xu, L.; Xie, K.; Liu, Y.; Zhang, C. Stable super-hydrophobic and comfort PDMS-coated polyester fabric. e-Polymers 2021, 21, 654–661. [Google Scholar] [CrossRef]
- Lee, H.J.; Yeo, S.Y.; Jeong, S.H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 2003, 38, 2199–2204. [Google Scholar] [CrossRef]
- Jia, D.; Lin, Y.; Zou, Y.; Zhang, Y.; Yu, Q. Recent Advances in Dual-Function Superhydrophobic Antibacterial Surfaces. Macromol. Biosci. 2023, 23, e2300191. [Google Scholar] [CrossRef] [PubMed]
- GB/T 3921-2008; Textiles—Tests for Colour Fastness—Colour Fastness to Washing with Soap or Soap and Soda. China’s General Administration of Quality Supervision: Beijing, China; Inspection and Quarantine and Standardization Administration of China: Beijing, China, 2008.
- GB/T 3920-2008; Textiles—Tests for Colour Fastness—Colour Fastness to Rubbing. China’s General Administration of Quality Supervision: Beijing, China; Inspection and Quarantine and Standardization Administration of China: Beijing, China, 2008.
- GB/T 20944.3-2008; Textiles—Evaluation for Antibacterial Activity—Part 3: Shake Flask Method. China’s General Administration of Quality Supervision: Beijing, China; Inspection and Quarantine and Standardization Administration of China: Beijing, China, 2008.
- AATCC Test Method 22-2005; Water Repellency: Spray Test. AATCC Technical Manual. American Association of Textile Chemists and Colorists: Research Triangle Park, NC, USA, 2005; Volume 82.
- AATCC Test Method 127-2017; Water Resistance: Hydrostatic Pressure. AATCC Technical Manual. American Association of Textile Chemists and Colorists: Research Triangle Park, NC, USA, 2017; Volume 82.
- GB/T 3923.1-2013; Textiles—Tensile Properties of Fabrics—Part 1: Determination of Breaking Force and Elongation at Breaking Force—Strip Method. China’s General Administration of Quality Supervision: Beijing, China; Inspection and Quarantine and Standardization Administration of China: Beijing, China, 2013.
- GB/T 5453-1997; Textiles—Determination of the Permeability of Fabrics to Air. The State Bureau of Quality and Technical Supervision: Beijing, China, 1997.
- GB/T 12704.2-2009; Textiles—Test Method for Water-Vapour Transmission of Fabrics—Part 2: Water Method. China’s General Administration of Quality Supervision: Beijing, China; Inspection and Quarantine and Standardization Administration of China: Beijing, China, 2009.
Ag Content (mg·kg−1) | Antibacterial Rates (%) | |
---|---|---|
E. coli | S. aureus | |
50 | 90.99 | 91.99 |
100 | 98.89 | 96.97 |
150 | 99.99 | 99.99 |
200 | 99.99 | 99.99 |
250 | 99.99 | 99.99 |
300 | 99.99 | 99.99 |
Sample | Air Permeability (mm/s) | Moisture Permeability (g/(m2·24h)) | Seepage Pressure (kpa) |
---|---|---|---|
PET | 1648.47 | 5311.66 | 0.02 |
PDMS@PET | 1637.87 | 3725.8 | 0.8 |
PDMS/Ag@PET | 1632.73 | 3802.12 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Chen, K.; Zhu, J.; Chen, H.; Xia, Y.; Xu, M.; Xu, L.; Yao, L. Green Method for the Preparation of Durable Superhydrophobic Antimicrobial Polyester Fabrics with Micro-Pleated Structures. Molecules 2024, 29, 1219. https://doi.org/10.3390/molecules29061219
Zhao Y, Chen K, Zhu J, Chen H, Xia Y, Xu M, Xu L, Yao L. Green Method for the Preparation of Durable Superhydrophobic Antimicrobial Polyester Fabrics with Micro-Pleated Structures. Molecules. 2024; 29(6):1219. https://doi.org/10.3390/molecules29061219
Chicago/Turabian StyleZhao, Ying, Kaihong Chen, Jiehui Zhu, Huajie Chen, Yong Xia, Minglin Xu, Liyun Xu, and Lirong Yao. 2024. "Green Method for the Preparation of Durable Superhydrophobic Antimicrobial Polyester Fabrics with Micro-Pleated Structures" Molecules 29, no. 6: 1219. https://doi.org/10.3390/molecules29061219
APA StyleZhao, Y., Chen, K., Zhu, J., Chen, H., Xia, Y., Xu, M., Xu, L., & Yao, L. (2024). Green Method for the Preparation of Durable Superhydrophobic Antimicrobial Polyester Fabrics with Micro-Pleated Structures. Molecules, 29(6), 1219. https://doi.org/10.3390/molecules29061219