Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia miltiorrhiza Bunge)
Abstract
:1. Introduction
2. Main Components of Danshen
2.1. Tanshinones
2.2. Salvianolic Acid
3. Effects of Tanshinones on the Immune System
3.1. Increasing Immune Organ Index
3.2. Regulating the Number and Function of Immune Cells
3.2.1. Effect on Neutrophils
3.2.2. Effect on Macrophages and DCs
3.2.3. Effect on Lymphocytes
Components | Immune Organ | Immune Cells | Immune Active Substance | References |
---|---|---|---|---|
Tanshinone IIA (1) | Thymus | [43] | ||
Macrophages | ↓IL-1, IL-12 | [62] | ||
DCs | [63] | |||
T cells | [65] | |||
Th17/Treg | [66] | |||
NK cells | ↑IL-15 | [68] | ||
Th1 cells | ↓IL-12, IFN-γ | [69] | ||
Cryptotanshinone (3) | Thymus | [44] | ||
Spleen | [45] | |||
Thymus | ||||
Neutrophils | [55] | |||
Macrophages | [59,60] | |||
Macrophages | ↑TNF-α, IL-1β, IL-12 | [61] | ||
DCs | ↓IL-10 | |||
NK cells | ↑IL-15 | [68] | ||
Dihydrotanshinone I (11) | Neutrophils | [56] | ||
Macrophages | ↓TNF-α, IL-6, IL-1β, ↓NF-κB | [64] | ||
Tanshinone I (9) | Neutrophils | [57] | ||
Th1 cells | ↓IL-12, IFN-γ | [69] | ||
Dehydromiltirone (7) | Th1 cells | ↓IL-12, IFN-γ | [69] |
3.3. Improving Autoimmune Diseases
3.3.1. Effect on Rheumatoid Arthritis
3.3.2. Effect on Multiple Sclerosis
3.3.3. Effect on Systemic Lupus Erythematosus
3.4. Improving Immune-Mediated Inflammatory Diseases
3.4.1. Effect on Psoriasis
3.4.2. Effect on Autoimmune Hepatitis
3.4.3. Effect on Inflammatory Bowel Disease
Components | Diseases | Pathways | Mechanism of Action | References |
---|---|---|---|---|
Tanshinone IIA (1) | RA | BMP/Wnt | Osteogenesis | [76] |
COX-2/PGE2 | ↓Osteoclast | [77] | ||
Mitochondrial | ↑Caspase3/9 | [78] | ||
Caspase | ↓Procaspase3/9 | |||
PI3K/MAPK/AKT/mTOR/HIF | ↓RA-FLSs | [80] | ||
Cell cycle | G2/M phase | [79] | ||
PI3K/AKT | ↑IncRNA GAS5 | [80] | ||
β-arrestin 2 | ↓TNF-α | [81] | ||
↓ IL-6, IL-17 | ||||
RANKL | ↓Osteoclast | [83] | ||
MS | ↓T cells | [85] | ||
↓IL-17, IL-23 | ||||
GFAP/Iba-1 | ↓Immune cells | [86] | ||
BBB | ↑TGF-β1 | [87] | ||
↑Treg | ||||
Psoriasis | Caspase | ↓Psoriatic keratinocytes | [94] | |
Cell cycle | S phase, G2/M phase | |||
AIH | ↓ALT, AST, ↓IFN-γ | [95] | ||
↓IL-2, IL-4, ↑IL-10 | ||||
PI3K-AKT | ↓ALT, AST | [96] | ||
NF-κB | ||||
IBD | ROSMPO | ↓Neutrophil infiltration | [99] | |
↓TNF-α | ||||
↓IL-1β, IL-6, IL-10 | ||||
NF-κB | [100] | |||
PXR | ||||
Cryptotanshinone (3) | RA | AKT | ↓RA-FLSs | [72] |
MAPK | ||||
STAT3 | ||||
NF-κB | ↑Th17/Treg | [73] | ||
NF-κB | ↓MMP-9 | [74,75] | ||
ERK | ↓IL-1β, IL-17α, ↓TNF-α | |||
SLE | STAT3 | ↓T cells | [88] | |
Psoriasis | STAT3 | ↓Psoriatic keratinocytes | [93] | |
IBD | STAT3 | ↓Th17 cells | [101] | |
↓Neutrophil infiltration | ||||
↓iNOS, COX-2, ↓NF-κBp65, ↓TNF-α, ↓IL-6 | [102] | |||
Dihydrotanshinone I (11) | UC | RIPs–MLKL–caspase-8 axis | ↓iNOS, COX-2, ↓TNF-α | [103] |
↓IL-6, IL-1β |
4. Effects of Salvianolic Acid Components on Immune System
4.1. Regulating the Number and Function of Immune Cells
4.1.1. Effect on Macrophages
4.1.2. Effect on Neutrophils
4.1.3. Effect on Lymphocytes
Components | Immune Cells | Immune Active Substance | References |
---|---|---|---|
Salvianolic acid A (17) | Macrophages | ↓IL-6, TNF-α | [108] |
Neutrophils | [110] | ||
Salvianolic acid B (19) | Macrophages | [106] | |
RAW264.7 macrophages | ↓IL-6, TNF-α | [107] | |
Neutrophils | ↓IL-1β, TNF-α | [109] | |
T cells | ↓IL-6, IL-8, IL-1β, TNF-α | [111,112] | |
NK cells | ↑IgA, IgG, IgM | ||
Rosmarinic acid (13) | Lymphocytes | [113] | |
NK cells | |||
CTLs |
4.2. Improving Autoimmune Diseases
4.2.1. Effect on Rheumatoid Arthritis
4.2.2. Effect on Multiple Sclerosis
4.2.3. Effect on Renal Injury in Systemic Lupus Erythematosus
4.3. Improving Immune-Mediated Inflammatory Diseases
4.3.1. Effect on Psoriasis
4.3.2. Effect on Inflammatory Bowel Disease
Components | Diseases | Pathways | Mechanisms of Action | References |
---|---|---|---|---|
Salvianolic acid A (17) | LN | MAPKs | [122] | |
TGF-β1/Smads | ||||
IKK | ↓IgG ↓IgM | [123] | ||
I-κB | ||||
NF-κB | ||||
IBD | ↓IL-1β, IL-6 | [130] | ||
↓MCP-1 | ||||
Salvianolic acid B (19) | RA | NF-κB | ↓IL-6, IL-17, IL-1β | [115] |
↓TNF-α | ||||
↑IL-10 ↓IgG1, IgG2a | ||||
Autophagy | ↓MH7A cells | [116] | ||
MS | ↓CD45+ cells | [120] | ||
↓Th1 cell responses | ||||
↓Microglia/Macrophages | ||||
↓T-lymphocytes | [121] | |||
Psoriasis | PI3K/AKT | ↓IL-22, IL-23, IL-17A, IL-1β, IL-6 | [125] | |
IL-23/IL-17 | [126] | |||
UC | ↑SOD, CAT, GSH | [131] | ||
↓MDA, MPO | ||||
Rosmarinic acid (13) | RA | ↓COX-2 cells | [117] | |
Mitochondrial | ↓T cells | [118] | ||
Psoriasis | JAK2/STAT3 | ↓IL-23, IL-17A | [128] | |
IL-23/Th 17 | ||||
IBD | NF-κB/STAT3 | ↓IL-16, IL-1β, IL-22 | [132] | |
↓COX-2, iNOS | ||||
ROS | ↓IL-6, IL-12, IL-1β | [133] | ||
↓TNF-α, IFN-γ | ||||
NLRP3 Nrf2/HO-1 | ↓Neutrophils | [134] | ||
↓TNF-α | ||||
↓IL-1β | ||||
Danshensu (15) | Psoriasis | Cell cycle | G0/G1 phase | [127] |
↓YAP | ||||
Lithospermic acid (21) | Psoriasis | Th-17/IL-23 | ↓TNF-α, IFN-γ | [129] |
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akiyama, T.; Horie, K.; Hinoi, E.; Hiraiwa, M.; Kato, A.; Maekawa, Y.; Takahashi, A.; Furukawa, S. How does spaceflight affect the acquired immune system? NPJ Microgravity 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.D.; Deng, Y.R.; Tian, Z.; Lian, Z.X. Traditional Chinese medicine and immune regulation. Clin. Rev. Allergy Immunol. 2013, 44, 229–241. [Google Scholar] [CrossRef]
- Pharmacopoeia of the People’s Republic of China. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Writing Group of Recommendations of Expert Panel from Chinese Geriatrics Society on the Clinical Use of Compound Danshen Dripping Pills. Recommendations on the clinical use of compound danshen dripping pills. Chin. Med. J. 2017, 130, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Nwafor, E.O.; Lu, P.; Li, J.W.; Zhang, Q.Q.; Qi, D.L.; Liu, Z.D.; Peng, H.; Qin, H.; Gao, Y.Q.; Wang, J.L. Traditional Chinese medicine of Salvia miltiorrhiza Bunge: A review of phytochemistry, pharmacology and pharmacokinetics. Tradit. Med. Res. 2021, 6, 35. [Google Scholar] [CrossRef]
- Yuen, C.W.; Murugaiyah, V.; Najimudin, N.; Azzam, G. Danshen (Salvia miltiorrhiza) water extract shows potential neuroprotective effects in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 266, 113418. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.H.P.; Ting, A.C.J.; Leow, B.G.; Najimudin, N.; Watanabe, N.; Azzam, G. Alleviatory effects of Danshen, Salvianolic acid A and Salvianolic acid B on PC12 neuronal cells and Drosophila melanogaster model of Alzheimer’s disease. J. Ethnopharmacol. 2021, 279, 114389. [Google Scholar] [PubMed]
- Chong, C.M.; Su, H.; Lu, J.J.; Wang, Y. The effects of bioactive components from the rhizome of Salvia miltiorrhiza (Danshen) on the characteristics of Alzheimer’s disease. Chin. Med. 2019, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Grande, F.; Occhiuzzi, M.A.; Maione, F.; Mascolo, N.; Conforti, F. Cryptotanshinone and tanshinone IIA from Salvia milthorrhiza Bunge (Danshen) as a new class of potential pancreatic lipase inhibitors. Nat. Prod. Res. 2021, 35, 863–866. [Google Scholar] [CrossRef]
- Liu, J.; Shi, Y.; Peng, D.; Wang, L.; Yu, N.; Wang, G.; Chen, W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front. Cardiovasc. Med. 2022, 9, 842980. [Google Scholar] [CrossRef]
- Wang, X.; Fa, J.; Zhang, Y.; Huang, S.; Liu, J.; Gao, J.; Xing, L.; Liu, Z.; Wang, X. Evaluation of Herb-Drug Interaction between Danshen and Rivaroxaban in Rat and Human Liver Microsomes. Front. Pharmacol. 2022, 13, 950525. [Google Scholar]
- Wu, D.; Huo, M.; Chen, X.; Zhang, Y.; Qiao, Y. Mechanism of tanshinones and phenolic acids from Danshen in the treatment of coronary heart disease based on co-expression network. BMC Complement. Med. Ther. 2020, 20, 28. [Google Scholar]
- Yan, J.; Ruan, P.; Ge, Y.; Gao, J.; Tan, H.; Xiao, C.; Gao, Q.; Zhang, Z.; Gao, Y. Mechanisms and Molecular Targets of Compound Danshen Dropping Pill for Heart Disease Caused by High Altitude Based on Network Pharmacology and Molecular Docking. ACS Omega 2021, 6, 26942–26951. [Google Scholar] [CrossRef]
- Lei, W.; Li, X.; Li, L.; Huang, M.; Cao, Y.; Sun, X.; Jiang, M.; Zhang, B.; Zhang, H. Compound Danshen Dripping Pill ameliorates post ischemic myocardial inflammation through synergistically regulating MAPK, PI3K/AKT and PPAR signaling pathways. J. Ethnopharmacol. 2021, 281, 114438. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Xu, D.Q.; Yue, S.J.; Shen, L.F.; Zhou, G.S.; Chen, Y.Y.; Wang, X.P.; Bai, J.Q.; Liu, F.; Tang, Y.P.; et al. Pharmacodynamics and pharmacokinetics of Danshen in isoproterenol-induced acute myocardial ischemic injury combined with Honghua. J. Ethnopharmacol. 2020, 247, 112284. [Google Scholar] [PubMed]
- Wan, H.; Yang, Y.; Li, Z.; Cheng, L.; Ding, Z.; Wan, H.; Yang, J.; Zhou, H. Compatibility of ingredients of Danshen (Radix Salviae miltiorrhizae) and Honghua (Flos carthami) and their protective effects on cerebral ischemia-reperfusion injury in rats. Exp. Ther. Med. 2021, 22, 849. [Google Scholar]
- Chen, J.; Yuan, S.; Zhou, J.; Huang, X.; Wu, W.; Cao, Y.; Liu, H.; Hu, Q.; Li, X.; Guan, X.; et al. Danshen injection induces autophagy in podocytes to alleviate nephrotic syndrome via the PI3K/AKT/mTOR pathway. Phytomedicine 2022, 107, 154477. [Google Scholar] [CrossRef]
- Zhang, P.; He, S.; Wu, S.; Li, Y.; Wang, H.; Yan, C.; Yang, H.; Li, P. Discovering a Multi-Component Combination against Vascular Dementia from Danshen-Honghua Herbal Pair by Spectrum-Effect Relationship Analysis. Pharmaceuticals 2022, 15, 1073. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Wu, M.; Wang, X.; Zhang, W.; Qi, G.; Wu, N.Y.; Liu, X.T.; Lu, Y.Y.; Zhang, J.M.; Chai, Y.N. Study on the mechanism of Danshen-Guizhi drug pair in the treatment of ovarian cancer based on network pharmacology and in vitro experiment. Peer J. 2022, 10, e13148. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, S.; Tang, H.; Jiang, C.; Wang, B.; Liu, J. Development of sustained-release pellets to modulate the in vivo processes of the main active components of Danshen: A pharmacokinetic and pharmacodynamic evaluation. Phytomedicine 2019, 58, 152793. [Google Scholar] [CrossRef]
- Dou, J.Y.; Zhang, M.; Cen, H.; Chen, Y.Q.; Wu, Y.F.; Lu, F.; Zhou, J.; Liu, X.S.; Gu, Y.Y. Salvia miltiorrhiza Bunge (Danshen) and Bioactive Compound Tanshinone IIA Alleviates Cisplatin-Induced Acute Kidney Injury Through Regulating PXR/NF-κB Signaling. Front. Pharmacol. 2022, 13, 860383. [Google Scholar]
- Li, H.Y.; Gao, C.D.; Liu, C.; Liu, L.J.; Zhuang, J.; Yang, J.; Zhou, C.; Feng, F.B.; Sun, C.G.; Wu, J.B. A review of the biological activity and pharmacology of cryptotanshinone, an important active constituent in Danshen. Biomed. Pharmacother. 2021, 137, 111332. [Google Scholar] [CrossRef] [PubMed]
- Ashrafizadeh, M.; Zarrabi, A.; Orouei, S.; Saberifar, S.; Salami, S.; Hushmandi, K.; Najafi, M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. J. Phytother. Res. 2021, 35, 155–179. [Google Scholar]
- Lin, Y.S.; Shen, Y.C.; Wu, C.Y.; Tsai, Y.Y.; Yang, Y.H.; Lin, Y.Y.; Kuan, F.C.; Lu, C.N.; Chang, G.H.; Tsai, M.S.; et al. Danshen Improves Survival of Patients with Breast Cancer and Dihydroisotanshinone I Induces Ferroptosis and Apoptosis of Breast Cancer Cells. Front. Pharmacol. 2019, 10, 1226. [Google Scholar] [CrossRef]
- Guo, R.; Li, L.; Su, J.; Li, S.; Duncan, S.E.; Liu, Z.H.; Fan, G.W. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. Drug Devel. Ther. 2020, 14, 4735–4748. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Xu, Y.; Zhou, X.; Su, P.; Jiang, X.; Jin, Z. The protective effect of an extract of Salvia miltiorrhiza Bunge (Danshen) on cerebral ischemic injury in animal models: A systematic review and meta-analysis. J. Ethnopharmacol. 2023, 317, 116772. [Google Scholar]
- Du, G.H.; Song, J.K.; Du, L.D.; Zhang, L.; Qiang, G.F.; Wang, S.B.; Yang, X.Y.; Fang, L.H. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. Adv. Pharmacol. 2020, 87, 1–41. [Google Scholar] [PubMed]
- Li, Y.; Zhao, Z.C.; Lin, S.Q.; Huang, Z.L. Research Progress of Main Chemical Components and Extraction and Separation Methods of Salvia miltiorrhiza Bge. Acta Chin. Med. Pharmacol. 2021, 49, 106–111. [Google Scholar]
- Feng, K.R.; Li, W.X.; Wang, X.Y.; Wu, Y.L.; Zhang, H.; Liu, X.L.; Chen, Y.L.; Li, K.; Tang, J.F. Chemical components and pharmacological action for Salviae Miltiorrhizae Radix et Rhizoma and predictive analysis on quality markers. Chin. Tradit. Herb. Drugs 2022, 53, 609–618. [Google Scholar]
- Chang, H.M.; Cheng, K.P.; Choang, T.F.; Chow, H.F.; Chui, K.Y.; Hon, P.M.; Tan, F.W.L.; Yang, Y.; Zhong, Z.P. Structure elucidation and total synthesis of new tanshinones isolated from Salvia miltiorrhiza Bunge (Danshen). J. Org. Chem. 1990, 55, 3537–3543. [Google Scholar] [CrossRef]
- Wang, Q.W.; Yang, P.; Zhang, L.W. The Effective Isolation of Tanshinone. J. Shanxi Univ. Nat. Sci. Ed. 1994, 17, 294–298. [Google Scholar]
- Kakisawa, H.; Hayashi, T.; Yamazaki, T. Structures of isotanshinones. Tetrahedron Lett. 1969, 10, 301–304. [Google Scholar] [CrossRef]
- Roth, A.; Zhao, P.; Soukup, S.T.; Guigas, C.; Stärke, J.; Kulling, S.E.; Diel, P. Chemical Stability and Bioactivity of tanshinone I, tanshinone IIA, cryptotanshinone and dihydrotanshinone in in vitro test systems. Toxicol Lett. 2023, 375, 21–28. [Google Scholar] [CrossRef]
- Wei, T.; Gao, Y.; Deng, K.; Zhang, L.; Yang, M.; Liu, X.; Qi, C.; Wang, C.; Song, W.; Zhang, Y.; et al. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root cultures by metabolic engineering. Plant Methods 2019, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Z.; Ren, J.; Yin, Y.X. Simultaneous Determination of 14 Water-Soluble Components in Salvia Miltiorrhiza by Ultra High Performance Liquid Chromatography. J. Smart Healthcare 2021, 7, 16–18. [Google Scholar]
- Tian, J.F.; Yan, H.; Wang, R.J.; Li, W.; Yue, H.S.; Luo, X.J.; He, Y. Isolation and identification of chemical constituents from extract of salvia polyphenolic acids. Chin. Tradit. Herb. Drugs 2018, 49, 5024–5028. [Google Scholar]
- Petersen, M.; Häusler, E.; Karwatzki, B.; Meinhard, J. Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 1993, 189, 10–14. [Google Scholar] [CrossRef]
- Ho, J.H.C.; Hong, C.Y. Salvianolic acids: Small compounds with multiple mechanisms for cardiovascular protection. J. Biomed. Sci. 2011, 18, 30. [Google Scholar]
- Fan, J.L.; Ji, W.H.; Wang, X.; Guo, L.P.; Li, L.L. Chemical components analysis of Salvia Miltiorrhiza Bge. With different processing methods based on liquid chromatography-high resolution mass spectrometry. J. Instrum. Anal. 2023, 42, 1615–1622. [Google Scholar]
- Gao, D.; Mendoza, A.; Lu, S.; Lawrence, D.A. Immunomodulatory effects of Danshen (Salvia miltiorrhiza) in BALB/c mice. ISRN Inflamm. 2012, 2012, 954032. [Google Scholar] [CrossRef]
- Di, Y.; Meng, Q.J.; Yang, H.W.; Li Kun Cao, L.Y.; Shi Ming Fu, Z.Z.; Di, H. Antitumor activity of tanshinone and its nanoparticles on U14 cervical carcinoma-bearing mice. Nanobiomedicine 2016, 3, 1849543516673446. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, W.; Xi, X.Z.; Zheng, M.M.; Han, C.C. Inhibition on the growth of tanshinone on hepatic carcinoma in vitro and in vivo. Chin. Food Addit. 2017, 117–120. [Google Scholar]
- Zhu, X.; Bao, Y.X.; Li, J.; Liu, J.; Wang, H.P. Anti-tumor effects and immunoregulatory activity of Polysaccharopeptide from Yunzhi and Tanshinone IIA in EAC tumor-bearing mice. Chin. J. Immunol. 2008, 24, 526–529. [Google Scholar]
- Zhang, L.; Zheng, F.L.; Li, S.S.; Jia, X.Y.; Wei, W. Effects of cryptotanshinone on the proliferative response of mouse lymphocytes. Lishizhen Med. Mater. Med. Res. 2010, 21, 92–93. [Google Scholar]
- Zheng, F.L.; Chang, Y.; Jia, X.Y.; Wei, W. Effects of cryptotanshinone on immune functions in rats with adjuvant arthritis. Chin. Med. J. 2009, 122, 3039–3042. [Google Scholar] [PubMed]
- Wan, J.M.; Sit, W.H.; Lee, C.L.; Fu, K.H.; Chan, D.K. Protection of lethal toxicity of endotoxin by Salvia miltiorrhiza BUNGE is via reduction in tumor necrosis factor alpha release and liver injury. Int. Immunopharmacol. 2006, 6, 750–758. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Butterfield, L.H.; Tarhini, A.A.; Zarour, H.; Kalinski, P.; Ferrone, S. Immunotherapy of cancer in 2012. CA Cancer J. Clin. 2012, 62, 309–335. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, C. The past, present and future of immunotherapy against tumor. Transl. Lung Cancer Res. 2015, 4, 253–264. [Google Scholar]
- Wong, C.K.; Tse, P.S.; Wong, E.L.Y.; Leung, P.C.; Fung, K.P.; Lam, C.W. Immunomodulatory effects of Yun Zhi and Danshen capsules in health subjects-a randomized, double-blind, placebo-controlled, crossover study. Int. Immunopharmacol. 2004, 4, 201–211. [Google Scholar] [CrossRef]
- Bao, Y.X.; Wong, C.K.; Leung, S.F.; Chan, A.T.; Li, P.W.; Wong, E.L.; Leung, P.C.; Fung, K.P.; Yin, Y.B.; Lam, C.W. Clinical studies of immunomodulatory activities of Yunzhi-Danshen in patients with nasopharyngeal carcinoma. J. Altern. Complement. Med. 2006, 12, 771–776. [Google Scholar] [CrossRef]
- Wong, C.K.; Bao, Y.X.; Wong, E.L.; Leung, P.C.; Fung, K.P.; Lam, C.W. Immunomodulatory activities of Yunzhi and Danshen in post-treatment breast cancer patients. Am. J. Chin. Med. 2005, 33, 381–395. [Google Scholar] [CrossRef]
- Wang, B.C.; Zhang, Y.; Zhang, Q.Y.; Zhang, Z.Q.; Luo, C.Y.; Wang, Z.D.; Bai, C.; Wang, Y.H.; Ge, X.Y.; Qian, Y.; et al. Reveal the mechanisms of prescriptions for liver cancer’ treatment based on two illustrious senior TCM physicians. J. Tradit. Chin. Med. 2023, 43, 188–197. [Google Scholar]
- Burn, G.L.; Foti, A.; Marsman, G.; Patel, D.F.; Zychlinsky, A. The neutrophil. Immunity 2021, 54, 1377–1391. [Google Scholar]
- Guo, W. The Experimental Research of Immunoregulation Effect on Tanshinone IIa in NMO Mice Animal Model. Master’s Dissertation, Tianjin Medical University, Tianjin, China, 2017. [Google Scholar]
- Wang, C.; Zheng, M.; Choi, Y.; Jiang, J.; Li, L.; Li, J.; Xu, C.; Xian, Z.; Li, Y.; Piao, H.; et al. Cryptotanshinone Attenuates Airway Remodeling by Inhibiting Crosstalk between Tumor Necrosis Factor-Like Weak Inducer of Apoptosis and Transforming Growth Factor Beta 1 Signaling Pathways in Asthma. Front. Pharmacol. 2019, 10, 1338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liang, Y.; Sun, C.; Zhai, Y.; Li, X.; Jiang, M.; Yang, R.; Li, X.; Shu, Q.; Kai, G.; et al. Dihydrotanshinone I Inhibits the Lung Metastasis of Breast Cancer by Suppressing Neutrophil Extracellular Traps Formation. Int. J. Mol. Sci. 2022, 23, 15180. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, M.J.; Tolliday, F.H.; Henry, K.M.; Renshaw, S.A.; Jones, S. Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish. PLoS ONE 2020, 15, e0240231. [Google Scholar] [CrossRef]
- Watanabe, S.; Alexander, M.; Misharin, A.V.; Budinger, G.R.S. The role of macrophages in the resolution of inflammation. J. Clin. Investig. 2019, 129, 2619–2628. [Google Scholar] [CrossRef]
- Don, M.J.; Liao, J.F.; Lin, L.Y.; Chiou, W.F. Cryptotanshinone inhibits chemotactic migration in macrophages through negative regulation of the PI3K signaling pathway. Br. J. Pharmacol. 2007, 151, 638–646. [Google Scholar]
- Han, Z.; Liu, S.; Lin, H.; Trivett, A.L.; Hannifin, S.; Yang, D.; Oppenheim, J.J. Inhibition of murine hepatoma tumor growth by cryptotanshinone involves TLR7-dependent activation of macrophages and induction of adaptive antitumor immune defenses. Cancer Immunol. Immunother. 2019, 68, 1073–1085. [Google Scholar] [CrossRef]
- Liu, S.; Han, Z.; Trivett, A.L.; Lin, H.; Hannifin, S.; Yang, D.; Oppenheim, J.J. Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma. Cancer Immunol. Immunother. 2019, 68, 1059–1071. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Guo, S.; Song, N.; Wang, J.; Jia, L.; Zhu, A. Tanshinone IIA harmonizes the crosstalk of autophagy and polarization in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis. Int. Immunopharmacol. 2019, 70, 486–497. [Google Scholar] [CrossRef]
- Li, H.Z.; Lu, Y.H.; Huang, G.S.; Chen, Q.; Fu, Q.; Li, Z.L. Tanshinone II A inhibits dendritic cell-mediated adaptive immunity: Potential role in anti-atherosclerotic activity. Chin. J. Integr. Med. 2014, 20, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Huang, L.; Du, L.J.; Feng, J.F.; Li, J.; Luo, Y.Y.; Xu, Q.M.; Yang, S.L.; Gao, H.; Feng, Y.L. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharmacol. Res. 2019, 142, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Ou, H.; Jiang, Y.; Wang, K.; Peng, Y.; Zhang, H.; Yang, M.; Xiao, X. Tanshinone IIA attenuates sepsis-induced immunosuppression and improves survival rate in a mice peritonitis model. Biomed. Pharmacother. 2019, 112, 108609. [Google Scholar]
- Li, D.; Yang, Z.; Gao, S.; Zhang, H.; Fan, G. Tanshinone IIA ameliorates myocardial ischemia/reperfusion injury in rats by regulation of NLRP3 inflammasome activation and Th17 cells differentiation. Acta Cir. Bras. 2022, 37, e370701. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Li, S.; Lu, Y.; Du, S.; Zeng, X.; Chen, X.; Chen, J. Dihydrotanshinone I Alleviates Crystalline Silica-Induced Pulmonary Inflammation by Regulation of the Th Immune Response and Inhibition of STAT1/STAT3. Mediat. Inflamm. 2019, 2019, 3427053. [Google Scholar]
- Kim, W.S.; Kim, D.O.; Yoon, S.J.; Kim, M.J.; Yoon, S.R.; Park, Y.J.; Jung, H.Y.; Kim, T.D.; Kwon, B.M.; Choi, I. Cryptotanshinone and tanshinone IIA enhance IL-15-induced natural killer cell differentiation. Biochem. Biophys. Res. Commun. 2012, 425, 340–347. [Google Scholar] [CrossRef]
- Kang, B.Y.; Chung, S.W.; Kim, S.H.; Ryu, S.Y.; Kim, T.S. Inhibition of interleukin-12 and interferon-gamma production in immune cells by tanshinones from Salvia miltiorrhiza. Immunopharmacology 2000, 49, 355–361. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Pang, K.L.; Chin, K.Y. The Skeletal Effects of Tanshinones: A Review. J. Mol. 2021, 26, 2319. [Google Scholar]
- Huang, J.; Cai, J.J.; Chu, T. Study on anti-inflammatory mechanism of tanshinone extract on model rats with rheumatoid arthritis. J. Qiqihar Med. Univ. 2022, 43, 1811–1814. [Google Scholar]
- Sun, H.N.; Luo, Y.H.; Meng, L.Q.; Piao, X.J.; Wang, Y.; Wang, J.R.; Wang, H.; Zhang, Y.; Li, J.Q.; Xu, W.T.; et al. Cryptotanshinone induces reactive oxygen species-mediated apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes. Int. J. Mol. Med. 2019, 43, 1067–1075. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C.; Gao, H.; Li, C.; Li, D.; Liu, P.; Huang, M.; Shen, X.; Liu, L. Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation. Biochem. Pharmacol. 2017, 138, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Li, Y.; Jiang, J.; Zhou, C.; Li, C.; Li, D.; Lu, L.; Liu, P.; Huang, M.; et al. Therapeutic effect of Cryptotanshinone on collagen-induced arthritis in rats via inhibiting nuclear factor kappa B signaling pathway. Transl. Res. 2015, 165, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, M.; Hui, Y.; Yuan, P.; Guo, X.; Wang, K. Cryptotanshinone inhibits RANKL-induced osteoclastogenesis by regulating ERK and NF-κB signaling pathways. J. Cell. Biochem. 2019, 120, 7333–7340. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Xu, H.; Dai, T.; Shi, K. Effects of Tanshinone IIA on osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 1201–1209. [Google Scholar] [PubMed]
- Kwak, H.B.; Sun, H.M.; Ha, H.; Kim, H.N.; Lee, J.H.; Kim, H.H.; Shin, H.I.; Lee, Z.H. Tanshinone IIA suppresses inflammatory bone loss by inhibiting the synthesis of prostaglandin E2 in osteoblasts. Eur. J. Pharmacol. 2008, 601, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Jie, L.; Du, H.; Huang, Q.; Wei, S.; Huang, R.; Sun, W. Tanshinone IIA induces apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis via blockade of the cell cycle in the G2/M phase and a mitochondrial pathway. Biol. Pharm. Bull. 2014, 37, 1366–1372. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y.; Meng, F.; Xia, Z.; Wu, X.; Fang, Y.; Zhang, C.; Liu, D. Tanshinone IIA promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by up-regulating lncRNA GAS5. Biosci. Rep. 2018, 38, BSR20180626. [Google Scholar]
- Du, H.; Wang, Y.; Zeng, Y.; Huang, X.; Liu, D.; Ye, L.; Li, Y.; Chen, X.; Liu, T.; Li, H.; et al. Tanshinone IIA Suppresses Proliferation and Inflammatory Cytokine Production of Synovial Fibroblasts from Rheumatoid Arthritis Patients Induced by TNF-α and Attenuates the Inflammatory Response in AIA Mice. Front. Pharmacol. 2020, 11, 568. [Google Scholar]
- Tang, J.; Zhou, S.; Zhou, F.; Wen, X. Inhibitory effect of tanshinone IIA on inflammatory response in rheumatoid arthritis through regulating β-arrestin 2. Exp. Ther. Med. 2019, 17, 3299–3306. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, G.; Yuan, K.; Zhu, Q.; Sheng, H.; Yu, R.; Luo, G.; Xu, A. Tanshinone IIA ameliorates chronic arthritis in mice by modulating neutrophil activities. Clin. Exp. Immunol. 2017, 190, 29–39. [Google Scholar] [CrossRef]
- Kim, H.H.; Kim, J.H.; Kwak, H.B.; Huang, H.; Han, S.H.; Ha, H.; Lee, S.W.; Woo, E.R.; Lee, Z.H. Inhibition of osteoclast differentiation and bone resorption by tanshinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem. Pharmacol. 2004, 67, 1647–1656. [Google Scholar] [CrossRef]
- Xiang, H.F.; Huang, W.X. Observation on the therapeutic effect of tanshinone IIA ion introduction in the treatment of rheumatoid arthritis. Inner Mongolia J. Tradit. Chin. Med. 2019, 38, 92–93. [Google Scholar]
- Yan, J.; Yang, X.; Han, D.; Feng, J. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats. Mol. Med. Rep. 2016, 14, 1601–1609. [Google Scholar] [PubMed]
- Yang, X.; Yan, J.; Feng, J. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis. Eur. J. Pharmacol. 2016, 771, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Liu, Y.C.; Ding, X.L.; Fu, Y.; Cui, L.J.; Yan, Y.P. Tanshinone IIA Ameliorates CNS Autoimmunity by Promoting the Differentiation of Regulatory T Cells. Neurotherapeutics 2020, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Du, L.; He, Z.; Zhou, J.; Wen, C.; Zhang, Y. Cryptotanshinone ameliorates the pathogenesis of systemic lupus erythematosus by blocking T cell proliferation. Int. Immunopharmacol. 2019, 74, 105677. [Google Scholar] [CrossRef]
- Weigle, N.; McBane, S. Psoriasis. Am. Fam. Physician 2013, 87, 626–633. [Google Scholar]
- Zhou, M.; Tao, L.C.; Huang, G.Y.; Wei, B. Effects of Salvia miltiorrhiza on psoriasis based on TCM Type and plasma endothelin. Forum Tradit. Chin Med. 2006, 21, 14–15. [Google Scholar]
- Tang, Y.; Wang, Q.C.; Mao, W.Q.; Liang, T.; Zhou, M. Progress of clinical application and mechanism of Salvia miltiorrhiza in psoriasis. Jiangxi J. Tradit. Chin. Med. 2022, 53, 69–72. [Google Scholar]
- Shang, G.W.; Zhu, R.; Wang, X.F.; Zhang, H.M.; Zhou, S.X. Observation on the curative effects of tanshinone in the treatment of plaque-type psoriasis. J. Clin. Med. Pract. 2009, 13, 68–69. [Google Scholar]
- Tang, L.; He, S.; Wang, X.; Liu, H.; Zhu, Y.; Feng, B.; Su, Z.; Zhu, W.; Liu, B.; Xu, F.; et al. Cryptotanshinone reduces psoriatic epidermal hyperplasia via inhibiting the activation of STAT3. Exp. Dermatol. 2018, 27, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Xu, R.; Zeng, Q.C.; Li, X.; Chen, J.; Wang, Y.F.; Fan, B.; Geng, L.; Li, B. Tanshinone IIA Inhibits Growth of Keratinocytes through Cell Cycle Arrest and Apoptosis: Underlying Treatment Mechanism of Psoriasis. Evid. Based Complement Alternat. Med. 2012, 2012, 927658. [Google Scholar] [PubMed]
- Qin, X.Y.; Li, T.; Yan, L.; Liu, Q.S.; Tian, Y. Tanshinone IIA protects against immune-mediated liver injury through activation of T-cell subsets and regulation of cytokines. Immunopharmacol. Immunotoxicol. 2010, 32, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.H.; Li, Z.C.; Sun, W.L. Network analysis and experimental verification of tanshinone IIA in treatment of autoimmune hepatitis. J. Army Med. Univ. 2022, 44, 1033–1040. [Google Scholar]
- Chen, Z.D.; Pei, F.H.; Chen, L.J.; Liu, B.R. Progress on the mechanism of extracts from Salvia officinalis L. and Salvia miltiorrhiza Bunge in the treatment of ulcerative colitis. Chin. J. Clin. Gastroenterol. 2017, 29, 61–63. [Google Scholar]
- Su, L.; Su, Y.; An, Z.; Zhang, P.; Yue, Q.; Zhao, C.; Sun, X.; Zhang, S.; Liu, X.; Li, K.; et al. Fermentation products of Danshen relieved dextran sulfate sodium-induced experimental ulcerative colitis in mice. Sci. Rep. 2021, 11, 16210. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Huang, T.; Lei, Z.; Liu, F.; An, G.; Wen, T. Tanshinone IIA Protects against Dextran Sulfate Sodium- (DSS-) Induced Colitis in Mice by Modulation of Neutrophil Infiltration and Activation. Oxid. Med. Cell. Longev. 2016, 2016, 7916763. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Ma, Z.; Liang, Q.; Tang, X.; Hu, D.; Tan, H.; Xiao, C.; Gao, Y. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor. Drug Des. Devel. Ther. 2015, 9, 6343–6362. [Google Scholar]
- Fan, L.M. Effect of Cryptotanshinone on Murine Acute and Chronic Ulcerative Colitis and Its Possible Mechanism. Master’s Dissertation, Fujian University of Traditional Chinese Medicine, Fujian, China, 2020. [Google Scholar]
- Min, X.; Zeng, X.; Zhao, W.; Han, Z.; Wang, Y.; Han, Y.; Pei, L.; Chen, X. Cryptotanshinone protects dextran sulfate sodium-induced experimental ulcerative colitis in mice by inhibiting intestinal inflammation. Phytother. Res. 2020, 34, 2639–2648. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, X.; Wu, Q.; Lu, Y.; Shi, J.; Chen, X. Dihydrotanshinone I, a natural product, ameliorates DSS-induced experimental ulcerative colitis in mice. Toxicol. Appl. Pharmacol. 2018, 344, 35–45. [Google Scholar]
- Gharibi, T.; Babaloo, Z.; Hosseini, A.; Abdollahpour-Alitappeh, M.; Hashemi, V.; Marofi, F.; Nejati, K.; Baradaran, B. Targeting STAT3 in cancer and autoimmune diseases. Eur. J. Pharmacol. 2020, 878, 173107. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Tong, Q.; Liu, B.; Huang, W.; Tian, Y.; Fu, X. Targeting STAT3 in Cancer Immunotherapy. Mol. Cancer. 2020, 19, 145. [Google Scholar] [PubMed]
- Zhao, M.; Li, F.; Jian, Y.; Wang, X.; Yang, H.; Wang, J.; Su, J.; Lu, X.; Xi, M.; Wen, A.; et al. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur. J. Pharmacol. 2020, 871, 172916. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ye, Y.; Huang, Y.; Yin, W.; Yu, Z.; Wang, S. Salvianolic acid B improves autophagic dysfunction and decreases the apoptosis of cholesterol crystal-induced macrophages via inhibiting the Akt/mTOR signaling pathway. Mol. Med. Rep. 2021, 24, 763. [Google Scholar] [PubMed]
- Yuan, J. Salvianic Acid A Inhibits Induction of Inflammatory Mediators by Blocking Nuclear Factor-κB Activation in Macrophages. Master’s Dissertation, Dalian Medical University, Dalian, China, 2008. [Google Scholar]
- Guan, Y.; Li, L.; Kan, L.; Xie, Q. Inhalation of Salvianolic Acid B Prevents Fine Particulate Matter-Induced Acute Airway Inflammation and Oxidative Stress by Downregulating the LTR4/MyD88/NLRP3 Pathway. Oxid. Med. Cell Longev. 2022, 2022, 5044356. [Google Scholar] [PubMed]
- Liu, Q.; Zhu, C.L.; Li, H.R.; Xie, J.; Guo, Y.; Li, P.; Zhao, Z.Z.; Wang, J.F.; Deng, X.M. Salvianolic Acid A Protects against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting Neutrophil NETosis. Oxid. Med. Cell Longev. 2022, 2022, 7411824. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Que, W.; Fujino, M.; Tong, G.; Yan, H.; Li, X.K. Immunomodulatory effects of Salvianolic acid B in a spontaneous abortion mouse model. J. Reprod. Immunol. 2020, 137, 103075. [Google Scholar]
- Chen, L.; Hu, H.J.; Fang, Z.D.; Wang, X.T.; Sun, X.J.; Ge, X.B.; Cheng, C. Mechanistic study on the inhibition of rat thoracic aortic aneurysm by Salvianolic acid B through JAK2/STAT3 signaling pathway. J. Chin. Med. Mater. 2021, 44, 1971–1975. [Google Scholar]
- Wang, Y.L.; Ni, W. Rosmarinic acid improves cyclophosphamide-induced immunosuppression in mice by immunomodulatory and antioxidant effects. J. Food Biosci. 2023, 56, 103152. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D.; Liu, Z.; Sun, X.; Li, Y. Inhibitory effect of salvianolic acid on inflammatory mediators of rats with collagen-induced rheumatoid arthritis. Exp. Ther. Med. 2018, 16, 4037–4041. [Google Scholar] [CrossRef]
- Xia, Z.B.; Yuan, Y.J.; Zhang, Q.H.; Li, H.; Dai, J.L.; Min, J.K. Salvianolic Acid B Suppresses Inflammatory Mediator Levels by Downregulating NF-κB in a Rat Model of Rheumatoid Arthritis. Med. Sci. Monit. 2018, 24, 2524–2532. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Zhan, J.P.; Miao, X.Y.; Meng, Q.L.; Ma, J.F. Effect and mechanism of salvianolic acid B on proliferation and apoptosis of human rheumatoid arthritis synovial fibroblasts. Med. J. Chin. People’s Lib. Army 2022, 47, 334–339. [Google Scholar]
- Youn, J.; Lee, K.H.; Won, J.; Huh, S.J.; Yun, H.S.; Cho, W.G.; Paik, D.J. Beneficial effects of rosmarinic acid on suppression of collagen induced arthritis. J. Rheumatol. 2003, 30, 1203–1207. [Google Scholar]
- Hur, Y.G.; Suh, C.H.; Kim, S.; Won, J. Rosmarinic acid induces apoptosis of activated T cells from rheumatoid arthritis patients via mitochondrial pathway. J. Clin. Immunol. 2007, 27, 36–45. [Google Scholar] [PubMed]
- Baxter, A.G. The origin and application of experimental autoimmune encephalomyelitis. Nat. Rev. Immunol. 2007, 7, 904–912. [Google Scholar]
- Dong, Z.; Ma, D.; Gong, Y.; Yu, T.; Yao, G. Salvianolic acid B ameliorates CNS autoimmunity by suppressing Th1 responses. Neurosci. Lett. 2016, 619, 92–99. [Google Scholar] [CrossRef]
- Zhang, X.J.; Xu, F.; Li, Y.H.; Ma, C.G. Research Progress of Salvia Miltiorrhiza in Multiple Sclerosis. J. Shanxi Datong Univ. Nat. Sci. Edit. 2021, 37, 51–53+76. [Google Scholar]
- Diao, H.Y.; Zhu, W.; Liu, J.; Yin, S.; Wang, J.H.; Li, C.L. Salvianolic Acid A Improves Rat Kidney Injury by Regulating MAPKs and TGF-β1/Smads Signaling Pathways. Molecules 2023, 28, 3630. [Google Scholar]
- Lin, Y.; Yan, Y.; Zhang, H.F.; Chen, Y.C.; He, Y.Y.; Wang, S.B.; Fang, L.H. Salvianolic acid A alleviates renal injury in systemic lupus erythematosus induced by pristane in BALB/c mice. Acta Pharm. Sin. B 2017, 7, 159–166. [Google Scholar] [CrossRef]
- Shi, J.Q.; Wu, Z.H.; Li, Z.J.; Li, D.; Wu, P. Modulation of peripheral blood neutrophil apoptosis and O2- and NO production by Salvia miltiorrhiza in patients with lupus erythematosus. Guangdong Med. J. 2008, 29, 1222–1223. [Google Scholar]
- Wang, S.; Zhu, L.; Xu, Y.; Qin, Z.; Xu, A. Salvianolic acid B ameliorates psoriatic changes in imiquimod-induced psoriasis on BALB/c mice by inhibiting inflammatory and keratin markers via altering phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Kor. J. Physiol. Pharmacol. 2020, 24, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.W.; Cheng, Y.P.; Liu, C.Y.; Thong, H.Y.; Huang, C.J.; Lo, Y.; Wu, C.Y.; Jee, S.H. Salvianolic Acid B in Microemulsion Formulation Provided Sufficient Hydration for Dry Skin and Ameliorated the Severity of Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. Pharmaceutics 2020, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Mo, X.; Liu, J.; Yan, F.; Wang, N.; Lin, Y.; Li, H.; Zheng, Y.; Chen, D. Mechanism of danshensu-induced inhibition of abnormal epidermal proliferation in psoriasis. Eur. J. Pharmacol. 2020, 868, 172881. [Google Scholar] [PubMed]
- Zhang, M.; Li, N.; Cai, R.; Gu, J.; Xie, F.; Wei, H.; Lu, C.; Wu, D. Rosmarinic acid protects mice from imiquimod induced psoriasis-like skin lesions by inhibiting the IL-23/Th17 axis via regulating Jak2/Stat3 signaling pathway. Phytother. Res. 2021, 35, 4526–4537. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Cheng, Y.P.; Liu, C.Y.; Guo, J.W. Lithosepermic Acid Restored the Skin Barrier Functions in the Imiquimod-Induced Psoriasis-like Animal Model. Int. J. Mol. Sci. 2022, 23, 6172. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yang, Q.; Ma, Q.; Wang, B.; Wan, Z.; Chen, M.; Wu, L. Protective Effects of Salvianolic Acid A against Dextran Sodium Sulfate-Induced Acute Colitis in Rats. Nutrients 2018, 10, 791. [Google Scholar] [CrossRef]
- Govindarasu, M.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Alghamdi, S.; Bannunah, A.M.; Almehmadi, M.; Abirami, P.; Gayathiri, E.; Palani, M.; et al. Protective Effect of Salvianolic Acid B in Acetic Acid-Induced Experimental Colitis in a Mouse Mode. Processes 2021, 9, 1589. [Google Scholar] [CrossRef]
- Jin, B.R.; Chung, K.S.; Cheon, S.Y.; Lee, M.; Hwang, S.; Noh Hwang, S.; Rhee, K.J.; An, H.J. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci. Rep. 2017, 7, 46252. [Google Scholar] [CrossRef]
- Chung, C.H.; Jung, W.; Keum, H.; Kim, T.W.; Jon, S. Nanoparticles Derived from the Natural Antioxidant Rosmarinic Acid Ameliorate Acute Inflammatory Bowel Disease. ACS Nano. 2020, 14, 6887–6896. [Google Scholar]
- Marinho, S.; Illanes, M.; Ávila-Román, J.; Motilva, V.; Talero, E. Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome. Biomolecules 2021, 11, 162. [Google Scholar] [CrossRef]
- Peng, K.Y.; Gu, J.F.; Su, S.L.; Zhu, Y.; Guo, J.M.; Qian, D.W.; Duan, J.A. Salvia miltiorrhiza stems and leaves total phenolic acids combination with tanshinone protect against DSS-induced ulcerative colitis through inhibiting TLR4/PI3K/AKT/mTOR signaling pathway in mice. J. Ethnopharmacol. 2021, 264, 113052. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Zhao, X. Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia miltiorrhiza Bunge). Molecules 2024, 29, 1201. https://doi.org/10.3390/molecules29061201
Tang J, Zhao X. Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia miltiorrhiza Bunge). Molecules. 2024; 29(6):1201. https://doi.org/10.3390/molecules29061201
Chicago/Turabian StyleTang, Jiawen, and Xueying Zhao. 2024. "Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia miltiorrhiza Bunge)" Molecules 29, no. 6: 1201. https://doi.org/10.3390/molecules29061201
APA StyleTang, J., & Zhao, X. (2024). Research Progress on Regulation of Immune Response by Tanshinones and Salvianolic Acids of Danshen (Salvia miltiorrhiza Bunge). Molecules, 29(6), 1201. https://doi.org/10.3390/molecules29061201