Dynamic Intermediate-Temperature CO2 Adsorption Performance of K2CO3-Promoted Layered Double Hydroxide-Derived Adsorbents
Abstract
:1. Introduction
2. Results and Discussion
2.1. The CO2 Capture Performance of Layered Double Hydroxides (LDH) and MgO Promoted with Molten Salt
2.2. The CO2 Capture Performance of Layered Double Hydroxide Promoted with K2CO3
2.3. Fit Adsorption Process and Compared by Rate Constant
3. Materials and Methods
3.1. Synthesis of Adsorbents
3.2. Characterization of Samples
3.3. Evaluation of CO2 Adsorption Capacity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Review of technological progress in carbon dioxide capture, storage, and utilization. J. Nat. Gas Sci. Eng. 2023, 117, 205070. [Google Scholar] [CrossRef]
- Yao, J.; Han, H.; Yang, Y.; Song, Y.; Li, G. A review of recent progress of carbon capture, utilization, and storage (CCUS) in China. Appl. Sci. 2023, 13, 1169. [Google Scholar] [CrossRef]
- Liu, E.; Lu, X.; Wang, D. A systematic review of carbon capture, utilization and storage: Status, progress and challenges. Energies 2023, 16, 2865. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.A.; Zhang, J.T.; Liu, L.C.; Li, X.C.; Jia, L. Positioning and revision of CCUS technology development in China. Int. J. Greenh. Gas Control 2016, 46, 282–293. [Google Scholar] [CrossRef]
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, Z.; Zhou, Z. High-purity H2 production by sorption-enhanced water gas shift on a K2CO3-promoted Cu/MgO–Al2O3 difunctional material. Sustain. Energy Fuels 2021, 5, 3340–3350. [Google Scholar] [CrossRef]
- Reijers, R.; van Selow, E.; Cobden, P.; Boon, J.; van den Brink, R. SEWGS process cycle optimization. Energy Procedia 2011, 4, 1155–1161. [Google Scholar] [CrossRef]
- Najmi, B.; Bolland, O.; Colombo, K.E. Load-following performance of IGCC with integrated CO2 capture using SEWGS pre-combustion technology. Int. J. Greenh. Gas Control 2015, 35, 30–46. [Google Scholar] [CrossRef]
- Gazzani, M.; Macchi, E.; Manzolini, G. CO2 capture in integrated gasification combined cycle with SEWGS—Part A: Thermodynamic performances. Fuel 2013, 105, 206–219. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, H.; Cheng, Z.; Zhou, Z. Sorption-enhanced water gas shift reaction by in situ CO2 capture on an alkali metal salt-promoted MgO-CaCO3 sorbent. Chem. Eng. J. 2019, 377, 119823. [Google Scholar] [CrossRef]
- Dang, C.; Yang, W.; Zhou, J.; Cai, W. Porous Ni-Ca-Al-O bi-functional catalyst derived from layered double hydroxide intercalated with citrate anion for sorption-enhanced steam reforming of glycerol. Appl. Catal. B 2021, 298, 120547. [Google Scholar] [CrossRef]
- Xu, H.; Hu, Y.; Cheng, Z.; Zhou, Z. Production of high-purity H2 through sorption-enhanced water gas shift over a combination of two intermediate-temperature CO2 sorbents. Int. J. Hydrogen Energ. 2023, 48, 25185–25196. [Google Scholar] [CrossRef]
- Lundvall, F.; Kalantzopoulos, G.N.; Wragg, D.S.; Arstad, B.; Blom, R.; Sjåstad, A.O.; Fjellvåg, H. Characterization and evaluation of synthetic Dawsonites as CO2 sorbents. Fuel 2019, 236, 747–754. [Google Scholar] [CrossRef]
- Ryu, D.Y.; Jo, S.; Kim, T.-Y.; In, S.Y.; Kim, J.K.; Hwang, J.E.; Kim, J.C.; Lee, S.C. Influence of the sorption pressure and K2CO3 loading of a MgO-based sorbent for application to the SEWGS process. Korean J. Chem. Eng. 2022, 39, 1028–1035. [Google Scholar] [CrossRef]
- Jang, H.M.; Lee, K.B.; Caram, H.S.; Sircar, S. High-purity hydrogen production through sorption enhanced water gas shift reaction using K2CO3-promoted hydrotalcite. Chem. Eng. Sci. 2012, 73, 431–438. [Google Scholar] [CrossRef]
- Santamaría, L.; Korili, S.A.; Gil, A. Layered double hydroxides for CO2 adsorption at moderate temperatures: Synthesis and amelioration strategies. Chem. Eng. J. 2023, 455, 140551. [Google Scholar] [CrossRef]
- Jerome, M.P.; Alahmad, F.A.; Salem, M.T.; Tahir, M. Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges. J. Environ. Chem. Eng. 2022, 10, 108151. [Google Scholar] [CrossRef]
- Lim, A.M.H.; Yeo, J.W.; Zeng, H.C. Preparation of CuZn-doped MgAl-layered double hydroxide catalysts through the memory effect of hydrotalcite for effective hydrogenation of CO2 to methanol. ACS Appl. Energ. Mater. 2023, 6, 782–794. [Google Scholar] [CrossRef]
- Li, B.; Xu, Z.; Jing, F.; Luo, S.; Wang, N.; Chu, W. Improvement of catalytic stability for CO2 reforming of methane by copper promoted Ni-based catalyst derived from layered-double hydroxides. J. Energ. Chem. 2016, 25, 1078–1085. [Google Scholar] [CrossRef]
- Cheah, L.A.; Manohara, G.V.; Maroto-Valer, M.M.; Garcia, S. Impact of synthesis method and metal salt precursors on the CO2 adsorption performance of layered double hydroxides derived mixed metal oxides. Front. Energy Res. 2022, 10, 882182. [Google Scholar] [CrossRef]
- Kameda, T.; Nagano, S.; Kumagai, S.; Saito, Y.; Yoshioka, T. Enrichment of carbon dioxide using Mg–Al layered double hydroxides. Chem. Eng. Res. Des. 2023, 194, 318–324. [Google Scholar] [CrossRef]
- Singha Roy, A.; Kesavan Pillai, S.; Ray, S.S. Layered double hydroxides for sustainable agriculture and environment: An overview. ACS Omega 2022, 7, 20428–20440. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Liu, Y.; Li, D.; Lin, Y. Basic intensity regulation of layered double oxide for CO2 adsorption process at medium temperature in coal gasification. Chem. Eng. J. 2022, 446, 136842. [Google Scholar] [CrossRef]
- Chaillot, D.; Folliard, V.; Miehé-Brendlé, J.; Auroux, A.; Dzene, L.; Bennici, S. Basic properties of MgAl-mixed oxides in CO2 adsorption at high temperature. Materials 2023, 16, 5698. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, A.; Ali, S.; Asif, M.; In, S.-I. Layered double hydroxide (LDH) based photocatalysts: An outstanding strategy for efficient photocatalytic CO2 conversion. Catalysts 2020, 10, 1185. [Google Scholar] [CrossRef]
- Chaillot, D.; Bennici, S.; Brendlé, J. Layered double hydroxides and LDH-derived materials in chosen environmental applications: A review. Environ. Sci. Pollut. Res. 2020, 28, 24375–24405. [Google Scholar] [CrossRef]
- Manohara, G.V.; Maroto-Valer, M.M.; Garcia, S. The effect of the layer-interlayer chemistry of LDHs on developing high temperature carbon capture materials. Dalton Trans. 2020, 49, 923–931. [Google Scholar] [CrossRef]
- Matsuda, K.; Iio, N.; Kawashimo, M.; Okuda, A.; Fukuzaki, R.; Tarutani, N.; Katagiri, K.; Inumaru, K. Comprehensive analysis of the chemical and structural transformations of Mg–Al–CO3 layered double hydroxides with different Mg/Al ratios at elevated temperatures. Inorg. Chem. 2023, 62, 17276–17287. [Google Scholar] [CrossRef]
- Santamaría, L.; Korili, S.A.; Gil, A. Metal-Al layered double hydroxides synthesized from aluminum slags as efficient CO2 adsorbents at pre- and post-combustion temperature. J. Environ. Chem. Eng. 2023, 11, 110936. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, S.; Li, G.; Guo, A.; Tang, Y. Super rapid preparation of biodiesel over highly dispersed K2CO3 supported by LDH. Int. J. Chem. Kinet. 2023, 56, 20–29. [Google Scholar] [CrossRef]
- Zhenissova, A.; Micheli, F.; Rossi, L.; Stendardo, S.; Foscolo, P.U.; Gallucci, K. Experimental evaluation of Mg- and Ca-based synthetic sorbents for CO2 capture. Chem. Eng. Res. Des. 2014, 92, 727–740. [Google Scholar] [CrossRef]
- Abbasi, E.; Hassanzadeh, A.; Zarghami, S.; Arastoopour, H.; Abbasian, J. Regenerable MgO-based sorbent for high temperature CO2 removal from syngas: 3. CO2 capture and sorbent enhanced water gas shift reaction. Fuel 2014, 137, 260–268. [Google Scholar] [CrossRef]
- Lee, S.C.; Cha, S.H.; Kwon, Y.M.; Park, M.G.; Hwang, B.W.; Park, Y.K.; Seo, H.M.; Kim, J.C. Effects of alkali-metal carbonates and nitrates on the CO2 sorption and regeneration of MgO-based sorbents at intermediate temperatures. Korean J. Chem. Eng. 2016, 33, 3448–3455. [Google Scholar] [CrossRef]
- Papalas, T.; Antzaras, A.N.; Lemonidou, A.A. Magnesite-derived MgO promoted with molten salts and limestone as highly-efficient CO2 sorbent. J. CO2 Util. 2021, 53, 101725. [Google Scholar] [CrossRef]
- Ding, J.; Yu, C.; Lu, J.; Wei, X.; Wang, W.; Pan, G. Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates. Appl. Energy 2020, 263, 114681. [Google Scholar] [CrossRef]
- Jo, S.-I.; An, Y.-I.; Kim, K.-Y.; Choi, S.-Y.; Kwak, J.-S.; Oh, K.-R.; Kwon, Y.-U. Mechanisms of absorption and desorption of CO2 by molten NaNO3-promoted MgO. Phys. Chem. Chem. Phys. 2017, 19, 6224–6232. [Google Scholar] [CrossRef]
- Wang, Q.; Tay, H.H.; Zhong, Z.; Luo, J.; Borgna, A. Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity. Energ. Environ. Sci. 2012, 5, 7526–7530. [Google Scholar] [CrossRef]
- Li, S.; Shi, Y.; Yang, Y.; Zheng, Y.; Cai, N. High-performance CO2 adsorbent from interlayer potassium-promoted stearate-pillared hydrotalcite precursors. Energy Fuels 2013, 27, 5352–5358. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, J.; Zhou, T.; Zheng, Q.; Huang, L.; Zhang, Y.; Lu, P.; Umar, A.; Louis, B.; Wang, Q. Impact of organic interlayer anions on the CO2 adsorption performance of Mg-Al layered double hydroxides derived mixed oxides. J. Energy Chem. 2017, 26, 346–353. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, J.; Zhang, Y.; Gao, W.; Harada, T.; Huang, L.; Hatton, T.A.; Wang, Q. Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 Capture: Optimization of the Li/Na/K ratio. Ind. Eng. Chem. Res. 2017, 56, 1509–1517. [Google Scholar] [CrossRef]
- Maroño, M.; Torreiro, Y.; Gutierrez, L. Influence of steam partial pressures in the CO2 capture capacity of K-doped hydrotalcite-based sorbents for their application to SEWGS processes. Int. J. Greenh. Gas Control. 2013, 14, 183–192. [Google Scholar] [CrossRef]
- Gallucci, K.; Micheli, F.; Poliandri, A.; Rossi, L.; Foscolo, P.U. CO2 sorption by hydrotalcite-like compounds in dry and wet conditions. Int. J. Chem. React. Eng. 2015, 13, 335–349. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, Y.; Jones, C.W. NaNO3-promoted mesoporous MgO for high-capacity CO2 capture from simulated flue gas with isothermal regeneration. ChemSusChem 2020, 13, 2988–2995. [Google Scholar] [CrossRef]
- Arstad, B.; Blom, R.; Håkonsen, S.F.; Pierchala, J.; Cobden, P.; Lundvall, F.; Kalantzopoulos, G.N.; Wragg, D.; Fjellvåg, H.; Sjåstad, A.O. Synthesis and evaluation of K-promoted Co3-xMgxAl-oxides as solid CO2 sorbents in the sorption-enhanced water−gas shift (SEWGS) reaction. Ind. Eng. Chem. Res. 2020, 59, 17837–17844. [Google Scholar] [CrossRef]
- Harada, T.; Simeon, F.; Hamad, E.Z.; Hatton, T.A. Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures. Chem. Mater. 2015, 27, 1943–1949. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, C.; Wang, Q.; Shi, Y.; O’Hare, D.; Cai, N. Roles for K2CO3 doping on elevated temperature CO2 adsorption of potassium promoted layered double oxides. Chem. Eng. J. 2019, 366, 181–191. [Google Scholar] [CrossRef]
- Coenen, K.; Gallucci, F.; Mezari, B.; Hensen, E.; van Sint Annaland, M. An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J. CO2 Util. 2018, 24, 228–239. [Google Scholar] [CrossRef]
Samples | BET SSA (m2/g) | BJH Pore Size (nm) | BJH Pore Volume (cm3/g) |
---|---|---|---|
MgAl–LDH | 194.29 | 22.52 | 1.09 |
MgAl–LDH(C16) | 122.28 | 14.12 | 0.43 |
0.1(Li0.2Na0.14K0.52)NO3/MgO | 13.11 | 61.16 | 0.2 |
Samples | BET SSA (m2/g) | BJH Pore Size (nm) | BJH Pore Volume (cm3/g) |
---|---|---|---|
12.5 wt% K2CO3/MgAl–LDH | 100.59 | 31.3 | 0.78 |
25 wt% K2CO3/MgAl–LDH | 65.95 | 36.3 | 0.59 |
12.5 wt% K2CO3/MgAl–LDH(C16) | 10.59 | 57.82 | 0.15 |
25 wt% K2CO3/MgAl–LDH(C16) | 5.43 | 73.78 | 0.1 |
Samples | k1 (s−1) | k2 (s−1) | R2 |
---|---|---|---|
25 wt% K2CO3/MgAl–LDH | 0.0179 | 0.00081 | 0.9886 |
12.5 wt% K2CO3/MgAl–LDH(C16) | 0.0114 | 0.00064 | 0.9954 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Hu, X.; Huang, L.; Musyoka, N.M.; Xue, T.; Wang, Q. Dynamic Intermediate-Temperature CO2 Adsorption Performance of K2CO3-Promoted Layered Double Hydroxide-Derived Adsorbents. Molecules 2024, 29, 1192. https://doi.org/10.3390/molecules29061192
Li R, Hu X, Huang L, Musyoka NM, Xue T, Wang Q. Dynamic Intermediate-Temperature CO2 Adsorption Performance of K2CO3-Promoted Layered Double Hydroxide-Derived Adsorbents. Molecules. 2024; 29(6):1192. https://doi.org/10.3390/molecules29061192
Chicago/Turabian StyleLi, Ruotong, Xixuan Hu, Liang Huang, Nicholas Mulei Musyoka, Tianshan Xue, and Qiang Wang. 2024. "Dynamic Intermediate-Temperature CO2 Adsorption Performance of K2CO3-Promoted Layered Double Hydroxide-Derived Adsorbents" Molecules 29, no. 6: 1192. https://doi.org/10.3390/molecules29061192
APA StyleLi, R., Hu, X., Huang, L., Musyoka, N. M., Xue, T., & Wang, Q. (2024). Dynamic Intermediate-Temperature CO2 Adsorption Performance of K2CO3-Promoted Layered Double Hydroxide-Derived Adsorbents. Molecules, 29(6), 1192. https://doi.org/10.3390/molecules29061192