Effective Removal of Cd from Aqueous Solutions Using P-Loaded Ca-Mn-Impregnated Biochar
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Properties of Ps-CMBC
2.2. Kinetics Experiment
2.3. Isotherm Experiments
2.4. Zeta Potential of Biochar
2.5. Effect of pH
2.6. Adsorption Thermodynamics
2.7. The Surface Characterization
3. Materials and Methods
3.1. Reagents and Analysis Equipment
3.2. Ca-Mn-Impregnated Biochar (CMBC) Preparation
3.3. Characterization
3.4. Adsorption Experiments
3.4.1. Kinetics Experiment
3.4.2. Isotherms Experiment
3.4.3. Effect of pH on Cd Adsorption
3.4.4. Adsorption Thermodynamics
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.Y.; Ji, H.Y.; Lyu, H.H.; Liu, Y.X.; He, L.L.; You, L.C.; Zhou, C.H.; Yang, S.M. Simultaneous alleviation of Sb and Cd availability in contaminated soil and accumulation in Lolium multiflorum Lam. After amendment with Fe-Mn-modified biochar. J. Clean. Prod. 2019, 231, 556–564. [Google Scholar] [CrossRef]
- Wang, H.Y.; Gao, B.; Wang, S.S.; Fang, J.; Xue, Y.W.; Yang, K. Removal of Pb (II), Cu (II), and Cd (II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresour. Technol. 2015, 197, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.P.; Yang, X.; Wang, X.P.; Wang, Z.X.; Li, M.; Zhao, F.J. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Sci. Total Environ. 2018, 639, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; He, F.F.; Shen, X.Y.; Hu, D.W.; Huang, Q. Pyrolyzed fabrication of N/P co-doped biochars from (NH4)3PO4-pretreated coffee shells and appraisement for remedying aqueous Cr (VI) contaminants. Bioresour. Technol. 2020, 315, 123840. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.B.; Gao, P.; Chu, G.; Pan, B.; Peng, J.H.; Xing, B.S. Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ. Pollut. 2017, 229, 846–853. [Google Scholar] [CrossRef]
- Gong, X.M.; Huang, D.L.; Liu, Y.G.; Peng, Z.W.; Zeng, G.M.; Xu, P.; Cheng, M.; Wang, R.Z.; Wan, J. Remediation of contaminated soils by biotechnology with nanomaterials: Bio-behavior, applications, and perspectives. Crit. Rev. Biotechnol. 2017, 38, 455–468. [Google Scholar] [CrossRef]
- Karunanayake, A.G.; Todd, O.A.; Crowley, M.; Ricchetti, L.; Pittman, C.U.; Anderson, R.; Mohan, D.; Mlsna, T. Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chem. Eng. J. 2018, 331, 480–491. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. J. Colloid Interface Sci. 2017, 513, 72–81. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, J.W.; Song, K.G.; Choi, K.; Lee, Y.J.; Jung, K.W. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis. Compos. Part B Eng. 2019, 176, 107209. [Google Scholar] [CrossRef]
- Guo, X.J.; Chen, R.R.; Liu, Q.; Liu, J.Y.; Zhang, H.S.; Yu, J.; Li, R.M.; Zhang, M.L.; Wang, J. Graphene oxide and silver ions coassisted zeolitic imidazolate framework for antifouling and Uranium enrichment from seawater. ACS. Sustain. Chem. Eng. 2019, 7, 6185–6195. [Google Scholar] [CrossRef]
- Kulakova, I.I.; Lisichkin, G.V. Prospects for using graphene nanomaterials: Sorbents, membranes, and gas sensors. Russ. J. Appl. Chem. 2021, 94, 1177–1188. [Google Scholar] [CrossRef]
- Wu, J.W.; Wang, T.; Zhang, Y.S.; Pan, W.P. The distribution of Pb (II)/Cd (II) adsorption mechanisms on biochars from aqueous solution: Considering the increased oxygen functional groups by HCl treatment. Bioresour. Technol. 2019, 291, 121859. [Google Scholar] [CrossRef]
- Leng, L.J.; Huang, H.J. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresour. Technol. 2018, 270, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.A.; Lu, L.; He, H.J.; Li, J.X.; Zhu, Z.Q.; Zhu, Y.N. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review. Sustainability 2021, 13, 14041. [Google Scholar] [CrossRef]
- Qiu, B.B.; Tao, X.D.; Wang, H.; Li, W.K.; Ding, X.; Chu, H.Q. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrol. 2021, 155, 105081. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Zhang, X.X.; Li, Y.F.; Han, L.J. Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure. Bioresour. Technol. 2020, 302, 122850. [Google Scholar] [CrossRef]
- Xu, C.B.; Tan, X.; Zhao, J.W.; Cao, J.M.; Ren, M.; Xiao, Y.; Lin, A.J. Optimization of biochar production based on environmental risk and remediation performance: Take kitchen waste for example. J. Hazard. Mater. 2021, 416, 125785. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.L.; Liu, W.J.; Zhang, S.; Jiang, H. Magnesium oxide embedded nitrogen self-doped biochar composites: Fast and high-efficiency adsorption of heavy metals in an aqueous solution. Environ. Sci. Technol. 2017, 51, 10081. [Google Scholar] [CrossRef]
- Li, X.Y.; Peng, P.Q.; Long, J.; Dong, X.; Jiang, K.; Hou, H.B. Plant-induced insoluble Cd mobilization and Cd redistribution among different rice cultivars. J. Clean. Prod. 2020, 256, 120494. [Google Scholar] [CrossRef]
- Lin, L.N.; Song, Z.G.; Khan, Z.H.; Liu, X.W.; Qiu, W.W. Enhanced As (III) removal from aqueous solution by Fe-Mn-La-impregnated biochar composites. Sci. Total. Environ. 2019, 315, 123840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shao, J.G.; Zhang, S.H.; Zhang, X.; Chen, H.P. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 2019, 390, 121349. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.L.; Fu, Q.L.; Hu, H.Q.; Wang, Q.; Liu, Y.H.; Zhu, J. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. J. Hazard. Mater. 2019, 371, 191–197. [Google Scholar] [CrossRef]
- Hu, R.; Xiao, J.; Wang, T.H.; Chen, G.C.; Chen, L.; Tian, X.Y. Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem. Eng. J. 2020, 379, 122388. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Xiao, Z.H.; Zhang, G.L.; Wang, A.D.; Li, Z.H.; Liu, Y.H.; Wang, H.; Zeng, Q.R.; Liang, Y.S.; Zou, D.S. Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. J. Anal. Appl. Pyrol. 2018, 132, 82–93. [Google Scholar] [CrossRef]
- Wang, C.W.; Qiu, C.; Song, Z.G.; Gao, M.L. A novel Ca/Mn modified biochar recycles P from solution: Mechanisms and phosphate efficiency. Environ. Sci. Proc. Imp. 2022, 24, 474–485. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy 2012, 5, 104–115. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Ucar, S.; Yanik, J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrol. 2016, 120, 200–206. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.T.; Xiao, Q.; Lu, S.G. Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: Cadmium immobilization mechanisms and environmental implication. Bioresour. Technol. 2020, 321, 124459. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Z.; Huang, D.L.; Liu, Y.G.; Zhang, C.; Lai, C.; Zeng, G.M.; Cheng, M.; Gong, X.M.; Wan, J.; Luo, H. Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour. Technol. 2018, 261, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X.D. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Chen, H.Y.; Li, W.Y.; Wang, J.J.; Xu, H.J.; Liu, Y.L.; Zhang, Z.; Li, Y.T.; Zhang, Y.L. Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather: Selective adsorption and influence of dissolved organic matter. Bioresour. Technol. 2019, 292, 121948. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Joshi, P.; Manocha, S. Sorption of cadmium ions onto synthetic hydroxyapatite nanoparticles. Mater. Today 2017, 4, 10460–10464. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, M.L.; Li, Y.P.; Liu, Y.H.; Chen, Y.R.; Li, H.; Li, L.S.Z.; Xu, F.T.; Jiang, H.J.; Chen, L. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresour. Technol. 2021, 321, 124413. [Google Scholar] [CrossRef]
- Kirby, B.J.; Hasselbrink, E.F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 2010, 25, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.J.; Li, J.Y.; Yuan, J.H.; Xu, R.K. Adsorption of Cu (II) by biochars generated from three crop straws. Chem. Eng. J. 2011, 172, 828–834. [Google Scholar] [CrossRef]
- Wang, R.Z.; Huang, D.L.; Liu, Y.G.; Peng, Z.W.; Zeng, G.M.; Lai, C.; Xu, P.; Huang, C.; Zhang, C.; Gong, X.M. Selective removal of BPA from aqueous solution using molecularly imprinted polymers based on magnetic graphene oxide. RSC Adv. 2016, 6, 106201–106210. [Google Scholar] [CrossRef]
- Zhou, Q.W.; Liao, B.H.; Lin, L.N.; Qiu, W.W.; Song, Z.G. Adsorption of Cu (II) and Cd (II) from aqueous solutions by ferromanganese binary oxide-biochar composites. Sci. Total Environ. 2018, 615, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, X.B.; Wang, X.L.; Feng, K.; Su, J.C.; Dong, J.N. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci. Total Environ. 2020, 714, 136550. [Google Scholar] [CrossRef]
- Yan, L.G.; Yang, K.; Shan, R.R.; Yan, T.; Wei, J.; Yu, S.J.; Yu, H.Q.; Du, B. Kinetic, isotherm and thermodynamic investigations of phosphate adsorption onto core–shell Fe3O4@LDHs composites with easy magnetic separation assistance. J. Colloid Interface Sci. 2015, 448, 508–516. [Google Scholar] [CrossRef]
- Tan, Z.X.; Yuan, S.N.; Hong, M.F.; Zhang, L.M.; Huang, Q.Y. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J. Hazard. Mater. 2019, 384, 121370. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Zhang, J.; Mu, Y.; Gao, J.H.; Feng, Y.L.; Liu, H.; Guo, Z.Z.; Zhang, C.L. Preparation and evaluation of activated carbon with different polycondensed phosphorus oxyacids (H3PO4, H4P2O7, H6P4O13 and C6H18O24P6) activation employing mushroom roots as precursor. J. Anal. Appl. Pyrol. 2014, 108, 41–46. [Google Scholar] [CrossRef]
- Tao, Q.; Chen, Y.X.; Zhao, J.W.; Li, B.; Li, Y.H.; Tao, S.Y.; Li, M.; Li, Q.Q.; Xu, Q.; Li, Y.D.; et al. Enhanced Cd removal from aqueous solution by biologically modified biochar derived from digestion residue of corn straw silage. Sci. Total. Environ. 2019, 674, 213–222. [Google Scholar] [CrossRef] [PubMed]
Adsorbent | Physical Properties | Elemental Contents (%) | H/C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SBET (m2·g−1) | Pore Volume (cm3·g−1) | Pore Size (nm) | pH | C | O | H | N | S | Ash | ||
BC | 43.42 | 0.041 | 1.569 | 9.88 | 71.60 | 20.96 | 3.33 | 2.93 | 0.18 | 15.03 | 0.046 |
CMBC | 162.01 | 0.131 | 2.558 | 9.62 | 68.25 | 24.95 | 2.97 | 2.66 | 0.17 | 21.57 | 0.044 |
P25-CMBC | 81.63 | 0.079 | 1.806 | 9.03 | 67.32 | 26.61 | 3.27 | 1.62 | 0.31 | 17.82 | 0.049 |
P50-CMBC | 75.15 | 0.061 | 1.695 | 9.27 | 65.94 | 27.99 | 3.32 | 1.85 | 0.25 | 18.26 | 0.050 |
P75-CMBC | 66.59 | 0.063 | 1.688 | 9.15 | 64.14 | 29.67 | 3.29 | 1.61 | 0.59 | 17.53 | 0.051 |
Adsorbents | Pseudo-First-Order | Pseudo-Second-Order | Elovich | ||||||
---|---|---|---|---|---|---|---|---|---|
Qe (mg·g−1) | K1 | R2 | Qe (mg·g−1) | K2 | R2 | α | β | R2 | |
BC | 17.43 | 0.137 | 0.946 | 17.39 | 0.018 | 0.952 | 41.66 | 0.489 | 0.951 |
CMBC | 19.71 | 0.105 | 0.914 | 19.95 | 0.012 | 0.972 | 74.79 | 0.470 | 0.965 |
P25-CMBC | 29.12 | 0.113 | 0.932 | 29.30 | 0.009 | 0.985 | 273.65 | 0.357 | 0.931 |
P50-CMBC | 36.10 | 0.121 | 0.941 | 35.47 | 0.011 | 0.964 | 832.59 | 0.318 | 0.896 |
P75-CMBC | 38.81 | 0.157 | 0.951 | 39.18 | 0.009 | 0.977 | 1149.4 | 0.298 | 0.908 |
Adsorbents | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qm (mg·g−1) | KL (L·mg−1) | R2 | 1/n | KF | R2 | |
BC | 22.05 | 0.303 | 0.961 | 0.275 | 7.029 | 0.927 |
CMBC | 24.51 | 0.292 | 0.973 | 0.273 | 7.896 | 0.947 |
P25-CMBC | 40.01 | 0.184 | 0.983 | 0.354 | 9.336 | 0.954 |
P50-CMBC | 56.70 | 0.168 | 0.955 | 0.281 | 17.403 | 0.957 |
P75-CMBC | 70.13 | 0.193 | 0.971 | 0.306 | 20.042 | 0.958 |
Adsorbents | Temperature (K) | ΔG0 (kJ/mol) | ΔH0 (kJ/mol) | ΔS0 (kJ/(mol·K)) |
---|---|---|---|---|
BC | 288.15 | −24.66 | 8.07 | 0.108 |
298.15 | −25.89 | |||
308.15 | −26.93 | |||
CMBC | 288.15 | −24.56 | 11.16 | 0.124 |
298.15 | −25.78 | |||
308.15 | −27.04 | |||
P25-CMBC | 288.15 | −23.33 | 12.03 | 0.123 |
298.15 | −24.63 | |||
308.15 | −25.79 | |||
P50-CMBC | 288.15 | −23.08 | 17.22 | 0.139 |
298.15 | −24.41 | |||
308.15 | −25.88 | |||
P75-CMBC | 288.15 | −22.72 | 18.66 | 0.143 |
298.15 | −24.16 | |||
308.15 | −25.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Wang, C.; Liu, Q.; Gao, M.; Song, Z. Effective Removal of Cd from Aqueous Solutions Using P-Loaded Ca-Mn-Impregnated Biochar. Molecules 2023, 28, 7553. https://doi.org/10.3390/molecules28227553
Qiu C, Wang C, Liu Q, Gao M, Song Z. Effective Removal of Cd from Aqueous Solutions Using P-Loaded Ca-Mn-Impregnated Biochar. Molecules. 2023; 28(22):7553. https://doi.org/10.3390/molecules28227553
Chicago/Turabian StyleQiu, Cheng, Chengwei Wang, Qinghai Liu, Minling Gao, and Zhengguo Song. 2023. "Effective Removal of Cd from Aqueous Solutions Using P-Loaded Ca-Mn-Impregnated Biochar" Molecules 28, no. 22: 7553. https://doi.org/10.3390/molecules28227553
APA StyleQiu, C., Wang, C., Liu, Q., Gao, M., & Song, Z. (2023). Effective Removal of Cd from Aqueous Solutions Using P-Loaded Ca-Mn-Impregnated Biochar. Molecules, 28(22), 7553. https://doi.org/10.3390/molecules28227553