Flame Retardancy of Short Flax Fibers Modified by Radiation-Induced Grafting of Phosphonated Monomers: Comparison between Pre- and Simultaneous Irradiation Grafting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Irradiation on Flax Fibers
2.2. Pre-Irradiation Grafting
2.3. Simultaneous-Irradiation Grafting
2.4. Comparison between Pre- and Simultaneous Irradiation
2.5. Effect on the Flammability of SFF
3. Materials and Methods
3.1. Materials
3.2. Grafting Procedure
3.2.1. Irradiation of the Fibers
3.2.2. Pre-Irradiation (PI) Grafting
3.2.3. Simultaneous Irradiation (SI) Grafting
3.3. Characterization
3.3.1. Electron Paramagnetic Resonance (EPR) Spectroscopy
3.3.2. X-ray Fluorescence Spectrometry
3.3.3. Scanning Electron Microscopy (SEM) Coupled with an Energy Dispersive X-ray Spectrometer (EDX)
3.3.4. Pyrolysis Combustion Flow Calorimetry (PCFC)
3.3.5. Cone Calorimetry
4. Conclusions
- The type of irradiation (γ rays or e-Beam) does not influence the grafted amount in pre-irradiation but strongly influences the results obtained by simultaneous irradiation. In the latter case, using e-Beam led to a higher phosphorus content.
- Regarding final phosphorus content, simultaneous irradiation grafting is more effective than pre-irradiation grafting, especially at low doses. While phosphorus content reached around 1.03 ± 0.31 wt% at a low dose of 10 kGy in pre-irradiation, 2.38 ± 0.30 wt% was obtained at the same dose using simultaneous irradiation.
- SEM-EDX mapping proved that the location of the grafted molecules differs from the grafting methodology. In pre-irradiation, the phosphorus was homogeneously dispersed in the cross-section of the elementary flax fibers. In contrast, phosphorus was mainly located at the surface and around the fibers in simultaneous irradiation.
- Unlike previous work, flammability was not only controlled by the phosphorus content but also by the operating conditions. For 50 kGy and at equivalent phosphorus content, simultaneous irradiation led to better results than pre-irradiation on both the micro scale and the bench scale. Two complementary explanations can be proposed. First, the location of phosphorus (which depends on the grafting methodology) plays a role in flammability. Second, the irradiation of plant fibers followed by exposure to an acidic solution during the pre-irradiation grafting reaction causes the substrate’s deterioration, affecting its final properties.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilinç, A.Ç.; Durmuşkahya, C.; Seydibeyoğlu, M.Ö. Natural fibers. In Fiber Technology for Fiber-Reinforced Composites; Woodhead Publishing: Sawston, UK, 2017; pp. 209–235. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Ismadi; Amin, Y.; Damayanti, R.; Lubis, M.A.R.; Wulandari, A.P.; Nurindah; Iswanto, A.H.; et al. A Comprehensive Review on Natural Fibers: Technological and Socio-Economical Aspects. Polymers 2021, 13, 4280. [Google Scholar] [CrossRef]
- Sen, T.; Reddy, H.N.J. Various Industrial Applications of Hemp, Kinaf, Flax and Ramie Natural Fibres. Int. J. Innov. Manag. Technol. 2011, 2, 192–198. [Google Scholar]
- Sanjay, M.R.; Arpitha, G.R.; Naik, L.L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016, 7, 108–114. [Google Scholar] [CrossRef]
- Joshi, S.; Drzal, L.; Mohanty, A.; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Qamar, H.; Ilyas, M.; Shabbir, G.; Irshad, G.; Nisar, F.; Abbas, S.M.; Ghias, M.; Arshad, A. Flax: Ancient to modern food. Pure Appl. Biol. 2019, 8, 2269–2276. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Morvan, C.; Andème-Onzighi, C.; Girault, R.; Himmelsbach, D.S.; Driouich, A.; Akin, D.E. Building flax fibres: More than one brick in the walls. Plant Physiol. Biochem. 2003, 41, 935–944. [Google Scholar] [CrossRef]
- Sadrmanesh, V.; Chen, Y. Bast fibres: Structure, processing, properties, and applications. Int. Mater. Rev. 2019, 64, 381–406. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019, 38, 323–339. [Google Scholar] [CrossRef]
- Chai, M.W.; Bickerton, S.; Bhattacharyya, D.; Das, R. Influence of natural fibre reinforcements on the flammability of bio-derived composite materials. Compos. Part B Eng. 2012, 43, 2867–2874. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Reihmane, S.; Gassan, J. Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 1996, 59, 1329–1336. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Cruz, J.; Fangueiro, R. Surface Modification of Natural Fibers: A Review. Procedia Eng. 2016, 155, 285–288. [Google Scholar] [CrossRef]
- Zubair, N.A.; Moawia, R.M.; Nasef, M.M.; Hubbe, M.; Zakeri, M. A Critical Review on Natural Fibers Modifications by Graft Copolymerization for Wastewater Treatment. J. Polym. Environ. 2022, 30, 1199–1227. [Google Scholar] [CrossRef]
- Chapiro, A. Radiation induced grafting. Radiat. Phys. Chem. 1977, 9, 55–67. [Google Scholar] [CrossRef]
- Cemmi, A.; Di Sarcina, I.; D’Orsi, B. Gamma radiation-induced effects on paper irradiated at absorbed doses common for cultural heritage preservation. Radiat. Phys. Chem. 2023, 202, 110452. [Google Scholar] [CrossRef]
- Alberti, A.; Bertini, S.; Gastaldi, G.; Iannaccone, N.; Macciantelli, D.; Torri, G.; Vismara, E. Electron beam irradiated textile cellulose fibres. Eur. Polym. J. 2005, 41, 1787–1797. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, S.R.; Kronfli, E. γ-radiation-induced emulsion graft copolymerization of MMA onto jute fiber. Adv. Polym. Technol. 2002, 21, 132–140. [Google Scholar] [CrossRef]
- Reddy, P.R.S.; Agathian, G.; Kumar, A. Ionizing radiation graft polymerized and modified flame retardant cotton fabric. Radiat. Phys. Chem. 2005, 72, 511–516. [Google Scholar] [CrossRef]
- Madrid, J.F.; Nuesca, G.M.; Abad, L.V. Gamma radiation-induced grafting of glycidyl methacrylate (GMA) onto water hyacinth fibers. Radiat. Phys. Chem. 2013, 85, 182–188. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Viretto, A.; Apolinario, G.; Ienny, P. Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds. Eur. Polym. J. 2015, 68, 313–325. [Google Scholar] [CrossRef]
- Teixeira, M.; Sonnier, R.; Otazaghine, B.; Ferry, L.; Aubert, M.; Tirri, T.; Wilén, C.E.; Rouif, S. Radiation-grafting of flame retardants on flax fabrics—A comparison between different flame retardant structures. Radiat. Phys. Chem. 2018, 145, 135–142. [Google Scholar] [CrossRef]
- Hajj, R.; El Hage, R.; Sonnier, R.; Otazaghine, B.; Rouif, S.; Nakhl, M.; Lopez-Cuesta, J.-M. Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy. React. Funct. Polym. 2020, 153, 104612. [Google Scholar] [CrossRef]
- Takács, E.; Wojnárovits, L.; Borsa, J.; Rácz, I. Hydrophilic/hydrophobic character of grafted cellulose. Radiat. Phys. Chem. 2010, 79, 467–470. [Google Scholar] [CrossRef]
- Taibi, J.; Rouif, S.; Clément, J.-L.; Ameduri, B.; Sonnier, R.; Otazaghine, B. Flame retardancy of flax fibers by pre-irradiation grafting of a phosphonate monomer. Ind. Crops Prod. 2022, 176, 114334. [Google Scholar] [CrossRef]
- Kumar, V.; Bhardwaj, Y.K.; Rawat, K.P.; Sabharwal, S. Radiation-induced grafting of vinylbenzyltrimethylammonium chloride (VBT) onto cotton fabric and study of its anti-bacterial activities. Radiat. Phys. Chem. 2005, 73, 175–182. [Google Scholar] [CrossRef]
- Takács, E.; Mirzadeh, H.; Wojnárovits, L.; Borsa, J.; Mirzataheri, M.; Benke, N. Comparison of simultaneous and pre-irradiation grafting of N-vinylpyrrolidone to cotton-cellulose. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 265, 217–220. [Google Scholar] [CrossRef]
- Benke, N.; Takács, E.; Wojnárovits, L.; Borsa, J. Pre-irradiation grafting of cellulose and slightly carboxymethylated cellulose (CMC) fibres. Radiat. Phys. Chem. 2007, 76, 1355–1359. [Google Scholar] [CrossRef]
- Hajj, R.; Otazaghine, B.; Sonnier, R.; El Hage, R.; Rouif, S.; Nakhl, M.; Lopez-Cuesta, J.M. Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics. Polym. Degrad. Stab. 2019, 166, 86–98. [Google Scholar] [CrossRef]
- Liu, J.; Zhai, M.; Ha, H. Pre-irradiation grafting of temperature sensitive hydrogel on cotton cellulose fabric. Radiat. Phys. Chem. 1999, 55, 55–59. [Google Scholar] [CrossRef]
- Le Moigne, N.; Sonnier, R.; El Hage, R.; Rouif, S. Radiation-induced modifications in natural fibres and their biocomposites: Opportunities for controlled physico-chemical modification pathways? Ind. Crops Prod. 2017, 109, 199–213. [Google Scholar] [CrossRef]
- Choi, H.Y.; Han, S.O.; Lee, J.S. Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers. Appl. Surf. Sci. 2008, 255, 2466–2473. [Google Scholar] [CrossRef]
- Takács, E.; Wojnárovits, L.; Borsa, J.; Papp, J.; Hargittai, P.; Korecz, L. Modification of cotton-cellulose by preirradiation grafting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 236, 259–265. [Google Scholar] [CrossRef]
- Iller, E.; Kukiełka, A.; Stupińska, H.; Mikołajczyk, W. Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiat. Phys. Chem. 2002, 63, 253–257. [Google Scholar] [CrossRef]
- Desmet, G.; Takács, E.; Wojnárovits, L.; Borsa, J. Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat. Phys. Chem. 2011, 80, 1358–1362. [Google Scholar] [CrossRef]
- Saber, S.E.M.; Abdullah, L.C.; Ming Ting, T.; Md Jamil, S.N.A.; Choong, T.S.Y.; Abdulkareem-Alsultan, G. Radiation-induced grafting of glycidyl methacrylate onto natural cotton fibers and trimethylamine modification for p-nitrophenol adsorption. Radiat. Phys. Chem. 2023, 209, 110967. [Google Scholar] [CrossRef]
- Tataru, G.; Guibert, K.; Labbé, M.; Léger, R.; Rouif, S.; Coqueret, X. Modification of flax fiber fabrics by radiation grafting: Application to epoxy thermosets and potentialities for silicone-natural fibers composites. Radiat. Phys. Chem. 2020, 170, 108663. [Google Scholar] [CrossRef]
- Bernard, O.R.; Gagnaire, D.; Servoz-Gavin, P. Mise en évidence de radicaux libres de nature différente formés dans l’irradiation aux rayons gamma de la cellulose: Application à la greffe. J. Chim. Phys. 1963, 60, 1348–1354. [Google Scholar] [CrossRef]
- Ghimire, K.N.; Inoue, K.; Yamaguchi, H.; Makino, K.; Miyajima, T. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 2003, 37, 4945–4953. [Google Scholar] [CrossRef]
- Hajj, R.; El Hage, R.; Sonnier, R.; Otazaghine, B.; Gallard, B.; Rouif, S.; Nakhl, M.; Lopez-Cuesta, J.-M. Grafting of phosphorus flame retardants on flax fabrics: Comparison between two routes. Polym. Degrad. Stab. 2018, 147, 25–34. [Google Scholar] [CrossRef]
- Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J.M. Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, S.R.; Kronfli, E. γ-Radiation Induced Changes in the Physical and Chemical Properties of Lignocellulose. Biomacromolecules 2006, 7, 2303–2309. [Google Scholar] [CrossRef] [PubMed]
- Lenihan, P.; Orozco, A.; O’Neill, E.; Ahmad, M.N.M.; Rooney, D.W.; Walker, G.M. Dilute acid hydrolysis of lignocellulosic biomass. Chem. Eng. J. 2010, 156, 395–403. [Google Scholar] [CrossRef]
- Zaldivar, J.; Nielsen, J.; Olsson, L. Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 2001, 56, 17–34. [Google Scholar] [CrossRef]
- Tissot, C.; Grdanovska, S.; Barkatt, A.; Silverman, J.; Al-Sheikhly, M. On the mechanisms of the radiation-induced degradation of cellulosic substances. Radiat. Phys. Chem. 2013, 84, 185–190. [Google Scholar] [CrossRef]
- Sonnier, R.; Dumazert, L.; Regazzi, A.; Deborde, L.; Lanos, C. Flammability of Thick but Thermally Thin Materials including Bio-Based Materials. Molecules 2023, 28, 5175. [Google Scholar] [CrossRef]
- Lyon, R.E.; Quintiere, J.G. Criteria for piloted ignition of combustible solids. Combust. Flame 2007, 151, 551–559. [Google Scholar] [CrossRef]
- Huggett, C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980, 4, 61–65. [Google Scholar] [CrossRef]
Sample | THR (kJ/g) | pHRR (W/g) | TpHRR (°C) | Residue (%) | HCC (kJ/g) |
---|---|---|---|---|---|
Untreated SFF (P(wt%) = 0.07) | 7.3 | 100 | 344 | 20.1 | 9.1 |
SFF-eB-100 kGy (P(wt%) = 0.07) | 6.7 | 87 | 343 | 19.3 | 8.3 |
SFF-S (P(wt%) = 0.17) | 8.7 | 172 | 316 | 17.1 | 10.5 |
Sample | TTI (s) | pHRR (W/g) | THR * (kJ/g) | Residue (wt%) | EHC * (kJ/g) |
---|---|---|---|---|---|
Untreated SFF (P(wt%) = 0.07) | 8 | 120 | 9.5 | 0.8 | 12.4 |
SFF-PI-eB-50 kGy (P(wt%) = 2.05) | 2 | 131 | 10.4 | 11.0 | 14.3 |
SFF-SI-eB-50 kGy (P(wt%) = 2.19) | / | / | / | 23.5 | / |
Extractables (%) | Lignin (%) | Cellulose (%) | Hemicelluloses (%) | Ash Content (%) |
---|---|---|---|---|
2.9 ± 0.5 | 9.1 ± 0.6 | 76.2 ± 0.1 | 9.4 ± 0.1 | 2.2 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brendlé, C.; El Hage, R.; Clément, J.-L.; Rouif, S.; Sonnier, R.; Otazaghine, B. Flame Retardancy of Short Flax Fibers Modified by Radiation-Induced Grafting of Phosphonated Monomers: Comparison between Pre- and Simultaneous Irradiation Grafting. Molecules 2024, 29, 1176. https://doi.org/10.3390/molecules29051176
Brendlé C, El Hage R, Clément J-L, Rouif S, Sonnier R, Otazaghine B. Flame Retardancy of Short Flax Fibers Modified by Radiation-Induced Grafting of Phosphonated Monomers: Comparison between Pre- and Simultaneous Irradiation Grafting. Molecules. 2024; 29(5):1176. https://doi.org/10.3390/molecules29051176
Chicago/Turabian StyleBrendlé, Clément, Roland El Hage, Jean-Louis Clément, Sophie Rouif, Rodolphe Sonnier, and Belkacem Otazaghine. 2024. "Flame Retardancy of Short Flax Fibers Modified by Radiation-Induced Grafting of Phosphonated Monomers: Comparison between Pre- and Simultaneous Irradiation Grafting" Molecules 29, no. 5: 1176. https://doi.org/10.3390/molecules29051176
APA StyleBrendlé, C., El Hage, R., Clément, J. -L., Rouif, S., Sonnier, R., & Otazaghine, B. (2024). Flame Retardancy of Short Flax Fibers Modified by Radiation-Induced Grafting of Phosphonated Monomers: Comparison between Pre- and Simultaneous Irradiation Grafting. Molecules, 29(5), 1176. https://doi.org/10.3390/molecules29051176