Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization
Abstract
:1. Introduction
2. Results
2.1. Model Fitting and Analysis of Variance of the Evaluated Response Variables in Maceration Extraction
2.2. Determination of the Total Phenolic Content and Antioxidant Activity in Extracts from the Maceration Process
2.3. Optimization of Maceration Extraction Conditions
Validation of the Theoretical Optimized Conditions of the Maceration Extraction
2.4. Model Fitting and Analysis of Variance of the Evaluated Response Variables in scCO2 Extraction
2.4.1. Effect of Temperature, Pressure, and Cosolvent on the Total Phenolic Content, Flavonoid Content, and Extraction Yield
2.4.2. Effect of Temperature, Pressure, and Cosolvent on the Antioxidant Capacity
2.4.3. Optimization and Validity of the Theoretical Extraction Conditions for scCO2 Extraction
2.5. LC-ESI-QTof/MS Characterization of Polyphenols in the Extracts Obtained Using Optimized Maceration and scCO2 Extraction Conditions
3. Materials and Methods
3.1. Chemical Reagents
3.2. Sample Preparation
3.3. Solvent Extraction
3.4. Supercritical Extraction
3.5. Extraction Yield (EY %)
3.6. Total Phenolic Content Analysis
3.7. Total Flavonoid Content Analysis
3.8. Radical Cation Scavenging Activity
3.9. DPPH Radical Scavenging Activity
3.10. Ferric Ion-Reducing Antioxidant Power (FRAP)
3.11. Identification of Phenolic Compounds
3.12. Experimental Design
3.13. Validation of the Experimental Design
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García Mendoza, A. Distribution of Agave (Agavaceae) in Mexico. Cactus Succul. J. 2002, 74, 177–187. [Google Scholar]
- Consejo Mexicano Regulador de la Calidad del Mezcal. COMERCAM Informe Estadístico 2023; COMERCAM: Oaxaca, Mexico, 2023. [Google Scholar]
- Consejo Mexicano Regulador de la Calidad del Mezcal, A.C. COMERCAM Informe Estadístico 2022; COMERCAM: Oaxaca, Mexico, 2022. [Google Scholar]
- Pérez-Zavala, M.d.L.; Hernández-Arzaba, J.C.; Bideshi, D.K.; Barboza-Corona, J.E. Agave: A Natural Renewable Resource with Multiple Applications. J. Sci. Food Agric. 2020, 100, 5324–5333. [Google Scholar] [CrossRef]
- López-Romero, J.C.; Ayala-Zavala, J.F.; González-Aguilar, G.A.; Peña-Ramos, E.A.; González-Ríos, H. Biological Activities of Agave By-Products and Their Possible Applications in Food and Pharmaceuticals. J. Sci. Food Agric. 2018, 98, 2461–2474. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Bazán, M.; Castillo-Herrera, G.A.; Urias-Silvas, J.E.; Escobedo-Reyes, A.; Estarrón-Espinosa, M. Hunting Bioactive Molecules from the Agave Genus: An Update on Extraction and Biological Potential. Molecules 2021, 26, 6789. [Google Scholar] [CrossRef] [PubMed]
- Maazoun, A.M.; Hamdi, S.H.; Belhadj, F.; Jemâa, J.M.B.; Messaoud, C.; Marzouki, M.N. Phytochemical Profile and Insecticidal Activity of Agave Americana Leaf Extract towards Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Environ. Sci. Pollut. Res. 2019, 26, 19468–19480. [Google Scholar] [CrossRef] [PubMed]
- Morreeuw, Z.P.; Escobedo-Fregoso, C.; Ríos-González, L.J.; Castillo-Quiroz, D.; Reyes, A.G. Transcriptome-Based Metabolic Profiling of Flavonoids in Agave Lechuguilla Waste Biomass. Plant Sci. 2021, 305, 110748. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Morreeuw, Z.P.; Castillo-Quiroz, D.; Ríos-González, L.J.; Martínez-Rincón, R.; Estrada, N.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R.; Reyes, A.G. High Throughput Profiling of Flavonoid Abundance in Agave Lechuguilla Residue-Valorizing under Explored Mexican Plant. Plants 2021, 10, 695. [Google Scholar] [CrossRef]
- El-Hawary, S.S.; El-Kammar, H.A.; Farag, M.A.; Saleh, D.O.; El Dine, R.S. Metabolomic Profiling of Five Agave Leaf Taxa via UHPLC/PDA/ESI-MS Inrelation to Their Anti-Inflammatory, Immunomodulatory and Ulceroprotective Activities. Steroids 2020, 160, 108648. [Google Scholar] [CrossRef]
- Ahumada-Santos, Y.P.; Montes-Avila, J.; de Jesús Uribe-Beltrán, M.; Díaz-Camacho, S.P.; López-Angulo, G.; Vega-Aviña, R.; López-Valenzuela, J.Á.; Heredia, J.B.; Delgado-Vargas, F. Chemical Characterization, Antioxidant and Antibacterial Activities of Six Agave Species from Sinaloa, Mexico. Ind. Crops Prod. 2013, 49, 143–149. [Google Scholar] [CrossRef]
- López-Romero, J.C.; Ayala-Zavala, J.F.; Peña-Ramos, E.A.; Hernández, J.; González-Ríos, H. Antioxidant and Antimicrobial Activity of Agave Angustifolia Extract on Overall Quality and Shelf Life of Pork Patties Stored under Refrigeration. J. Food Sci. Technol. 2018, 55, 4413–4423. [Google Scholar] [CrossRef]
- Ferguson, P.; Cross, R.; Schad, G. Chapter 8—Application of SFC for the Characterization of Formulated Drug Products. In Separation Science and Technology; Hicks, M., Ferguson, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 14, pp. 221–255. ISBN 1877-1718. [Google Scholar]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef] [PubMed]
- Wrona, O.; Rafińska, K.; Możeński, C.; Buszewski, B. Supercritical Fluid Extraction of Bioactive Compounds from Plant Materials. J. AOAC Int. 2017, 100, 1624–1635. [Google Scholar] [CrossRef]
- Týskiewicz, K.; Konkol, M.; Rój, E. The Application of Supercritical Fluid Extraction in Phenolic Compounds Isolation from Natural Plant Materials. Molecules 2018, 23, 2625. [Google Scholar] [CrossRef] [PubMed]
- Radzali, S.A.; Markom, M.; Saleh, N.M. Co-Solvent Selection for Supercritical Fluid Extraction (SFE) of Phenolic Compounds from Labisia pumila. Molecules 2020, 25, 5859. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of Natural Products Using Supercritical Fluids and Pressurized Liquids Assisted by Ultrasound: Current Status and Trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef]
- Santos-Zea, L.; Gutiérrez-Uribe, J.A.; Benedito, J. Effect of Ultrasound Intensification on the Supercritical Fluid Extraction of Phytochemicals from Agave salmiana Bagasse. J. Supercrit. Fluids 2019, 144, 98–107. [Google Scholar] [CrossRef]
- Ayyildiz, S.S.; Pelvan, E.; Karadeniz, B. Optimization of Accelerated Solvent Extraction, Ultrasound Assisted and Supercritical Fluid Extraction to Obtain Carnosol, Carnosic Acid and Rosmarinic Acid from Rosemary. Sustain. Chem. Pharm. 2024, 37, 101422. [Google Scholar] [CrossRef]
- Fraguela-Meissimilly, H.; Bastías-Montes, J.M.; Ortiz-Viedma, J.A.; Tamarit-Pino, Y.; Claret-Merino, M.; Araneda-Flores, J. Valorization of Extracts from Maqui (Aristotelia chilensis) and Calafate (Berberis microphylla) Biowaste Blends by Supercritical Fluid and Pressurized Liquid Extraction. J. Agric. Food Res. 2024, 15, 100950. [Google Scholar] [CrossRef]
- Derrien, M.; Aghabararnejad, M.; Gosselin, A.; Desjardins, Y.; Angers, P.; Boumghar, Y. Optimization of Supercritical Carbon Dioxide Extraction of Lutein and Chlorophyll from Spinach By-Products Using Response Surface Methodology. LWT 2018, 93, 79–87. [Google Scholar] [CrossRef]
- Rajput, S.; Kaur, S.; Panesar, P.S.; Thakur, A. Supercritical Fluid Extraction of Essential Oils from Citrus Reticulata Peels: Optimization and Characterization Studies. Biomass Convers. Biorefin. 2023, 13, 14605–14614. [Google Scholar] [CrossRef]
- López-Salas, L.; Expósito-Almellón, X.; Borrás-Linares, I.; Lozano-Sánchez, J.; Segura-Carretero, A. Design of Experiments for Green and GRAS Solvent Extraction of Phenolic Compounds from Food Industry By-Products—A Systematic Review. TrAC Trends Anal. Chem. 2024, 171, 117536. [Google Scholar] [CrossRef]
- Sharif, K.M.; Rahman, M.M.; Azmir, J.; Mohamed, A.; Jahurul, M.H.A.; Sahena, F.; Zaidul, I.S.M. Experimental Design of Supercritical Fluid Extraction—A Review. J. Food Eng. 2014, 124, 105–116. [Google Scholar] [CrossRef]
- Santos Felix, A.C.; Novaes, C.G.; Pires Rocha, M.; Barreto, G.E.; do Nascimento, B.B.; Giraldez Alvarez, L.D. Mixture Design and Doehlert Matrix for the Optimization of the Extraction of Phenolic Compounds from Spondias mombin L Apple Bagasse Agroindustrial Residues. Front. Chem. 2018, 5, 1–8. [Google Scholar] [CrossRef]
- Dos Santos, C.; Mizobucchi, A.L.; Escaramboni, B.; Lopes, B.P.; Angolini, C.F.F.; Eberlin, M.N.; de Toledo, K.A.; Núñez, E.G.F. Optimization of Eugenia Punicifolia (Kunth) D. C. Leaf Extraction Using a Simplex Centroid Design Focused on Extracting Phenolics with Antioxidant and Antiproliferative Activities. BMC Chem. 2020, 14, 34. [Google Scholar] [CrossRef]
- Ferraz Bezerra, I.C.; de Moraes Ramos, R.T.; Assunção Ferreira, M.R.; Lira Soares, L.A. Optimization Strategy for Extraction of Active Polyphenols from Leaves of Eugenia uniflora Linn. Food Anal. Methods 2020, 13, 735–750. [Google Scholar] [CrossRef]
- Soussi, M.; Fadil, M.; Yaagoubi, W.A.; Benjelloun, M.; El Ghadraoui, L. Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology. Processes 2022, 10, 2580. [Google Scholar] [CrossRef]
- Jdaini, K.; Alla, F.; Mansouri, F.; Parmar, A.; Elhoumaizi, M.A. Optimizing the Extraction of Phenolic Antioxidants from Date Palm Fruit by Simplex-Centroid Solvent Mixture Design. Heliyon 2023, 9, e12738. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and Antioxidant Assays of Polyphenols: A Review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Lonni, A.A.S.G.; Longhini, R.; Lopes, G.C.; de Mello, J.C.P.; Scarminio, I.S. Statistical Mixture Design Selective Extraction of Compounds with Antioxidant Activity and Total Polyphenol Content from Trichilia catigua. Anal. Chim. Acta 2012, 719, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.K.; Ng, S.Y.; Thoo, Y.Y.; Khoo, M.Z.; Wan Aida, W.M.; Ho, C.W. Effect of Ethanol Concentration, Extraction Time and Extraction Temperature on the Recovery of Phenolic Compounds and Antioxidant Capacity of Centella asiatica Extracts. Int. Food Res. J. 2011, 18, 571–578. [Google Scholar]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Machado-Carvalho, L.; Martins, T.; Aires, A.; Marques, G. Optimization of Phenolic Compounds Extraction and Antioxidant Activity from Inonotus hispidus Using Ultrasound-Assisted Extraction Technology. Metabolites 2023, 13, 524. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Barriada-Bernal, L.G.; Almaraz-Abarca, N.; Delgado-Alvarado, E.A.; Gallardo-Velázquez, T.; Ávila-Reyes, J.A.; Torres-Morán, M.I.; González-Elizondo, M.D.S.; Herrera-Arrieta, Y. Flavonoid Composition and Antioxidant Capacity of the Edible Flowers of Agave durangensis (Agavaceae). CYTA-J. Food 2014, 12, 105–114. [Google Scholar] [CrossRef]
- Puente-Garza, C.A.; Meza-Miranda, C.; Ochoa-Martínez, D.; García-Lara, S. Effect of in Vitro Drought Stress on Phenolic Acids, Flavonols, Saponins, and Antioxidant Activity in Agave salmiana. Plant Physiol. Biochem. 2017, 115, 400–407. [Google Scholar] [CrossRef]
- Arnao, M.B. Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Andres, A.I.; Petron, M.J.; Lopez, A.M.; Timon, M.L. Optimization of Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant Activity in Craft Brewers’ Spent Grain Using Response Surface Methodology (RSM). Foods 2020, 9, 1398. [Google Scholar] [CrossRef] [PubMed]
- El Baakili, A.; Fadil, M.; Es-Safi, N.E. Multi-Objective Optimization for Ultrasound-Assisted Extraction of Phytochemicals from Moroccan Retama Raetam Using a Solvent System: Comparison of Mixture Design Methodology and Artificial Neural Network Modeling. Sep. Sci. Technol. 2023, 58, 1433–1449. [Google Scholar] [CrossRef]
- Radzali, S.A.; Markom, M.; Md Saleh, N. Parameter Effects and Optimisation in Supercritical Fluid Extraction of Phenolic Compounds from Labisia pumila. Separations 2022, 9, 385. [Google Scholar] [CrossRef]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.D.; Arráez-Román, D.; Segura-Carretero, A. Optimized Extraction of Phenylpropanoids and Flavonoids from Lemon Verbena Leaves by Supercritical Fluid System Using Response Surface Methodology. Foods 2020, 9, 931. [Google Scholar] [CrossRef]
- Villacís-Chiriboga, J.; Voorspoels, S.; Uyttebroek, M.; Ruales, J.; Van Camp, J.; Vera, E.; Elst, K. Supercritical CO2 Extraction of Bioactive Compounds from Mango (Mangifera indica L.) Peel and Pulp. Foods 2021, 10, 2201. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Milovanovic, S.; Lukic, I.; Krgovic, N.; Tadic, V.; Radovanovic, Z.; Tyśkiewicz, K.; Konkol, M. Selection of Processing Parameters for the Integrated Supercritical CO2 Extraction from Green Tea Leaves and Extract Impregnation onto Starch-Chitosan Based Films. J. Supercrit. Fluids 2024, 206, 106163. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant Activity of Grape Seed (Vitis vinifera) Extracts on Peroxidation Models in Vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Zam, W.; Bashour, G.; Abdelwahed, W.; Khayata, W. Effective Extraction of Polyphenols and Proanthocyanidins from Pomegranate’s Peel. Int. J. Pharm. Pharm. Sci. 2012, 4, 675–682. [Google Scholar]
- Kasapoğlu, K.N.; Kruger, J.; Barla-Demirkoz, A.; Gültekin-Özgüven, M.; Frank, J.; Özçelik, B. Optimization of Supercritical Carbon Dioxide Extraction of Polyphenols from Black Rosehip and Their Bioaccessibility Using an In Vitro Digestion/Caco-2 Cell Model. Foods 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioproc Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Wang, Z.; Wang, C.; Wang, E.; Zhang, Y.; Liu, J. Supercritical Fluid Extraction of Flavonoids from Maydis Stigma and Its Nitrite-Scavenging Ability. Food Bioprod. Process. 2011, 89, 333–339. [Google Scholar] [CrossRef]
- Vinitha, U.G.; Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of Supercritical Fluid in the Extraction of Flavonoids: A Comprehensive Review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Andreou, R.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Potato (Solanum tuberosum) Peels. Appl. Sci. 2021, 11, 3410. [Google Scholar] [CrossRef]
- Kaur, S.; Ubeyitogullari, A. Extraction of Phenolic Compounds from Rice Husk via Ethanol-Water-Modified Supercritical Carbon Dioxide. Heliyon 2023, 9, e14196. [Google Scholar] [CrossRef]
- Zulkafli, Z.D.; Wang, H.; Miyashita, F.; Utsumi, N.; Tamura, K. Cosolvent-Modified Supercritical Carbon Dioxide Extraction of Phenolic Compounds from Bamboo Leaves (Sasa palmata). J. Supercrit. Fluids 2014, 94, 123–129. [Google Scholar] [CrossRef]
- Talmaciu, A.I.; Volf, I.; Popa, V.I. A Comparative Analysis of the ‘Green’ Techniques Applied for Polyphenols Extraction from Bioresources. Chem. Biodivers. 2015, 12, 1635–1651. [Google Scholar] [CrossRef] [PubMed]
- Goyeneche, R.; Fanovich, A.; Rodriguez Rodrigues, C.; Nicolao, M.C.; Di Scala, K. Supercritical CO2 Extraction of Bioactive Compounds from Radish Leaves: Yield, Antioxidant Capacity and Cytotoxicity. J. Supercrit. Fluids 2018, 135, 78–83. [Google Scholar] [CrossRef]
- Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Rodríguez, M.; Martínez de la Ossa, E. Extraction of Antioxidant Compounds from Different Varieties of Mangifera indica Leaves Using Green Technologies. J. Supercrit. Fluids 2012, 72, 168–175. [Google Scholar] [CrossRef]
- Eggers, R. Extraktion von Fettrohstoffen Mit Überkritischem CO2. Eur. J. Lipid Sci. Technol. 1994, 96, 513–518. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Profiling of Australian Mango Peel By-Product Polyphenols and Their Potential Antioxidant Activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef]
- Martins, A.M.; Adão Malafaia, C.R.; Nunes, R.M.; Mecenas, A.S.; De Moura, P.H.B.; Muzitano, M.F.; de Barros Machado, T.; da Silva Carneiro, C.; Leal, I.C.R. Nutritional, Chemical and Functional Potential of Inga laurina (Fabaceae): A Barely Used Edible Species. Food Res. Int. 2024, 178, 113751. [Google Scholar] [CrossRef]
- Seong, S.H.; Kim, B.-R.; Park, J.-S.; Jeong, D.Y.; Kim, T.-S.; Im, S.; Jeong, J.-W.; Cho, M.L. Phytochemical Profiling of Symplocos tanakana Nakai and S. sawafutagi Nagam. Leaf and Identification of Their Antioxidant and Anti-Diabetic Potential. J. Pharm. Biomed. Anal. 2023, 233, 115441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kong, H.; Chitrakar, B.; Ban, X.; Gu, Z.; Hong, Y.; Cheng, L.; Li, Z.; Li, C. The Substitution Sites of Hydroxyl and Galloyl Groups Determine the Inhibitory Activity of Human Pancreatic α-Amylase in Twelve Tea Polyphenol Monomers. Int. J. Biol. Macromol. 2024, 259, 129189. [Google Scholar] [CrossRef]
- Zarza-Albarrán, M.A.; Olmedo-Juárez, A.; Rojo-Rubio, R.; Mendoza-de Gives, P.; González-Cortazar, M.; Tapia-Maruri, D.; Mondragón-Ancelmo, J.; García-Hernández, C.; Blé-González, E.A.; Zamilpa, A. Galloyl Flavonoids from Acacia Farnesiana Pods Possess Potent Anthelmintic Activity against Haemonchus Contortus Eggs and Infective Larvae. J. Ethnopharmacol. 2020, 249, 112402. [Google Scholar] [CrossRef]
- Anguiano-Sevilla, L.A.; Lugo-Cervantes, E.; Ordaz-Pichardo, C.; Rosas-Trigueros, J.L.; Jaramillo-Flores, M.E. Apoptosis Induction of Agave lechuguilla Torrey Extract on Human Lung Adenocarcinoma Cells (SK-LU-1). Int. J. Mol. Sci. 2018, 19, 3765. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Hernández, M.G.; Ochoa-Martínez, L.A.; Rutiaga-Quiñones, J.G.; Rocha-Guzmán, N.E.; Lara-Ceniceros, T.E.; Contreras-Esquivel, J.C.; Prado Barragán, L.A.; Rutiaga-Quiñones, O.M. Effect of Ultrasound Pre-Treatment on the Physicochemical Composition of Agave durangensis Leaves and Potential Enzyme Production. Bioresour. Technol. 2018, 249, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Almaraz-Abarca, N.; del Socorro González-Elizondo, M.; da Graça Campos, M.; Ávila-Sevilla, Z.E.; Delgado-Alvarado, E.A.; Ávila-Reyes, J.A. Variabilidad de Los Perfiles Fenólicos Foliares Del Complejo Agave Victoriae-Reginae (Agavaceae). Bot. Sci. 2013, 91, 295–306. [Google Scholar] [CrossRef]
- Yang, B.; Liu, H.; Yang, J.; Gupta, V.K.; Jiang, Y. New Insights on Bioactivities and Biosynthesis of Flavonoid Glycosides. Trends Food Sci. Technol. 2018, 79, 116–124. [Google Scholar] [CrossRef]
- Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Rauter, A.P.; Lopes, R.G.; Martins, A. C-Glycosylflavonoids: Identification, Bioactivity and Synthesis. Nat. Prod. Commun. 2007, 2, 1934578X0700201125. [Google Scholar] [CrossRef]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-Glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Zhang, M.; Wang, Z.-L.; Qiao, X.; Ye, M. Advances in Plant-Derived C-Glycosides: Phytochemistry, Bioactivities, and Biotechnological Production. Biotechnol. Adv. 2022, 60, 108030. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of Flavonoid O-Glycoside, C-Glycoside and Their Aglycones on Antioxidant Capacity and Metabolism during In Vitro Digestion and In Vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of Dietary Flavonoids towards Improved Bioactivity: An Update on Structure–Activity Relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527. [Google Scholar] [CrossRef]
- Pourakbari, R.; Taher, S.M.; Mosayyebi, B.; Ayoubi-Joshaghani, M.H.; Ahmadi, H.; Aghebati-Maleki, L. Implications for Glycosylated Compounds and Their Anti-Cancer Effects. Int. J. Biol. Macromol. 2020, 163, 1323–1332. [Google Scholar] [CrossRef]
- Alseekh, S.; Perez de Souza, L.; Benina, M.; Fernie, A.R. The Style and Substance of Plant Flavonoid Decoration; towards Defining Both Structure and Function. Phytochemistry 2020, 174, 112347. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Li, J.; Zhao, X.; Liu, Q.; Song, S.-J. A Comprehensive Review: Biological Activity, Modification and Synthetic Methodologies of Prenylated Flavonoids. Phytochemistry 2021, 191, 112895. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Y.; Yang, J.; He, J.; Sun, J.; Chen, F.; Zhang, M.; Yang, B. Prenylated Flavonoids, Promising Nutraceuticals with Impressive Biological Activities. Trends Food Sci. Technol. 2015, 44, 93–104. [Google Scholar] [CrossRef]
- Karas, D.; Ulrichová, J.; Valentová, K. Galloylation of Polyphenols Alters Their Biological Activity. Food Chem. Toxicol. 2017, 105, 223–240. [Google Scholar] [CrossRef]
- Rover, M.R.; Brown, R.C. Quantification of Total Phenols in Bio-Oil Using the Folin-Ciocalteu Method. J. Anal. Appl. Pyrolysis 2013, 104, 366–371. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Zhang, Y.-D.; Wang, T.; Guo, H.-Y.; Liu, Q.-M.; Su, H.-X. Evaluation on Antioxidant Effect of Xanthohumol by Different Antioxidant Capacity Analytical Methods. J. Chem. 2014, 2014, 249485. [Google Scholar] [CrossRef]
Phenolic Content | r2 | Flavonoid Content | r2 |
---|---|---|---|
ABTS * | 0.610 | ABTS * | 0.518 |
DPPH * | 0.824 | DPPH * | 0.775 |
FRAP * | 0.963 | FRAP * | 0.880 |
DPPH vs. FRAP * | 0.845 | - | - |
(63:37% v/v Water–Ethanol) | |||||
---|---|---|---|---|---|
Predicted Model Values a | |||||
TPC | TFC | Yield | ABTS | DPPH | FRAP |
mg GAE/g DL | µg QE/g DL | % | AC: µmol TE/g DL | ||
25.26 ± 3.60 | 3.86 ± 0.65 | 30 ± 6 | 23.57 ± 3.51 | 15.73 ± 2.56 | 16.00 ± 2 |
Experimental values b | |||||
TPC | TFC | Yield (%) | ABTS | DPPH | FRAP |
mg GAE/g DL | µg QE/g DL | % | AC: µmol TE/g DL | ||
27.92 ± 0.90 | 12.85 ± 0.53 | 22.20 ± 3.30 | 32.67 ± 0.91 | 17.30 ± 0.36 | 13.92 ± 0.78 |
Phenolic Content | r2 | Flavonoid Content | r2 |
---|---|---|---|
ABTS * | 0.826 | ABTS * | 0.747 |
DPPH * | 0.926 | DPPH * | 0.932 |
FRAP * | 0.949 | FRAP * | 0.902 |
ABTS vs. DPPH * | 0.827 | ||
ABTS vs. FRAP * | 0.930 | ||
DPPH vs. FRAP * | 0.930 | - | - |
Validation of the Optimized Extraction Conditions (60 °C, 320 bar, 10% v/v) | ||||
---|---|---|---|---|
Predicted Values a | ||||
TPC | TFC | ABTS RC | DPPH | FRAP |
mg GAE/g DL | µg QE/g DL | AC: µmol TE/g DL | ||
69 ± 6.00 | 65 ± 6.00 | 245 ± 42.00 | 75.00 ± 5.00 | 44.60 ± 3.41 |
Experimental Values b | ||||
TPC | TFC | ABTS | DPPH | FRAP |
mg GAE/g DL | µg QE/g DL | AC: µmol TE/g DL | ||
8.48 ± 1.01 | 8.35 ± 0.21 | 11.25 ± 0.57 | 4.96 ± 0.06 | 11.37 ± 0.21 |
No. | Compound | Molecular Weight Formula | RT (min) | Ionization Mode | Theoretical (m/z) | Observed (m/z) | Mass Error | Extraction Method a |
---|---|---|---|---|---|---|---|---|
1 | Kaempferol 3-arabinofuranoside 7-rhamnofuranoside | C26H27O14 | 1.76 | [M-H] | 563.1401 | 563.1356 | 7.99 | M |
2 | Chalconaringenin 2′-rhamnosyl-(1->4)-xyloside | C26H29O13 | 6.76 | [M-H] | 549.1608 | 549.1567 | 7.47 | M, SFE |
3 | Petunidin 3-[6-(rhamnosyl)-2-(xylosyl) glucoside] | C33H42O20+ | 11.35 | [M+H] | 758.2269 | 758.2251 | 2.37 | M, SFE |
4 | Cyanidin 3-O-rutinoside | C27H32O15+ | 11.48 | [M+H] | 596.174 | 596.176 | −3.35 | M |
5 | Tri-O-protocatechuoylglucose | C27H23O15 | 9.58 | [M-H] | 587.1037 | 587.1018 | 3.24 | M, SFE |
6 | 3,4,5-Tri(galloyloxy)benzoic acid | C28H17O17 | 9.51 | [M-H] | 625.0465 | 625.0443 | 3.52 | SFE |
7 | eugenol rutinoside | C22H31O11 | 2.11 | [M-H] | 471.1866 | 471.184 | 5.52 | M |
8 | 4-Methoxycinnamic acid (2S)-2-[(beta-d-glucopyranosyl)oxy]propyl ester | C19H25O9 | 2.03 | [M-H] | 397.1498 | 397.148 | 4.53 | M, SFE |
9 | 4-[6-O-(2,3-Dihydroxy-2-ethylbutyryl)-beta-d-glucopyranosyloxy]cinnamic acid | C21H27O11 | 3.019 | [M-H] | 455.1553 | 455.1534 | 4.17 | SFE |
10 | Mexoticin 3-′O-(6-O-d-apiofuranosyl-d-glucopyranoside) | C27H37O15 | 5.1 | [M-H] | 601.2132 | 601.2161 | −4.82 | M |
11 | Phellavin | C26H31O12 | 1.79 | [M-H] | 535.1815 | 535.183 | −2.80 | M |
12 | Delphinidin-3-fructoside | C21H29O12 | 2.11 | [M-H] | 473.1659 | 473.1684 | −5.28 | M |
13 | 7-Hydroxy-7″-(D-glucopyranosyloxy)-3,8″-bi [4′,5-dihydroxyflavanone] | C36H32O15 | 4.46 | [M+H] | 705.1819 | 705.1823 | −0.57 | SFE |
14 | 5,4′-Dihidroxy-7,8,2′,3′-tetramethoxy flavone 5-glucoside | C25H27O13 | 2.19 | [M-H] | 535.1451 | 535.1451 | 0.00 | SFE |
15 | Isoschaftoside | C26H27O14 | 1.85 | [M-H] | 563.1401 | 563.1404 | −0.53 | M, SFE |
16 | Amurensin | C26H29O12 | 9.76 | [M-H] | 533.1659 | 533.1624 | 6.56 | M |
17 | Puerarin-6-O-xyloside | C26H27O13 | 1.71 | [M-H] | 547.1451 | 547.1433 | 3.29 | M, SFE |
18 | Formononetin 7-(2-p-hydroxybenzoylglucoside) | C29H25O11 | 9.48 | [M-H] | 549.1397 | 549.1376 | 3.82 | M, SFE |
19 | 5,4′-Dihydroxy-6-C-prenylflavanone 4′-xylosyl-(1->2)-rhamnoside | C31H37O12 | 5.32 | [M-H] | 601.2285 | 601.2261 | 3.99 | M |
20 | 3,5,8,3′,4′-Pentamethoxy-7-prenyloxyflavone | C25H27O8 | 2.12 | [M-H] | 455.1706 | 455.1708 | −0.44 | M |
21 | Resveratrol 4′-O-β-D-(2″-O-galloyl)-glucopyranoside | C27H27O12 | 5.43 | [M+H] | 543.1502 | 543.153 | −5.16 | M |
22 | Resveratrol 4′-O-β-D-(2″-O-cumaroyl)-glucopyranoside | C29H27O10 | 2.07 | [M-H] | 535.1604 | 535.1594 | 1.87 | SFE |
23 | Lippioside II | C25H29O14 | 2.07 | [M-H] | 553.1557 | 553.1513 | 7.95 | M |
24 | Muraxanthone | C26H23O13 | 1.86 | [M+H] | 543.1138 | 543.1101 | 6.81 | M |
No. | Compound | Molecular Weight Formula | RT (min) | Ionization Mode | Theoretical (m/z) | Observed (m/z) | Mass Error (ppm) | Treatment a |
---|---|---|---|---|---|---|---|---|
25 | Peonidin 3-rhamnoside-5-glucoside * | C28H34O15+ | 9.27 | [M+H] | 610.1897 | 610.1878 | 3.11 | E3, E4 |
4 | Cyanidin 3-O-rutinoside | C27H32O15+ | 11.8 | [M+H] | 596.174 | 596.176 | −3.35 | E3, E4, E8, E11, E12 |
3 | Petunidin 3-[6 (rhamnosyl)-2-(xylosyl) glucoside] | C33H42O20+ | 11.33 | [M+H] | 758.2269 | 758.2251 | 2.37 | E3, E8, E11, E12 |
5 | Tri-O-protocatechuoylglucose | C27H23O15 | 2.58 | [M-H] | 587.1037 | 587.1018 | 3.24 | E3, E11, E12 |
26 | 3,4-Dihydroxychalcone 4-beta-L-arabinopyranosyl-(1->4)-galactoside * | C26H29O12 | 3.16 | [M-H] | 533.1659 | 533.1624 | 6.56 | E8 |
2 | Chalconaringenin 2′-rhamnosyl-(1->4) -xyloside | C26H29O13 | 2.27 | [M-H] | 549.1608 | 549.1616 | −1.46 | E4 |
27 | 3,4-Dihydroxy-5-methoxycinnamoyl 6-O-(beta-D-glucopyranosyl)-beta-D-glucopyranoside * | C22H29O15 | 2.2 | [M-H] | 533.1506 | 533.1529 | −4.31 | E3, E12 |
8 | 4-Methoxycinnamic acid (2S)-2-[(beta-D-glucopyranosyl)oxy]propyl ester | C19H25O9 | 2.15 | [M-H] | 397.1498 | 397.148 | 4.53 | E8 |
13 | 7-Hydroxy-7″-(D-glucopyranosyloxy)-3,8″-bi [4′,5-dihydroxyflavanone] | C36H33O15 | 6.76 | [M+H] | 705.1819 | 705.1823 | −0.57 | E3, E4, E8, E11, E12 |
28 | Epigallocatechin 3-O-(3,5-di-O-methylgallate) * | C24H21O11 | 11.98 | [M-H] | 485.1084 | 485.1081 | 0.62 | E3, E11, E12 |
1 | Kaempferol 3-arabinofuranoside 7-rhamnofuranoside | C26H27O14 | 1.82 | [M-H] | 563.1401 | 563.1356 | 7.99 | E8 |
15 | Isoschaftoside | C26H27O14 | 2 | [M-H] | 563.1401 | 563.1404 | −0.53 | E8 |
29 | Vitexin 6″-O-malonyl 2″-O-xyloside * | C29H31O17 | 2.93 | [M+H] | 651.156 | 651.1562 | −0.31 | E4 |
30 | Myricetin 3-(2″-galloylrhamnoside) * | C29H27O16 | 4.77 | [M+H] | 631.1298 | 631.1301 | −0.48 | E3, E4, E8, E11, E12 |
31 | Myricetin 3-alpha-L-arabinopyranoside * | C20H17O12 | 1.71 | [M-H] | 449.072 | 449.0713 | 1.56 | E11, E12 |
18 | Formononetin 7-O-(2″-p-hydroxybenzoylglucoside) | C29H25O11 | 9.28 | [M-H] | 549.1397 | 549.1376 | 3.82 | E3, E8, E11, E12 |
32 | Procyanidin B2 * | C30H25O12 | 2.37 | [M-H] | 577.1346 | 577.1376 | −5.20 | E4 |
21 | (Pieceid-2″-O-gallate) | C27H27O12 | 5.43 | [M+H] | 543.1502 | 543.1483 | 3.50 | E3, E4, E8, E11, E12 |
Treatment | Solvent Mixture | ||
---|---|---|---|
Acetone (% v/v) | Ethanol (% v/v) | Water (% v/v) | |
E1 | 100 | 0 | 0 |
E2 | 0 | 100 | 0 |
E3 | 0 | 0 | 100 |
E4 | 50 | 50 | 0 |
E5 | 50 | 0 | 50 |
E6 | 0 | 50 | 50 |
E7 | 33.33 | 33.33 | 33.33 |
E8 | 66.67 | 16.67 | 16.67 |
E9 | 16.67 | 66.67 | 16.67 |
E10 | 16.67 | 16.67 | 66.67 |
Treatment | Temperature (°C) | Pressure (Bar) | Modifier (% v/v) |
---|---|---|---|
E1 | 50 | 150 | 8 |
E2 | 60 | 150 | 8 |
E3 | 50 | 320 | 8 |
E4 | 60 | 320 | 8 |
E5 | 50 | 235 | 5 |
E6 | 60 | 235 | 5 |
E7 | 50 | 235 | 10 |
E8 | 60 | 235 | 10 |
E9 | 55 | 150 | 5 |
E10 | 55 | 320 | 5 |
E11 | 55 | 150 | 10 |
E12 | 55 | 320 | 10 |
E13 | 55 | 235 | 8 |
E14 | 55 | 235 | 8 |
E15 | 55 | 235 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermúdez-Bazán, M.; Estarrón-Espinosa, M.; Castillo-Herrera, G.A.; Escobedo-Reyes, A.; Urias-Silvas, J.E.; Lugo-Cervantes, E.; Gschaedler-Mathis, A. Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization. Molecules 2024, 29, 1137. https://doi.org/10.3390/molecules29051137
Bermúdez-Bazán M, Estarrón-Espinosa M, Castillo-Herrera GA, Escobedo-Reyes A, Urias-Silvas JE, Lugo-Cervantes E, Gschaedler-Mathis A. Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization. Molecules. 2024; 29(5):1137. https://doi.org/10.3390/molecules29051137
Chicago/Turabian StyleBermúdez-Bazán, Misael, Mirna Estarrón-Espinosa, Gustavo Adolfo Castillo-Herrera, Antonio Escobedo-Reyes, Judith Esmeralda Urias-Silvas, Eugenia Lugo-Cervantes, and Anne Gschaedler-Mathis. 2024. "Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization" Molecules 29, no. 5: 1137. https://doi.org/10.3390/molecules29051137
APA StyleBermúdez-Bazán, M., Estarrón-Espinosa, M., Castillo-Herrera, G. A., Escobedo-Reyes, A., Urias-Silvas, J. E., Lugo-Cervantes, E., & Gschaedler-Mathis, A. (2024). Agave angustifolia Haw. Leaves as a Potential Source of Bioactive Compounds: Extraction Optimization and Extract Characterization. Molecules, 29(5), 1137. https://doi.org/10.3390/molecules29051137