Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research
Abstract
:1. Introduction
2. Gutiérrez-Merino’s Development of Theoretical Approaches in Fluorescence Spectroscopy in Biological Membrane Research
3. Gutiérrez-Merino’s Incursions into the Field of Nicotinic Acetylcholine Receptor–Lipid Interactions
4. Gutiérrez-Merino’s Use of FRET in Imaging Studies of Biological Membranes
5. Concluding Remarks and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, A.S.J.; Nicolson, G.L. The Fluid Mosaic Model of the Structure of Cell Membranes. Science 1972, 175, 720–731. [Google Scholar] [CrossRef]
- Engelman, D.M. Membranes are more mosaic than fluid. Nature 2005, 438, 578–580. [Google Scholar] [CrossRef]
- Bagatolli, L.A. Microscopy imaging of membrane domains. Biochim. Biophys. Acta 2010, 1798, 1285. [Google Scholar] [CrossRef]
- Goñi, F.M. The basic structure and dynamics of cell membranes: An update of the Singer-Nicolson model. Biochim. Biophys. Acta 2014, 1838, 1467–1476. [Google Scholar] [CrossRef]
- Nicolson, G.L. The fluid-mosaic model of membrane structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta 2014, 1838, 1451–1466. [Google Scholar] [CrossRef] [PubMed]
- Tweet, A.G.; Bellamy, W.D.; Gaines, G.L. Fluorescence quenching and energy transfer in monomolecular films containing chlorophyll. J. Chem. Phys. 1964, 41, 2068. [Google Scholar] [CrossRef]
- Vanderkooi, J.M.; lerokomas, A.; Nakamura, H.; Martonosi, A. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry 1977, 16, 1262–1267. [Google Scholar] [CrossRef] [PubMed]
- Veatch, W.; Stryer, L. The dimeric nature of the Gramicidin A transmembrane channel: Conductance and fluorescence energy transfer studies of hybrid channels. J. Mol. Biol. 1977, 113, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Cantley, L.C.; Hammes, G.G. Investigation of quercetin binding sites on chloroplast coupling factor 1. Biochemistry 1976, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shaklai, N.; Yguerabide, J.; Ranney, H.M. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore. Biochemistry 1977, 16, 5585–5592. [Google Scholar] [CrossRef] [PubMed]
- Shaklai, N.; Yguerabide, J.; Ranney, H.M. Classification and location of hemoglobin binding sites on red blood cell membranes. Biochemistry 1977, 16, 5593–5597. [Google Scholar] [CrossRef]
- Fung, B.K.-K.; Stryer, L. Surface density determination in membranes by fluorescence energy transfer. Biochemistry 1978, 17, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- Baird, B.; Pick, U.; Hammes, G.G. Structural investigation of reconstituted chloroplast ATPase with fluorescence measurements. J. Bio. Chem. 1979, 254, 3818–3825. [Google Scholar] [CrossRef]
- Fleming, P.J.; Koppel, D.E.; Lau, A.L.Y.; Strittmatter, P. Intramembrane position of the fluorescent tyrptophanyl residue in the membrane-bound cytochrome b5. Biochemistry 1979, 18, 5458–5464. [Google Scholar] [CrossRef] [PubMed]
- Koppel, D.E.; Fleming, P.J.; Strittmatter, P. Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer. Biochemistry 1979, 18, 5450–5457. [Google Scholar] [CrossRef] [PubMed]
- Sklar, L.A.; Doody, M.C.; Gotto, A.M.; Pownall, H.J. Serum lipoprotein structure: Resonance energy transfer localization of fluorescent probes. Biochemistry 1980, 19, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Merino, C. Quantitation of the Forster energy transfer for two-dimensional systems. I. Lateral phase separation in unilamellar vesicles formed by binary phospholipid mixtures. Biophys. Chem. 1981, 14, 247–257. [Google Scholar]
- Gutiérrez-Merino, C. Quantitation of the Forster energy transfer for two-dimensional systems. II. Protein distribution and aggregation state in biological membranes. Biophys. Chem. 1981, 14, 259–266. [Google Scholar] [CrossRef]
- Snyder, B.; Freire, E. Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys. J. 1982, 40, 137–148. [Google Scholar] [CrossRef]
- Eisinger, J.; Flores, J. The relative locations of intramembrane fluorescent probes and the cytosol hemoglobin in erythrocytes, studied by transverse resonance energy transfer. Biophys. J. 1982, 37, 6–7. [Google Scholar] [CrossRef]
- Doody, M.C.; Skalar, L.A.; Pownall, H.J.; Sparrow, J.T.; Gotto, A.M.; Smith, L.C. A simplified approach to resonance energy transfer in membranes, lipoproteins, and spatially restricted systems. Biophys. Chem. 1983, 17, 139–152. [Google Scholar] [CrossRef]
- Holowka, D.; Baird, B. Structural studies on the membrane-bound immunoglobulin E-receptor complex 1. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes. Biochemistry 1983, 22, 3466–3474. [Google Scholar] [CrossRef]
- Holowka, D.; Baird, B. Structural studies on the membrane-bound immunoglobulin E-receptor complex 2. Mapping the distance between sites on IgE and the membrane surface. Biochemistry 1983, 22, 3475–3484. [Google Scholar] [CrossRef]
- Isaacs, B.S.; Husten, E.J.; Esmon, C.T.; Johnson, A.E. A domain of membrane-bound coagulation factor Va is located far from the phospholipid surface. A fluorescence energy transfer measurement. Biochemistry 1986, 25, 4958–4969. [Google Scholar] [CrossRef] [PubMed]
- Gryczynski, I.; Wiczk, W.; Johnson, M.L.; Cheung, H.C.; Wang, C.K.; Lakowicz, J.R. Resolution of end-to-end distance distributions of flexible molecules using quenching-induced variations of the Forster distance for fluorescence energy transfer. Biophys. J. 1988, 54, 577–586. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Gryczynski, I.; Cheung, H.C.; Wang, C.-K.; Johnson, M.L.; Joshi, N. Distance distributions in proteins recovered by using frequency-domain fluorometry. Applications to troponin I and its complex with troponin C. Biochemistry 1988, 27, 9149–9160. [Google Scholar] [CrossRef]
- Trauble, H.; Sackmann, E. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. 3. Structure of a steroid-lecithin system below and above the lipid-phase transition. J. Am. Chem. Soc. 1972, 94, 4499–4510. [Google Scholar] [CrossRef]
- Förster, T. Intermolecular energy migration and fluorescence. Ann. Phys. 1948, 2, 55–75. [Google Scholar] [CrossRef]
- Gutiérrez-Merino, C.; Munkonge, F.; Mata, A.M.; East, J.M.; Levinson, B.L.; Napier, R.M.; Lee, A.G. The position of the ATP binding site on the (Ca2+ + Mg2+)-ATPase. Biochim. Biophys. Acta 1987, 897, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Cuenda, A.; Henao, F.; Gutiérrez-Merino, C. Distances between functional sites of the Ca2+ + Mg2(+)-ATPase from sarcoplasmic reticulum using Co2+ as a spectroscopic ruler. Eur. J. Biochem. 1990, 194, 663–670. [Google Scholar] [CrossRef]
- Centeno, F.; Gutiérrez-Merino, C. Location of functional centers in the microsomal cytochrome P450 system. Biochemistry 1992, 31, 8473–8481. [Google Scholar] [CrossRef]
- Gutiérrez-Merino, C.; Centeno, F.; Garcia-Martin, E.; Merino, J.M. Fluorescence energy transfer as a tool to locate functional sites in membrane proteins. Biochem. Soc. Trans. 1994, 22, 784–788. [Google Scholar] [CrossRef]
- Gutiérrez-Merino, C.; Molina, A.; Escudero, B.; Diez, A.; Laynez, J. Interaction of the Local Anesthetics Dibucaine and Tetracaine with Sarcoplasmic Reticulum Membranes. Differential Scanning Calorimetry and Fluorescence Studies. Biochemistry 1989, 28, 3398–3406. [Google Scholar] [CrossRef]
- Barrantes, F.J. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol. Res. 2023, 190, 106729. [Google Scholar] [CrossRef]
- Karlin, A.; Akabas, M.H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 1995, 6, 1231–1244. [Google Scholar] [CrossRef]
- Le Novère, N.; Changeux, J.P. Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. J. Mol. Evol. 1995, 40, 155–172. [Google Scholar] [CrossRef]
- Changeux, J.P.; Edelstein, S.J. Allosteric receptors after 30 years. Neuron 1998, 5, 959–980. [Google Scholar] [CrossRef]
- Paterson, D.; Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 2000, 61, 75–111. [Google Scholar] [CrossRef] [PubMed]
- Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 2005, 346, 967–989. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, J.E.; Corringer, P.J. 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 2011, 60, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Baenziger, J.E.; daCosta, C.J.B. Molecular mechanisms of acetylcholine receptor-lipid interactions: From model membranes to human biology. Biophys. Rev. 2013, 5, 1–9. [Google Scholar] [CrossRef]
- Corradi, J.; Bouzat, C. Understanding the bases of function and modulation of α7 nicotinic receptors: Implications for drug discovery. Mol. Pharmacol. 2016, 90, 288–299. [Google Scholar] [CrossRef]
- Zarkadas, E.; Pebay-Peyroula, E.; Thompson, M.J.; Schoehn, G.; Uchański, T.; Steyaert, J.; Chipot, C.; Dehez, F.; Baenziger, J.E.; Nury, H. Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron 2020, 110, 1358–1370. [Google Scholar] [CrossRef] [PubMed]
- Absalom, N.L.; Schofield, P.R.; Lewis, T.M. Pore structure of the Cys-loop ligand gated ion channels. Neurochem. Res. 2009, 34, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Morales-Pérez, C.L.; Noviello, C.M.; Hibbs, R.E. X-ray structure of the human α4β2 nicotinic receptor. Nature 2016, 538, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Basta, T.; Teng, J.; Lee, M.; Worrell, B.T.; Stowell, M.H.B.; Hibbs, R.E. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nat. Struct. Mol. Biol. 2022, 29, 386–394. [Google Scholar] [CrossRef]
- daCosta, C.J.B.; Wagg, I.D.; McKay, M.E.; Baenziger, J.E. Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor. J. Biol. Chem. 2004, 279, 14967–14974. [Google Scholar] [CrossRef]
- Pediconi, M.F.; Gallegos, C.E.; Barrantes, F.J. Metabolic cholesterol depletion hinders cell-surface trafficking of the nicotinic acetylcholine receptor. Neuroscience 2004, 128, 239–249. [Google Scholar] [CrossRef]
- Baier, C.J.; Barrantes, F.J. Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway. J. Neurochem. 2007, 101, 1072–1084. [Google Scholar] [CrossRef]
- Baenziger, J.E.; Hénault, C.M.; Therien, J.P.D.; Sun, J. Nicotinic acetylcholine receptor-lipid interactions: Mechanistic insight and biological function. Biochim. Biophys. Acta Biomembr. 2015, 1848, 1806–1817. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.; Barrantes, F.J. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 1978, 75, 4329–4333. [Google Scholar] [CrossRef]
- Antollini, S.S.; Soto, M.A.; Bonini de Romanelli, I.; Gutiérrez-Merino, C.; Sotomayor, P.; Barrantes, F.J. Physical state of bulk and protein associated lipid in nicotinic acetylcholine receptor-rich membrane studied by Laurdan generalized polarization and fluorescence energy transfer. Biophys. J. 1996, 70, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Fernández Nievas, G.A.; Barrantes, F.J.; Antollini, S.S. Conformation-sensitive steroid and fatty acid sites in the transmembrane domain of the nicotinic acetylcholine receptor. Biochemistry 2007, 46, 3503–3512. [Google Scholar] [CrossRef]
- Lee, A.G. Lipid-protein interactions in biological membranes: A structural perspective. Biochim. Biophys. Acta 2003, 1612, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Bechara, C.; Robinson, C.V. Different modes of lipid binding to membrane proteins probed by mass spectrometry. J. Am. Chem. Soc. 2015, 137, 5240–5247. [Google Scholar] [CrossRef] [PubMed]
- Landreh, M.; Marty, M.T.; Gault, J.; Robinson, C.V. A sliding selectivity scale for lipid binding to membrane proteins. Curr. Opin. Struct. Biol. 2016, 39, 54–60. [Google Scholar] [CrossRef]
- Bolla, J.R.; Corey, R.A.; Sahin, C.; Gault, J.; Hummer, A.; Hopper, J.T.S.; Lane, D.P.; Drew, D.; Allison, T.M.; Stansfeld, P.J.; et al. A mass spectrometry-based approach to distinguish annular and specific lipid binding to membrane proteins. Angew. Chem. Int. Ed. Engl. 2020, 59, 3523–3528. [Google Scholar] [CrossRef]
- Schaaf, C.P. Nicotinic acetylcholine receptors in human genetic disease. Genet. Med. 2014, 16, 649–656. [Google Scholar] [CrossRef]
- Yadav, R.S.; Tiwari, N.K. Lipid integration in neurodegeneration: An overview of Alzheimer’s disease. Mol. Neurobiol. 2014, 50, 168–176. [Google Scholar] [CrossRef]
- Op den Kamp, J.A.F. Lipid asymmetry in membranes. Annu. Rev. Biochem. 1979, 48, 47–71. [Google Scholar] [CrossRef]
- Devaux, P.F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry 1991, 30, 1163–1173. [Google Scholar] [CrossRef]
- Schroeder, F. Methods for Studying Membrane Fluidity; Alan, R., Ed.; Liss Inc.: New York, NY, USA, 1988; pp. 193–217. [Google Scholar]
- Wood, W.G.; Gorka, C.; Schroeder, F. Acute and chronic effects of ethanol on transbilayer membrane domains. J. Neurochem. 1989, 52, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
- Wood, W.G.; Schroeder, F.; Hogy, L.; Rao, A.M.; Nemecz, G. Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: Effects of chronic ethanol consumption. Biochim. Biophys. Acta 1990, 1025, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.K.; Wagner, R.C. Introduction to Biological Membranes; John Wiley and Sons: New York, NY, USA, 1980; p. 382. [Google Scholar]
- Herbette, L.; DeFoor, P.; Fleischer, S.; Pascolini, D.; Scarpa, A.; Blasie, J.K. The separate profile structures of the functional calcium pump protein and the phospholipid bilayer within isolated sarcoplasmic reticulum membranes determined by X-ray and neutron diffraction. Biochim. Biophys. Acta 1985, 817, 103–122. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Merino, C.; Pietrasanta, L.; Bonini de Romanelli, I.; Barrantes, F.J. Preferential distribution of fluorescent phospholipid probes NBD-phosphatidylcholine and Rhodamine-phosphatidylethanolamine in the exofacial leaflet of acetylcholine receptor-rich membranes from Torpedo marmorata. Biochemistry 1995, 34, 4846–4855. [Google Scholar] [CrossRef] [PubMed]
- Scher, M.G.; Bloch, R.J. Phospholipid asymmetry in acetylcholine receptor clusters. Exp. Cell Res. 1993, 208, 485–491. [Google Scholar] [CrossRef] [PubMed]
- González-Ros, J.M.; Llanillo, M.; Paraschos, A.; Martinez-Carrion, M. Lipid environment of acetylcholine receptor from Torpedo californica. Biochemistry 1982, 21, 3467–3474. [Google Scholar] [CrossRef] [PubMed]
- Rotstein, N.P.; Arias, H.R.; Barrantes, F.J.; Aveldaño, M.I. Composition of lipids in elasmobranch electric organ and acetylcholine receptor membranes. J. Neurochem. 1987, 49, 1333–1340. [Google Scholar] [CrossRef]
- Narayanaswami, V.; McNamee, M.G. Protein-lipid interactions and Torpedo californica nicotinic acetylcholine receptor function. 2. Membrane fluidity and ligand-mediated alteration in the accessibility of gamma subunit cysteine residues to cholesterol. Biochemistry 1993, 32, 12420–12427. [Google Scholar] [CrossRef]
- Jansson, C.; Harmala, A.S.; Toivola, D.M.; Slotte, J.P. Effects of the phospholipids environment in the plasma membrane on receptor interaction with the adenylyl cyclase complex of intact cells. Biochim. Biophys. Acta 1993, 1145, 311–319. [Google Scholar] [CrossRef]
- Ellena, J.F.; Blazing, M.A.; McNamee, M.G. Lipid-protein interactions in reconstituted membranes containing Acetylcholine receptor. Biochemistry 1983, 22, 5523–5535. [Google Scholar] [CrossRef]
- Marsh, D.; Watts, A.; Barrantes, F.J. Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim. Biophys. Acta 1981, 645, 97–101. [Google Scholar] [CrossRef]
- Bonini, I.C.; Antollini, S.S.; Gutiérrez-Merino, C.; Barrantes, F.J. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes. Eur. Biophys. J. 2002, 31, 417–427. [Google Scholar] [CrossRef]
- Parasassi, T.; Conti, F.; Gratton, E. Time-resolved fluorescence emission spectra of laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell. Mol. Biol. 1986, 32, 103–108. [Google Scholar]
- Parasassi, T.; De Stasio, G.; d’Ubaldo, A.; Gratton, E. Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys. J. 1990, 57, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Parasassi, T.; De Stasio, G.; Ravagnan, G.; Rusch, R.; Gratton, E. Quantitation of lipid phases in phospholipid vesicles by the GP of laurdan fluorescence. Biophys. J. 1991, 60, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Gunther, G.; Malacrida, L.; Jameson, D.M.; Gratton, E.; Sánchez, S.A. LAURDAN since Weber: The Quest for Visualizing Membrane Heterogeneity. Acc. Chem. Res. 2021, 54, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.L.-G. Effect of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry 1988, 27, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.L.-G. Interactions of PRODAN and laurdan with membranes at high pressure. High Press. Res. 1990, 5, 761–763. [Google Scholar] [CrossRef]
- Unwin, N. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 2003, 555, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Rand, R.T. Interacting phospholipid bilayer: Measured forces and induced structural changes. Annu. Rev. Biophys. Bioenerg. 1981, 10, 277–314. [Google Scholar] [CrossRef]
- Antollini, S.S.; Barrantes, F.J. Unique effects of different fatty acid species on the physical properties of the torpedo acetylcholine receptor membrane. J. Biol. Chem. 2002, 277, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, V.; Antollini, S.S.; Nievas, G.A.F.; Aveldaño, M.I.; Barrantes, F.J. Partition profile of the nicotinic acetylcholine receptor in lipid domains upon reconstitution. J. Lipid Res. 2010, 51, 2629–2641. [Google Scholar] [CrossRef]
- Perillo, V.L.; Peñalva, D.A.; Vitale, A.J.; Barrantes, F.J.; Antollini, S.S. Transbilayer asymmetry and sphingomyelin composition modulate the preferential membrane partitioning of the nicotinic acetylcholine receptor in Lo domains. Arch. Biochem. Biophys. 2016, 591, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.L. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid. Redox Signal. 2011, 14, 1437–1448. [Google Scholar] [CrossRef]
- Dhapola, R.; Beura, S.K.; Sharma, P.; Singh, S.K.; HariKrishnaReddy, D. Oxidative stress in Alzheimer’s disease: Current knowledge of signaling pathways and therapeutics. Mol. Biol. Rep. 2024, 51, 48. [Google Scholar] [CrossRef]
- Eide, L.; McMurray, C.T. Culture of adult mouse neurons. BioTechniques 2005, 38, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Schild, D.; Geiling, H.; Bischofberger, J. Imaging of Ltype Ca2+ channels in olfactory bulb neurones using fluorescent dihydropyridine and a styryl dye. J. Neurosci. Methods 1995, 59, 183–190. [Google Scholar] [CrossRef]
- McKinney, R.A. Physiological roles of spinemotility: Development plasticity and disorders. Biochem. Soc. Trans. 2005, 33, 1299–1302. [Google Scholar] [CrossRef]
- Samhan-Arias, A.K.; García-Bereguiaín, M.A.; Martín-Romero, F.J.; Gutiérrez-Merino, C. Regionalization of plasma membrane-bound flavoproteins of cerebellar granule neurons in culture by fluorescence energy transfer imaging. J. Fluoresc. 2006, 16, 393–401. [Google Scholar] [CrossRef]
- Villalba, J.M.; Navarro, F.; Gómez-Díaz, C.; Arroyo, A.; Bello, R.I.; Navas, P. Role of cytochrome b5 reductase on the antioxidant function of coenzyme Q in the plasma membrane. Mol. Asp. Med. 1997, 18 (Suppl. S1), S7–S13. [Google Scholar] [CrossRef] [PubMed]
- Chatenay-Rivauday, C.; Cakar, Z.P.; Jenö, P.; Kuzmenko, E.S.; Fiedler, K. Caveolae: Biochemical analysis. Mol. Biol. Rep. 2004, 31, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Samhan-Arias, A.K.; Garcia-Bereguiain, M.A.; Martin-Romero, F.J.; Gutiérrez-Merino, C. Clustering of plasma membrane-bound cytochrome b5 reductase within ‘lipid raft’ microdomains of the neuronal plasma membrane. Mol. Cell. Neurosci. 2009, 40, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Samhan-Arias, A.K.; López-Sánchez, C.; Marques-da-Silva, D.; Lagoa, R.; Garcia-Lopez, V.; García-Martínez, V.; Gutiérrez-Merino, C. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct. Funct. 2015, 221, 2147–2162. [Google Scholar] [CrossRef] [PubMed]
- Marques-da-Silva, D.; Samhan-Arias, A.K.; Tiago, T.; Gutiérrez-Merino, C. L-type calcium channels and cytochrome b5 reductase are components of protein complexes tightly associated with lipid rafts microdomains of the neuronal plasma membrane. J. Proteom. 2010, 73, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Samhan-Arias, A.K.; Marques-da-Silva, D.; Yanamala, N.; Gutiérrez-Merino, C. Stimulation and clustering of cytochrome b5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. J. Proteom. 2012, 75, 2934–2949. [Google Scholar] [CrossRef]
- Marques-da-Silva, D.; Gutiérrez-Merino, C. L-type voltage-operated calcium channels, N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano-transducer within lipid rafts. Biochem. Biophys. Res. Commun. 2012, 420, 257–262. [Google Scholar] [CrossRef]
- Marques-da-Silva, D.; Gutiérrez-Merino, C. Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium 2014, 56, 108–123. [Google Scholar] [CrossRef]
- Poejo, J.; Salazar, J.; Mata, A.M.; Gutiérrez-Merino, C. Binding of Amyloid-β (1–42)-Calmodulin Complexes to Plasma Membrane Lipid Rafts in Cerebellar Granule Neurons Alters Resting Cytosolic Calcium Homeostasis. Int. J. Mol. Sci. 2021, 22, 1984. [Google Scholar] [CrossRef]
- Poejo, J.; Orantos-Aguilera, Y.; Martin-Romero, F.J.; Mata, A.M.; Gutiérrez-Merino, C. Internalized Amyloid-β (1–42) Peptide inhibits the store-operated calcium entry in HT-22 cells. Int. J. Mol. Sci. 2022, 23, 12678. [Google Scholar] [CrossRef]
- Salazar, J.; Samhan-Arias, A.K.; Gutiérrez-Merino, C. Hexa-histidine, a peptide with versatile applications in the study of Amyloid-β (1–42) molecular mechanisms of action. Molecules 2023, 28, 7138. [Google Scholar] [CrossRef]
- Förster, T. Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie. Zeitschr. Natürforschung A 1949, 4, 321–327. [Google Scholar] [CrossRef]
- Stryer, L.; Haugland, R.P. Energy Transfer: A Spectroscopic Ruler. Proc. Natl. Acad. Sci. USA 1967, 58, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.; Farris, F. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 1979, 18, 3075–3078. [Google Scholar] [CrossRef]
- Hoppe, A.D.; Shorte, S.L.; Swanson, J.A.; Heintzmann, R. Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophys. J. 2008, 95, 400–418. [Google Scholar] [CrossRef]
- Ágnes, S.; Tímea, S.-S.; János, S.; Peter, N. Quo vadis FRET? Förster’s method in the era of superresolution. Methods Appl. Fluoresc. 2020, 8, 032003. [Google Scholar]
- Trumpp, M.; Oliveras, A.; Gonschior, H.; Ast, J.; Hodson, D.J.; Knaus, P.; Lehmann, M.; Birol, M.; Broichhagen, J. Enzyme self-label-bound ATTO700 in single-molecule and super-resolution microscopy. Chem. Commun. 2022, 58, 13724–13727. [Google Scholar] [CrossRef] [PubMed]
- Tsien, R.Y.; Miyawaki, A. Seeing the machinery of live cells. Science 1998, 280, 1954–1955. [Google Scholar] [CrossRef]
- Szalai, A.M.; Zaza, C.; Stefani, F.D. Super-resolution FRET measurements. Nanoscale 2021, 13, 18421–18433. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.; Sinsuebphon, N.; Rudkouskaya, A.; Michalet, X.; Intes, X.; Barroso, M. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET. Biophys. Rep. 2023, 3, 100110. [Google Scholar] [CrossRef]
- Carro, A.C.; Piccini, L.E.; Damonte, E.B. Blockade of dengue virus entry into myeloid cells by endocytic inhibitors in the presence or absence of antibodies. PLoS. Negl. Trop. Dis. 2018, 12, e0006685. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Chen, J.; Gao, Z.; Fan, C.; Yan, Q.; Wang, Y. Effects of donor and acceptor’s fluorescence lifetimes on the method of applying Förster resonance energy transfer in STED microscopy. J. Microsc. 2018, 269, 59–65. [Google Scholar] [CrossRef]
- Dimura, M.; Peulen, T.O.; Hanke, C.A.; Prakash, A.; Gohlke, H.; Seidel, C.A. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 2016, 40, 163–185. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Kim, J.-Y.; Gopich, I.V.; Chung, H.S. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of Amyloid-β 42 of extremely low population. PNAS Nexus 2023, 2, pgad253. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antollini, S.S.; Barrantes, F.J. Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research. Molecules 2024, 29, 820. https://doi.org/10.3390/molecules29040820
Antollini SS, Barrantes FJ. Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research. Molecules. 2024; 29(4):820. https://doi.org/10.3390/molecules29040820
Chicago/Turabian StyleAntollini, Silvia S., and Francisco J. Barrantes. 2024. "Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research" Molecules 29, no. 4: 820. https://doi.org/10.3390/molecules29040820
APA StyleAntollini, S. S., & Barrantes, F. J. (2024). Carlos Gutiérrez-Merino: Synergy of Theory and Experimentation in Biological Membrane Research. Molecules, 29(4), 820. https://doi.org/10.3390/molecules29040820