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Abstract: Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm
of biological membranes, has made significant theoretical and experimental contributions to the
field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson,
the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying
molecular interactions in membranes, providing structural insights on a scale of 1–10 nm and re-
maining important alongside evolving perspectives on membrane structures. In the last few decades,
Gutiérrez-Merino’s work has covered multiple facets in the field of FRET, with his contributions
producing significant advances in quantitative membrane biology. His more recent experimental
work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late
1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits
and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane
lipids, fostering a lasting friendship.

Keywords: Förster resonance energy transfer (FRET); membrane biophysics; membrane proteins;
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1. Introduction

Professor Carlos Gutiérrez-Merino belongs to a group of curious and restless scientists
who have contributed with incisive theoretical approaches and solid experimental work
to the advancement of our knowledge in the highly complex and competitive field of
biological membranes. He first approached us in the late 1980s, leading to a fruitful
scientific collaboration entailing several research visits to carry out experimental work at
the Institute for Biochemical Research of the Universidad Nacional del Sur in Bahía Blanca,
Argentina, and reciprocated by visits of F.J.B. to Prof. Gutiérrez-Merino’s laboratory at
the Department of Biochemistry and Molecular Biology of the University of Extremadura
in Spain, catalyzed by the Cooperation Programme with Iberoamerica. These exchanges
extended throughout two decades, resulted in the publication of eight research papers, and
helped forge a strong friendship with Carlos, a cultivated and warm-hearted individual
who generously devoted many hours to teaching and holding discussions with research
students and members of staff in our laboratory.

Biological membranes are complex and dynamic and remain the subject of multiple
controversies. Various theories and models were suggested before Singer and Nicolson
proposed the fluid-mosaic model in 1972 [1]. The innovative depiction of a biological
membrane of the Singer and Nicolson model gained wide acceptance, provoking ample
discussions, triggering experiments, and ultimately shedding light on membrane structure
and function. The model has withstood the test of time, with various modifications and
extensions, despite the enormous amount of new information gained during the last
decades, some of which openly challenged the fluid-mosaic depiction [2–5].
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Currently, a biological membrane is conceptualized as an intricate, crowded structure
with a diverse lipid and protein composition, featuring lateral and transverse asymmetry,
variable patchiness, variable thickness, and high protein occupancy [2,5]. It is universally
accepted that biological membranes act as barriers that separate two fluid media, preventing
direct contact between the inner and outer compartments. However, constituting a physical
barrier is not their sole function. Many essential biochemical reactions for cell life, involving
metabolic and signaling processes with membrane-bound enzymes and transmembrane
proteins such as G-protein coupled receptors (e.g., rhodopsin or muscarinic receptors) and
ion channels (e.g., nicotinic, histaminergic, GABAergic, or glutamatergic receptors), take
place in cell membranes. This makes membranes pivotal scenarios in nearly all cellular
physiological and pathological processes. These essential reactions require molecular
communication, involving both protein–protein and protein–lipid interactions, and the
study of these processes posed formidable experimental challenges a few decades ago.

2. Gutiérrez-Merino’s Development of Theoretical Approaches in Fluorescence
Spectroscopy in Biological Membrane Research

At the time when the fluid-mosaic membrane model was being developed, Förster res-
onance energy transfer (FRET) emerged as a revolutionary and extremely useful technique
for the study of molecular interactions in biological systems, as it allows the obtention
of structural details in the 1–10 nm scale size [6–8]. FRET theoretical developments ad-
dressing the analysis of experimental data permitted biophysicists to extract quantitative
information about a great variety of membrane properties [9–26].

One of Gutiérrez-Merino´s contributions to the field of FRET took the form of two
theoretical approaches that were presented almost simultaneously. One of these approaches
was developed for model systems of binary lipid mixtures undergoing phase separation
and involving four main conditions: (a) a triangular network of lipids in a gel phase [27];
(b) an insignificant relative population of small clusters; (c) donor and acceptor molecules
oriented in the plane of the membrane (achieved at very low concentrations of labeled
lipids, typically <5%); and (d) a substantial number of acceptor molecules for each donor
molecule [17]. The acceptor molecules were assumed to be situated in concentric layers of
lipid (discs) around a single donor molecule.

The rate of energy transfer (kr) between a donor and an acceptor separated by a
distance r was calculated using the value of KT(r) obtained with Förster´s equation [28],
and the relative number of phospholipid molecules in each disc with respect to the number
of phospholipid molecules in the first disc around a given molecule (Equation (1)) was
formulated as follows:

kT (r) = τo
−1 (R0/r)−6 with kr = [kT (r)/kT (r1)] n/6 (1)

where τo is the lifetime of the donor in the absence of the acceptor; R0 is the distance in
Å between donor and acceptor molecules at which the transfer efficiency is 50%; r1 is the
average intermolecular distance of the triangular lattice; and n is the number of phospho-
lipid molecules in each disc surrounding a given phospholipid molecule. Considering the
random distribution of donor and acceptor molecules in the plane of the membrane, it is
assumed that no change takes place in the orientation factor κ2 (a parameter used in the
calculation of R0) in the passage from one lipid disc to the next [17].

Considering the rate of energy transfer, theoretical analyses were developed for a
binary, partially mixed lipid bilayer undergoing lateral phase separation (Equation (6)),
intended to represent a realistic condition met in biomembranes [17]. The root of this
reasoning stems from the analysis of both an ideal mixture of lipids (Equation (2)) and
a completely immiscible mixture of lipids (Equations (3) and (4)). In both cases, the
experimental data were obtained from unilamellar vesicles, whereby the bilayer curvature
was considered negligible.

kT = [1 − NA/(NA + NB)] fa kT(r1) (2)
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where NA and NB are the number of molecules of randomly distributed donor and acceptor
lipids, respectively, and fa is the fraction of B molecules.

kT = [(2n + 6)/6n] fa kT(r1) (3)

where n is the number of lipid molecules in a cluster consisting of up to six molecules
of the minority component in the lipid mixture, with completely immiscible A and B
molecules, and

kT = (6n)−1 {6 + 12 [s + nexc/6 (s + 1)]} fa kT(r1) (4)

where s is the number of complete lipid shells of the cluster, which is an integer ≥ 1, and
nexc is the number of lipid molecules in the incomplete outer shell of the cluster.

Next, the rate of energy transfer for a binary partially mixed lipid bilayer undergoing
lateral phase separation is calculated, as follows:

kT = fa kT(r1) ⟨i⟩−1 (⟨1/i⟩ + 2⟨si/i⟩) (5)

where i corresponds to lipid molecules of class A, and ⟨i⟩ and ⟨si/i⟩ are the average cluster
size in terms of number of lipid molecules within and the ratio of cluster shells to lipid
molecules in the cluster, respectively. Equation (5) can be reformulated by expressing the
last term as ⟨(1 + 2si)/i⟩ = ½ ⟨Di/i⟩, where Di is the diameter of the circular cluster i, and
⟨Di/i⟩ = ⟨Di−1⟩. Thus,

kT = ½ fa kT(r1) ⟨i⟩−1 ⟨Di
−1⟩ (6)

This allows one to calculate the average cluster size of the minority lipid (lipid A).
In summary, the average energy transfer efficiency provides a means to ascertain,

directly from experimental observations, the average size of lipid clusters, correlating this
information with the concentrations of both lipids in the mixture, within constrained molar
fraction ranges. These novel contributions from Gutiérrez-Merino significantly contributed
to enhancing our understanding of the thermodynamic principles governing lateral phase
separation in lipid membranes [17].

The scope of this analysis was broadened to encompass additional conditions, in par-
ticular the inclusion of membrane proteins, as addressed in the second theoretical approach
based on FRET, which Gutiérrez-Merino introduced more than forty years ago [18]. In this
scenario, the assumption (a) of the first approach required modifications to incorporate
the distribution and state of aggregation of integral membrane proteins. Again, FRET
experiments conducted on these more complex biological systems were key to reaching the
conclusion that the average rate of energy transfer could function as a quantitative ruler of
the following, among other metrics of membrane properties: (a) transmembrane distances
(i) between proteins or (ii) between proteins and lipids; (b) distances between sites within a
single protein; (c) changes in protein aggregation; (d) lipid heterogeneities; and (e) random
or non-random protein distribution. Measurements of the average rate of energy transfer
between protein and phospholipid molecules, labeled with donor and acceptor molecules,
respectively, were often used in these experiments. The ability to accurately characterize
the above properties and processes strongly depends on the careful selection of donor and
acceptor molecules. For example, in the examination of random and non-random protein
distributions in a membrane, it is imperative to employ fluorescently labeled proteins for
the donor–acceptor pair. To investigate protein lateral phase separation from lipids, it is
usually necessary to resort to a donor-labeled protein and acceptor-labeled lipids. In the
latter case, it is crucial to verify that the fluorescent label of the lipids does not exclude
them from the immediate perimeter of the protein or induce non-preferential binding to
the protein of interest [18].

The above theoretical approach was applied to the study of the (Ca2+-Mg2+) ATPase.
In this case, ATPase labeled with a fluorescein tag at the ATP binding site served as the
donor, and rhodamine-labeled lipids acted as acceptors. This configuration allowed the
fluorescently labeled ATP binding site of the enzyme to sit at a distance from the lipid–



Molecules 2024, 29, 820 4 of 16

water interface of the membrane. Moreover, this series of experiments made it possible
to postulate that the (Ca2+-Mg2+) ATPase existed as a dimer, with the ATP binding sites
of each monomer located close to the protein–protein interface [29]. Subsequently, using
Co2+ as an acceptor for the fluorescence emitted by fluorescein and employing the same
theoretical approach, it was possible to establish the location of functional binding sites, in
particular the regulatory metal ion sites for free Co2+, which likely correlate with Ca2+ sites
(Figure 1A) [30].
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Figure 1. Diagrams depicting the hypothetical topographical relationships between the ATPase
(A) and NADPH cytochrome P450 reductase and P450 reductase (B) with their respective lipid
microenvironments. In both cases, information was obtained through FRET studies. (A) From
Gutiérrez-Merino et al., refs. [29,30]. (B) From Centeno and Gutiérrez-Merino, ref. [31].

In 1994, Gutiérrez-Merino and colleagues [32] extensively discussed the utilization of
FRET for measuring distances between donor and acceptor molecules, building upon their
prior expertise [29–31,33]. As is now well established, this nonradiative process involves the
transfer of excitation energy through long-range dipole –dipole coupling, a phenomenon
affected by the distance between the two molecules and their orientation [28]. A significant
cautionary note was issued regarding the precision of such measurements. Obtaining a
single donor–acceptor pair in membrane systems is challenging unless very restrictive
conditions are met, such as an R0 value smaller than half the dimension of the protein
diameter or a homogeneous dispersion of monomeric membrane proteins with substantial
“dilution” in a lipid matrix. Hence, calculations of distances between two functional protein
sites or a protein site and a lipid pose considerable uncertainty.

A similar reasoning was employed to investigate the positioning of functional centers
in the microsomal cytochrome P450 system [31]. Energy-transfer studies enabled the
determination of the locations of the two prosthetic groups (FAD and FMN) of NADPH-
cytochrome P450 reductase, as well as the heme group and the substrate binding site of
cytochrome P450 (Figure 1B). The estimated distance between the FAD and FMN groups
(donor–acceptor pair) was approximately 2 nm. Using a lipid labeled with rhodamine (RPE)
as an acceptor for the reductase’s fluorescence, the position of the flavins was estimated
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to be more than 5 nm from the rhodamine group. Consequently, it was concluded that
the FMN and FAD groups are not exposed to the enzyme’s surface and are distant from
the lipid–water interface, with FAD more deeply buried than FMN in the enzyme’s 3D
structure. In the case of cytochrome P450, two different donor–acceptor pairs were used:
diphenylhexatriene (DPH)–heme and 4H7HC–heme, with DPH located deep inside the
lipid bilayer, and the coumarin group of 4H7HC close to the polar headgroup. Distances
of 7.1 nm between the heme and DPH groups and of approximately 4.8 nm from the
heme group to the lipid–water interface were obtained. A third donor–acceptor pair
was used (ethoxycoumarin–heme group). Ethoxycoumarin is a good substrate for these
isoenzymes, and a distance of 5.3 nm between the heme group and 7-ethoxycoumarin
could be calculated (Figure 1B) [31].

3. Gutiérrez-Merino’s Incursions into the Field of Nicotinic Acetylcholine
Receptor–Lipid Interactions

The influence of lipids on the conformation, function, and topography in the mem-
brane of the nicotinic acetylcholine receptor (nAChR) has been the subject of intense study
for the last 50 years [34]. Synthesis, assembly, and function of the nAChR strongly depend
on the properties and characteristics of the membrane in which it is embedded. The layer
of lipids in the immediate vicinity of the receptor has distinct properties relative to bulk
lipids. Different experimental strategies have been used over the last decades to investigate
receptor–lipid interactions. Fluorescence spectroscopy and fluorescence microscopy have
occupied a central position in characterizing many of the properties of the nAChR that we
now know of. Carlos Gutiérrez-Merino contributed to this endeavor during his collabo-
ration with our laboratory in the early 1990s. In this Section, we will summarize some of
these studies.

nAChRs are pentameric integral membrane proteins belonging to the Cys-loop su-
perfamily of ligand-gated ion channels [35–38]. Each of its five subunits possesses a large
extracellular region that harbors the agonist-binding site, a transmembrane region with
extensive contacts with surrounding lipids through evolutionarily conserved structural
motifs [34,39–41] and an intracellular region containing modulatory sites and determinants
of channel conductance [42,43]. The transmembrane domain consists of four segments
(TM1–TM4), with TM2 forming the walls of the ion channel pore and TM1, TM3, and
TM4 being more externally located [34,44,45]. Among these, TM4, the most peripheral
transmembrane domain, has the closest contact with membrane lipids and constitutes the
lipid-sensing domain of the protein [46,47].

The nAChR is a typical transmembrane protein, and the properties and characteristics
of the membrane in which it resides are therefore important influences on its function,
biosynthesis, and proper assembly [36,46–50]. Reciprocally, the nAChR exerts influence
on its neighboring lipids [51–53]. The muscle-type nAChR at the neuromuscular junction
and the electric fish of electromotor synapses (electric eels and electric rays) is enveloped
by a layer of interstitial lipids, relatively immobilized in the microsecond time-window of
electron spin resonance (ESR) spectroscopy, with distinct features relative to bulk lipids [51].
Thus, the lipid molecules closely associated with the protein exhibit a slow exchange rate
with bulk lipids. Mobile lipids interact with membrane proteins in a relatively less specific
manner and exhibit a faster rate of exchange with bulk lipids [54–57]. It has been stressed
that in contrast to other biological membranes, the postsynaptic membrane in which the
nAChR is embedded is a unique system, whereby the amount of bulk lipid in the tight
2-dimensional lattice of receptor proteins is minimal, with only a few layers of interstitial
lipid in between adjacent receptor molecules, and consequently with little, if any, “bulk”
lipid [34].
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Since lipid composition undergoes changes with aging and in response to various
neurodegenerative diseases [58,59], and bearing in mind that lipid content varies across
different tissues, it becomes imperative to comprehend how alterations in the nAChR lipid
environment impact its structure, activity, and dysfunction.

One key aspect of biological membranes is their heterogeneity, which comprises both
lateral and transbilayer asymmetries, two topographical properties that have an impact
on integral membrane proteins. The aminophospholipids phosphatidylethanolamine (PE)
and phosphatidylserine (PS), along with phosphatidylinositol, are primarily situated in
the inner leaflet of the plasmalemma, while phosphatidylcholine (PC) and sphingomyelin
(SM) are predominantly located in the outer leaflet in most mammalian cells [60,61]. In
mouse synaptic plasma membranes, the outer monolayer exhibits greater fluidity than
the inner leaflet [62,63], a phenomenon that correlates with the notable prevalence (88%)
of cholesterol in the inner, cytoplasmic hemilayer in some biological membranes [64]. In
one of Gutiérrez-Merino’s visits to our laboratory, we explored lipid asymmetry in na-
tive nAChR-rich membranes from Torpedo electrocytes. The dimensions of a lipid bilayer,
typically ranging from 4 to 5 nm [65,66], fall within the same range as the R0 observed
between different pairs of donor and acceptor fluorescent molecules commonly employed
in biophysical studies of biological membranes. Hence, it was predicted that the efficiency
of FRET between lipids labeled as donor and acceptor in opposite leaflets of the mem-
brane bilayer would be significantly lower than the transfer between donor and acceptor
molecules located on the same membrane hemilayer. We used lipids tagged with an NBD
group as donor, labeled at various positions such as the headgroup, C6, and C12. The
fluorescent probe rhodamine-PE (N-Rho-PE) was chosen as the acceptor. A calculated R0
value of 5.58 nm for the donor–acceptor pair was determined [67]. We concluded that the
phospholipids PC and PE were primarily located in the exofacial leaflet in nAChR-enriched
membranes from Torpedo. Additionally, the evaluation of energy transfer efficiency reported
deviations from a uniform distribution of the labelled lipids within this leaflet when high
molar ratios of acceptor lipids were used in liposomes prepared with the endogenous PC
fraction extracted from native nAChR-rich membrane samples.

In a subsequent study, we addressed the precise location of SM in native nAChR-rich
membranes from Torpedo marmorata. At that time, the distribution of SM on the cell-surface
membrane was not known, nor was it clear whether this lipid held any structural and/or
functional significance relative to the major functional molecule in this membrane, the
nAChR. Previous work had shown the enrichment of SM in membrane regions where
nAChR clusters were present. The lipid composition of these regions differed from the
bulk membrane composition [68]. In nAChR-rich membranes derived from the electric
organ of Torpedinidae species, the primary phospholipids were PC (40%), PE (35%), and
PS (13%), with a much lower SM content (~5% of the total phospholipid content) [69,70].
Using classical biochemical approaches, it was possible to conclude that SM in native
nAChR-rich membranes from T. marmorata was enriched in the outer membrane hemi-
layer, confirming the transbilayer asymmetry of this lipid. However, this did not imply
homogeneity in the distribution of SM in the external hemilayer. To address this question,
N-[10-(1-pyrenyl)decanoyl] sphingomyelin (Py-SM) was used as a reporter group of the
lipid physical state. FRET was also employed to assess the spatial relationship between the
receptor protein and the fluorescent lipid analogue in the immediate vicinity of the nAChR
protein as well as to determine its affinity for the receptor.

The ratio of excited-state pyrene dimer (excimer) to monomer Py-SM fluorescence (FE–
FM) provides insight into the intermolecular collisional frequency of these fluorophores;
hence, it constitutes a parameter directly affected by probe concentration. The increased
rate in the FE–FM ratio as a function of Py-SM concentration was twofold higher under
FRET conditions than under direct excitation of the probe. This observation suggested a
preferential partitioning of the Py-SM analogue in the protein-adjacent region. Applying
one of Gutiérrez-Merino´s theoretical FRET approaches [17,18] to the experimental data
enabled us to determine R0. A value of 21 ± 2 Å was obtained, in good agreement
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with previous reports [71]. The new data permitted the calculation of the kr for SM
in the nAChR vicinity; a value of 0.55 relative to the average bulk lipid moiety in the
membrane was obtained. This result suggested that Py-SM displayed a moderate affinity
for the membrane-bound nAChR. Treatment of the membrane with sphingomyelinase
converts SM into phosphorylcholine and ceramide (Cer). In intact membranes, enzymatic
hydrolysis removes only outer leaflet SMs [72]. When nAChR-rich membranes were treated
with sphingomyelinase and FRET efficiency was measured before and after enzymatic
hydrolysis, a noticeable increase in FRET efficiency between the protein and the resulting
Py-Cer was observed, indicating an enhanced affinity of Py-Cer for the donor protein
and/or greater accessibility of this lipid to the lipid microenvironment of the nAChR
relative to the Py-SM precursor. Additionally, a gradual decrease in the FE–FM ratio was
observed during enzymatic digestion, reinforcing the idea that Py-Cer exhibits higher
affinity and/or greater accessibility to the lipid–protein interface than Py-SM. This finding
could be rationalized in terms of the structural similarity between Cer and free fatty acids
(FFAs), since the latter exhibit approximately four times greater affinity for the membrane-
bound Torpedo nAChR relative to PC [73,74]. Considering a total of 44 lipids comprising
the nAChR vicinal lipid, only 2.2 molecules of SM were estimated to be at the nAChR–lipid
interface [75]. If one considers that the conversion of SM to Cer, a process that occurs
naturally and has significant functional consequences, could produce an increase in Cer
molecules at the nAChR–lipid interface, it also implies a relative decrease in other lipids in
the receptor microenvironment. These changes in the lipid–nAChR interface might entail
functional consequences, given the well-known influence of lipids on the conformation
and allosteric mechanisms of this receptor [34].

To learn about the physical characteristics of the membrane in which the nAChR is
inserted and of the lipid belt region, we resorted to the amphiphilic fluorescent probe
Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) [76]. Laurdan, one of the several
solvatochromic probes conceived and synthesized by Gregorio Weber and colleagues,
possesses an exquisite spectral sensitivity to the phase state of the membrane because of
its capacity to sense the polarity and the molecular dynamics of dipoles in its surround-
ings, due to the effect of dipolar relaxation processes [77–79]. Laurdan localizes at the
hydrophilic–hydrophobic interface of the lipid bilayer [80,81], with its lauric acid moiety at
the phospholipid acyl chain region and its naphthalene moiety at the level of the phospho-
lipid glycerol backbone. The so-called general polarization (GP) of Laurdan, a ratiometric
fluorescence technique, exploits its advantageous spectral properties, as it was initially
developed for time-resolved fluorescence emission spectral analysis in cuvette studies [76].

To learn about the physical state of the lipid microenvironment of the nAChR, we
conceived a novel approach in Laurdan studies that relied on exploiting the Förster energy
transfer from the intrinsic fluorescence of the nAChR (donor) to Laurdan as the accep-
tor, thus introducing FRET-GP in membrane biophysics [52]. As shown in Figure 2, the
nAChR has 52 tryptophan residues, 51 at the transmembrane region and 1 at the extracel-
lular domain. Using the structural data available at that time [82], we reasoned that the
transmembrane Trp residues were arranged as an interconnected network in a ring-like
three-dimensional structure with an outer radius of 32.5 Å. Furthermore, in view of the
long-axis dimensions of the nAChR molecule and the width of the lipid bilayer [82], the
height of the plane of nAChR tryptophan residues was allowed to vary between 0 and 50 Å
(Figure 2). The nAChR cylinder was in turn assumed to be surrounded by a belt of lipid
molecules of approximately 10 Å diameter each. The plane of acceptors was calculated
assuming an area per lipid molecule of 0.75 nm2 [83].
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Figure 2. Illustration depicting the nAChR and its 52 Trp residues and the vicinal, boundary lipid of
the Laurdan molecules’ (green) partition. nAChR Trp residues act as donors, and the solvatochromic
Laurdan molecules as acceptors. This pair constitutes the basis of the FRET-GP concept introduced in
the field of biological membranes in 1996 (ref. [52]).

The parameter H was used as a measure of the distance between donor–acceptor
planes normal to the membrane surface. Several conditions were considered [29]: (i) neigh-
boring nAChR molecules did not generate an accessible surface area to acceptor molecules;
(ii) the homotransfer of energy was allowed to occur between Trp residues; and (iii) a
distance of closest approach (r) of 10 Å corresponding to the sum of the van der Waal radii
of Trp and Laurdan was considered. The distribution (random or nonrandom) of Laurdan
in the nAChR-vicinal lipid was calculated using the parameter α (Equation (7)), which
considers the probability of occupancy of sites at the lipid belt region by Laurdan (L1)
relative to unlabeled lipids (L2), as follows:

α = (x1/K1)/(x2/K2) = (x1/x2) Kr
−1 (7)

where x1 + x2 = 1, and Kr is the apparent dissociation constant of Laurdan for the lipid
belt region. A value of Kr = 1 implies random distribution of the probe in the membrane,
whereas values less than or greater than 1 imply Laurdan´s preferential partition at the
lipid belt region or Laurdan´s exclusion from this region, respectively. Theoretical fittings
with varying R0, r, and H were performed and compared with the experimental data using
a set of curves with different Kr values (from 0.01 to 100) with a fixed R0 (Figure 3) [52].
An R0 value of 29 ± 1 Å for an intrinsic fluorescence protein–Laurdan donor–acceptor
pair was calculated. With this value, an average value of r = 14 + 1 Å was chosen for H
between 0 and 10 Å (Figure 3A,B). This value corresponds to the thickness of a single layer
of phospholipid molecules (0.75 nm2 in surface area; [83]), in agreement with the proposed
location of Laurdan in the bilayer [78,80,81]. Finally, a value of Kr near 1 was obtained
(Figure 3C), indicating a random distribution of Laurdan in the lipid bilayer, confirming
previous observations that suggested that the location of Laurdan in the membrane was
independent of the nature of the phospholipid polar headgroup [78].

In practice, theoretical and experimental FRET efficiency (E) are related as follows:

E = kT/k0 + kT = 1 − ϕ/ϕD ≈ 1 − I/ID (8)

where k0 is the rate of energy transfer, and donor and acceptor molecules are separated by
R0; ϕ and ϕD are fluorescence quantum yields of the donor in the presence and absence of
acceptor molecules, respectively; and I and ID are the fluorescence emission intensity of the
donor in the presence and absence of acceptor molecules, respectively.
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Figure 3. Efficacy of Förster resonance energy transfer (FRET) between the protein intrinsic fluo-
rescence (nAChR) and Laurdan as a function of the surface density of energy transfer acceptors, in
nAChR-rich membranes from T. marmorata. The continuous lines correspond to theoretical curves
representing (A,B) minimal distances (r) between donor and acceptor, calculated utilizing the method-
ology proposed by Gutierrez-Merino [18], with R0 = 29 Å and H set at 0 Å and 10 Å, respectively, and
(C) different values of the apparent dissociation constant of Laurdan for the boundary lipids (Kr),
calculated using the treatment of Gutiérrez-Merino et al. [29], with H = 0 Å, r = 15 Å, and R0 = 29 Å.
Data taken from ref. [52].

The knowledge gained through these studies on the precise localization of Laurdan at
the first shell of lipids surrounding the nAChR and the observation that the convenient
positioning of Laurdan made it possible to use this probe as an acceptor of the nAChR
intrinsic fluorescence in FRET-GP prompted us to undertake a series of studies on nAChR–
lipid interactions in native membranes. Using fluorescence spectroscopy, we could identify
sites for free fatty acids, various sterols, and phospholipids in the nAChR [84]. These
sites were found to be preserved after controlled proteolysis of the extracellular nAChR
moiety and were masked during nAChR desensitization [53]. Additionally, we utilized
this fluorescent donor–acceptor pair to study nAChR localization in liquid-ordered and/or
liquid-disordered domains in membranes of various compositions and asymmetries [85,86].

4. Gutiérrez-Merino’s Use of FRET in Imaging Studies of Biological Membranes

One of the most interesting aspects of FRET studies in membranes is the spatial
selectivity, permitting the observation of phenomena restricted only to acceptor molecules
that are just a few nanometers away from the donor molecule, thus providing high spatial
resolution for the case of multiple acceptors per donor, a property that has been exploited
in cell imaging.

Neuronal apoptosis is intimately related to oxidative stress [87], and a considerable
amount of research has been undertaken in this field to understand not only physiolog-
ical apoptosis but also that associated with pathophysiological conditions such as neu-
rodegenerative diseases (i.e., Alzheimer disease [88]). Gutiérrez-Merino expanded the po-
tential of FRET approaches by transitioning from cuvettes to the microscope, focusing
on this challenging problem. Changes in the red/orange autofluorescence of flavopro-
tein cytochrome b5 reductase (Cb5R), a major component of the plasma membrane redox
chain, and other flavoprotein oxidases also bound to membranes were observed under
cellular oxidative stress conditions [89]. Thus, flavins were used as donor molecules to
study their location in the plasma membrane. Two suitable acceptor molecules were N-(3-
triethylammoniumpropyl)-4-(4-(4-(diethylamino)phenyl)butadienyl)-pyridinium dibromide
(RH-414) and N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl) pyri-
dinium dibromide (FM4-64), with the fluorescence of RH-414 homogeneously distributed
in the plasma membrane [90], while FM4-64’s fluorescence is concentrated in the actively
recycling membrane at synaptic connections [91]. At cerebellar granule neurons (CGNs), R0
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values for both pairs of donor–acceptor molecules were in the range of 3.7–4.2 nm, with a
FRET efficiency of 30–35% at 9 days of cell culture (mature CGN). Fluorescence microscopy
images of CGN stained with FM4-64 obtained at the donor wavelength excitation showed
that FM4-64 is distributed in clusters or discrete membrane domains 0.5–1 µm in diameter,
largely present at inter-neuronal contact sites of the neuronal soma [92].

The membrane-bound isoform of Cb5R is a major protein component of the plasma
membrane redox chain in rat liver cells [93], one of the five more abundant proteins of
the caveolin–protein complex isolated from the vascular endothelial membrane [94], and
a flavoprotein. Thus, working with CGN, FRET studies were conducted between CTB-
Alexa488 and anti-caveolin-2/IgG-Alexa488 (as lipid raft markers) and anti-Cb5R/IgG-Cy3.
The observed FRET between CTB-Alexa488 and anti-Cb5R/Cy3 indicates that Cb5R must
be present in most “lipid raft” domains of the plasma [95]. More recently, FRET imaging
with cerebellar cortex slices using Alexa488-cholera toxin B as the donor and the complex
anti-Cb5R isoform 3/IgG-Cy3 as the acceptor confirms that a large part of Cb5R isoform
3 is located vicinal to lipid raft nanodomains [96]. Further FRET studies using CGNs in
culture, with a methodological improvement based on the implementation of secondary
fluorescent antibodies (Alexa488-IgG and Cy3-IgG) directed against primary antibodies
for Cb5R and L-type calcium channels (L-VOCC), led to the suggestion that L-VOCC
was anchored to raft domains through binding to caveolin complexes. This could occur
at a distance between 10 and 100 nm from cytochrome b5 reductase [97]. Similar FRET
experiments showed an enhanced clustering of cytochrome b5 reductase within caveolin-
rich lipid raft microdomains in the early phase of apoptosis [98]. A contemporary study
using a great variety of donor–acceptor pairs indicated that (a) L-VOCC and N-methyl
D-aspartate receptors (NMDARs) are vicinal proteins in the plasma membrane, separated
by less than 80 nm; (b) NMDARs also colocalize with neuronal nitric-oxide synthase
(nNOS); (c) nNOS is closer to caveolin-2 than caveolin-1; and (d) CTB binding sites were
located extracellularly and nNOS sites intracellularly. Together, these findings suggested
the clustering of NMDARs, L-VOCC, and nNOS in caveolin-rich microdomains with
dimensions <100 nm. Gutiérrez-Merino and colleagues named these domains “calcium-
microchip-like structures” and speculated that they have a high degree of control over
the neuronal excitability by calcium [99]. The donor–acceptor pairs used were anti-L-
VOCC/IgG-Alexa488 and anti-NMDAR/IgG-Cy3; anti-NMDAR/IgG-Alexa488 and L-
VOCC ligand ST-BODIPY dihydropyridine, a much smaller molecule; anti-nNOS/IgG-
Alexa488 and anti-NMDAR/IgG-Cy3; and anti-nNOS/IgG-Alexa488 and CTB-Alexa555 as
donors and anti-caveolin-1/IgG-Cy3 and anti-caveolin-2/IgGCy3 as acceptors [99].

Additionally, co-localization of the calcium extrusion systems (PMCA, plasma mem-
brane calcium pump, and NCX, sodium–calcium exchanger) with the major calcium entry
systems (L-VOCC and NMDAr) and the ROS/RNS enzymes (Cb5R and nNOS) was ob-
served within lipid raft-associated sub-microdomains smaller than 200 nm [100]. From
these studies, lipid rafts emerged as interesting markers of plasma membrane nanodomains,
where cross-talk between redox and calcium signaling occurs.

Recently, and as a continuation of the same approach, Gutiérrez-Merino and colleagues
initiated a series of studies on Alzheimer’s disease, exploring the relationship between
Aβ peptides, membrane lipids, and dysregulation of calcium homeostasis. FRET imaging
was performed in mature CGN between the fluorescent derivative Aβ (1–42)-HiLyteTM
Fluor555 and anti-CaM (calmodulin) conjugated with IgG-Alexa 488 (anti-CaM*A488) or
anti-LTCC subunit 1C conjugated with IgG-Alexa 488 (anti-LTCCs*A488), and between
anti-CaM*A488 and anti-HRas*Cy3. Several protein markers of lipid rafts were used
as acceptors: anti-Cav-1 conjugated with IgG-Alexa 488 (anti-Cav1*A488), anti-HRas
conjugated with IgG-Alexa 488 (anti-HRas*A488), and anti-PrPc conjugated with IgG-
Alexa488 (anti-PrPc*A488). An extensive complexation of Aβ with CaM and LTCC with
colocalization of CaM and HRas together with an Aβ association with lipid raft sub-
microdomains was observed [101]. The dysregulation of calcium homeostasis observed
in Alzheimer’s disease was attributed to the inhibition of LTCC by CaM–Aβ complexes.



Molecules 2024, 29, 820 11 of 16

In a subsequent study, using the same fluorescence-labeled Aβ and Alexa488-labeled
secondary antibodies for primary anti-PDI and anti-CaM or stromal interaction molecule
1 (STIM1) labeled with green fluorescent protein (STIM1-GFP), Gutiérrez-Merino and
colleagues demonstrated that prior to the internal dysregulation of calcium homeostasis, a
perturbation of store-operated calcium entry occurs through the internalization of Aβ and
its inhibition of STIM1, along with partial activation of the ER Ca2+-leak channels [102].
For these measurements, variations in donor fluorescence were analyzed, and the R0
and the spectral overlap integral (J) values were obtained for the Aβ*555–SPM1-GFP
donor–acceptor pair [102]. Recently, based on a similar formalism, Gutiérrez-Merino and
colleagues showed that a short peptide of only six histidines binds with high affinity to
Aβ(1–42) and also to Aβ(25–35), which still remains toxic, blocking the interaction of Aβ

with CaM and calbindin-D28k [103]. This latest result opened an interesting line of research
on the modulation of Aβ peptide toxicity.

5. Concluding Remarks and Future Prospects

In his “Zwischenmolekulare Energiewanderung und Fluoreszens (Intermolecular
energy migration and fluorescence)” [28] and “Experimentelle und theoretische Unter-
suchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie” [104]
papers, Theodor Förster set the theoretical basis of what we currently know as the Förster
resonance energy transfer (FRET) phenomenon, a non-radiative process through which a
donor fluorophore in the excited state transfers energy to nearby acceptor molecules within
nanometric distances. Lubert Stryer and Richard Haughland were among the first to qualify
FRET as a “spectroscopic ruler” [105]. Gregorio Weber, another forefather of fluorescence
spectroscopy in biological applications, considered FRET as the ultimate yardstick in inter-
molecular and intra-molecular measurements in solution. Carlos Gutiérrez-Merino made
ample use of FRET in his many studies on biological systems and contributed to setting
the theoretical basis for the application of FRET in biological membrane research. During
our decade-long collaboration with Carlos Gutiérrez-Merino, we conceived the use of
FRET in combination with the so-called general polarization of Laurdan, a solvatochromic
fluorescent probe designed and synthesized by Gregorio Weber [106]. This combination
resulted in FRET-GP, the first application of Laurdan as a sensor of a membrane-embedded
protein’s lipid microenvironment by excitation of the protein’s intrinsic fluorophores [52].

The emergence of autofluorescent proteins and protein chimeras with spectroscopic
characteristics suitable for FRET applications has opened the way to implement Förster
resonance energy transfer in the light microscope. The study of four-dimensional (x,y,z,t)
molecular-scale phenomena in live cells [107] is thus a reality that now projects beyond the
optical diffraction barrier and into the realm of super-resolution light microscopy [108–114].
Furthermore, the ability to genetically manipulate the chemistry of donor and acceptor
fluorescent proteins has expanded the spectral coverage of fluorescence microscopy in
live-cell interrogation [110]. These advances are particularly relevant to the field of mem-
brane biology. Hybrid FRET models that incorporate fluorescence spectroscopy concepts,
optical microscopies, and artificial intelligence approaches (computational tools such as
deep learning and neuronal networks) are now reaching atomistic structural levels and
temporal resolutions relevant to cell phenomena. Additionally, a new dimension of FRET
has been opened with hybrid/integrative modeling, where bio-macromolecular systems
are studied simultaneously through a combination of experimental techniques (such as
small-angle neutron and small-angle X-ray scatterings, along with NMR, EPR, and FRET
spectroscopies), as reviewed in [115]. Single-molecule fluorescence spectroscopy is an
emerging field in which FRET is a necessary partner, as demonstrated in a recent study
characterizing the coexistence of stable oligomers of amyloid-β 42 within a heterogeneous
and dynamic sample [116].
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