Gas-Phase Infrared Action Spectroscopy of CH2Cl+ and CH3ClH+: Likely Protagonists in Chlorine Astrochemistry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structures of CH2Cl+, CH3ClH+, and Their Weakly Bound Complexes with Ne
2.2. IRPD Spectrum of CH235Cl+–Ne
2.3. IRPD Spectra of CH237Cl+–Ne and CH335ClH+–Ne
2.4. IRPD Spectrum of CH337ClH+–Ne
3. Materials and Methods
3.1. Quantum-Chemical Calculations
3.2. Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Molecular Structures of CH2Cl+ and CH3ClH+ and Their Weakly Bound Clusters with Neon
Appendix A.1. CH2Cl+
Appendix A.2. CH2Cl+ Ne-ip
Appendix A.3. CH2Cl+ Ne-oop
Appendix A.4. CH3ClH+
Appendix A.5. CH3ClH+–Ne, p-bound
Appendix A.6. CH3ClH+–Ne, CH3/Cl-bound
Appendix B. Molecular Structures of H2CS and CH3SH
Appendix B.1. H2CS
Appendix B.2. CH3SH
Appendix C. Mass Spectrum of CH2Cl+ and CH2Cl+–Ne as Extracted from the Ion Trap
References
- Müller, H.S.P.; Thorwirth, S.; Roth, D.A.; Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 2001, 370, L49–L52. [Google Scholar] [CrossRef]
- Endres, C.P.; Schlemmer, S.; Schilke, P.; Stutzki, J.; Müller, H.S.P. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC. J. Mol. Spectrosc. 2016, 327, 95–104. [Google Scholar] [CrossRef]
- Blake, G.A.; Keene, J.; Phillips, T.G. Chlorine in dense interstellar clouds—The abundance of HCl in OMC-1. Astrophys. J. 1985, 295, 501–506. [Google Scholar] [CrossRef]
- Cernicharo, J.; Guélin, M. Metals in IRC+10216—Detection of NaCl, AlCl, and KCl, and tentative detection of AlF. Astron. Astrophys. 1987, 183, L10–L12. [Google Scholar]
- De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B.J.; Pearson, J.C.; Lis, D.C.; Monje, R.; Phillips, T.G.; et al. Herschel/HIFI discovery of HCl+ in the interstellar medium. Astrophys. J. 2012, 751, L37. [Google Scholar] [CrossRef]
- Lis, D.C.; Pearson, J.C.; Neufeld, D.A.; Schilke, P.; Müller, H.S.P.; Gupta, H.; Bell, T.A.; Comito, C.; Phillips, T.G.; Bergin, E.A.; et al. Herschel/HIFI discovery of interstellar chloronium (H2Cl+). Astron. Astrophys. 2010, 521, L9. [Google Scholar] [CrossRef]
- Fayolle, E.C.; Öberg, K.I.; Jørgensen, J.K.; Altwegg, K.; Calcutt, H.; Müller, H.S.P.; Rubin, M.; van der Wiel, M.H.D.; Bjerkeli, P.; Bourke, T.L.; et al. Protostellar and cometary detections of organohalogens. Nat. Astron. 2017, 1, 703–708. [Google Scholar] [CrossRef]
- Acharyya, K.; Herbst, E. Gas-grain Fluorine and Chlorine Chemistry in the Interstellar Medium. Astrophys. J. 2017, 850, 105. [Google Scholar] [CrossRef]
- Berné, O.; Martin-Drumel, M.A.; Schroetter, I.; Goicoechea, J.R.; Jacovella, U.; Gans, B.; Dartois, E.; Coudert, L.H.; Bergin, E.; Alarcon, F.; et al. Formation of the methyl cation by photochemistry in a protoplanetary disk. Nature 2023, 621, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.; Dyke, J.M.; Jonathan, N.; Keddar, N.; Morris, A.; Ridha, A. The first band in the He(I) photoelectron spectrum of the CH2Cl free radical. Chem. Phys. Lett. 1983, 97, 89–93. [Google Scholar] [CrossRef]
- Andrews, L.; Dyke, J.M.; Jonathan, N.; Keddar, N.; Morris, A. Photoelectron spectroscopic study of the ground states of CH2Cl+, CHCl2+, and CHFCl+. J. Am. Chem. Soc. 1984, 106, 299–303. [Google Scholar] [CrossRef]
- Ma, R.; Chen, M.; Zhou, M. Infrared Spectra of the Chloromethyl and Bromomethyl Cations in Solid Argon. J. Phys. Chem. A 2009, 113, 12926–12931. [Google Scholar] [CrossRef] [PubMed]
- Heck, A.J.; de Koning, L.J.; Nibbering, N.M. On the structure and unimolecular chemistry of protonated halomethanes. Int. J. Mass. Spectrom. Ion Processes 1991, 109, 209–225. [Google Scholar] [CrossRef]
- Herman, J.A.; Xu, G.; Herman, K.; McMahon, T.B. Fourier transform ion cyclotron resonance mass spectrometry measurements of rate constants of ion/molecule reactions with continuous ejection of product ions. Reactions of CH3ClH+ with methyl chloride. Int. J. Mass. Spectrom. Ion Processes 1992, 113, 143–155. [Google Scholar] [CrossRef]
- Coriani, S.; Marchesan, D.; Gauss, J.; Hättig, C.; Helgaker, T.; Jørgensen, P. The accuracy of ab initio molecular geometries for systems containing second-row atoms. J. Chem. Phys. 2005, 123, 184107. [Google Scholar] [CrossRef] [PubMed]
- Thorwirth, S.; Harding, M.E.; Asvany, O.; Brünken, S.; Jusko, P.; Lee, K.L.K.; Salomon, T.; McCarthy, M.C.; Schlemmer, S. Descendant of the X-ogen carrier and a ‘mass of 69’: Infrared action spectroscopic detection of HC3O+ and HC3S+. Mol. Phys. 2020, 118, e1776409. [Google Scholar] [CrossRef]
- Thorwirth, S.; Asvany, O.; Harding, M.E.; Jusko, P.; McCarthy, M.C.; Brünken, S.; Schlemmer, S. Infrared action spectroscopy of fundamental nitrilium ions: Protonated vinyl- and ethyl cyanide. J. Mol. Spectrosc. 2022, 386, 111615. [Google Scholar] [CrossRef]
- Botschwina, P.; Dutoi, T.; Mladenovic, M.; Oswald, R.; Schmatz, S.; Stoll, H. Theoretical investigations of proton-bound cluster ions. Faraday Discuss. 2001, 118, 433–453. [Google Scholar] [CrossRef]
- Botschwina, P.; Oswald, R. Complexes of an argon atom with linear cations: Results of coupled cluster calculations. J. Mol. Spectrosc. 2003, 222, 46–56. [Google Scholar] [CrossRef]
- Pivonka, N.L.; Kaposta, C.; Brümmer, M.; von Helden, G.; Meijer, G.; Wöste, L.; Neumark, D.M.; Asmis, K.R. Probing a strong hydrogen bond with infrared spectroscopy: Vibrational predissociation of BrHBr−·Ar. J. Chem. Phys. 2003, 118, 5275–5278. [Google Scholar] [CrossRef]
- Brünken, S.; Lipparini, F.; Stoffels, A.; Jusko, P.; Redlich, B.; Gauss, J.; Schlemmer, S. Gas-Phase Vibrational Spectroscopy of the Hydrocarbon Cations l-C3H+, HC3H+, and c-C3: Structures, Isomers, and the Influence of Ne-Tagging. J. Phys. Chem. A 2019, 123, 8053–8062. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.F.; Chandrasekhar, J.; Jorgensen, W.L. Ab initio study of acid-base interactions. Proton, lithium, and sodium affinities of first- and second-row bases. J. Phys. Chem. 1982, 86, 3308–3318. [Google Scholar] [CrossRef]
- Hess, B.A.; Zahradnik, R. Theoretical study of reactivity of methane, methyl fluoride, and methyl chloride: Interaction with their radical cations and proton donors. J. Am. Chem. Soc. 1990, 112, 5731–5735. [Google Scholar] [CrossRef]
- Nichols, L.S.; McKee, M.L.; Illies, A.J. An Experimental and Theoretical Investigation of Ion-Molecule Reactions Involving Methyl Halide Radical Cations with Methyl Halides. J. Am. Chem. Soc. 1998, 120, 1538–1544. [Google Scholar] [CrossRef]
- Kalescky, R.; Kraka, E.; Cremer, D. Are carbon-halogen double and triple bonds possible? Int. J. Quantum Chem. 2014, 114, 1060–1072. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A 5th-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. 1. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Peterson, K.A.; Dunning, T.H. Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al-Ar and the first row atoms B-Ne revisited. J. Chem. Phys. 2002, 117, 10548–10560. [Google Scholar] [CrossRef]
- Dunning, T.H.; Peterson, K.A.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114, 9244–9253. [Google Scholar] [CrossRef]
- Watts, J.D.; Gauss, J.; Bartlett, R.J. Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods—MBPT(4), CCSD+T(CCSD), CCSD(T), and QCISD(T). Chem. Phys. Lett. 1992, 200, 1–7. [Google Scholar] [CrossRef]
- Gauss, J.; Stanton, J.F. Analytic CCSD(T) second derivatives. Chem. Phys. Lett. 1997, 276, 70–77. [Google Scholar] [CrossRef]
- Stanton, J.F.; Gauss, J. Analytic second derivatives in high-order many-body perturbation and coupled-cluster theories: Computational considerations and applications. Int. Rev. Phys. Chem. 2000, 19, 61–95. [Google Scholar] [CrossRef]
- Mills, I.M. Vibration-Rotation Structure in Asymmetric- and Symmetric-TopMolecules. In Molecular Spectroscopy: Modern Research; Rao, K.N., Mathews, C.W., Eds.; Academic Press: New York, NY, USA, 1972; pp. 115–140. [Google Scholar]
- Stanton, J.F.; Lopreore, C.L.; Gauss, J. The equilibrium structure and fundamental vibrational frequencies of dioxirane. J. Chem. Phys. 1998, 108, 7190–7196. [Google Scholar] [CrossRef]
- Matthews, D.A.; Cheng, L.; Harding, M.E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.C.; Szalay, P.G.; Gauss, J.; Stanton, J.F. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J. Chem. Phys. 2020, 152, 214108. [Google Scholar] [CrossRef] [PubMed]
- Harding, M.E.; Metzroth, T.; Gauss, J.; Auer, A.A. Parallel calculation of CCSD and CCSD(T) analytic first and second derivatives. J. Chem. Theory Comput. 2008, 4, 64–74. [Google Scholar] [CrossRef]
- Oepts, D.; van der Meer, A.F.G.; van Amersfoort, P.W. The Free-Electron-Laser user facility FELIX. Infrared Phys. Technol. 1995, 36, 297–308. [Google Scholar] [CrossRef]
- Asvany, O.; Bielau, F.; Moratschke, D.; Krause, J.; Schlemmer, S. New design of a cryogenic linear RF multipole trap. Rev. Sci. Instr. 2010, 81, 076102. [Google Scholar] [CrossRef]
- Jusko, P.; Brünken, S.; Asvany, O.; Thorwirth, S.; Stoffels, A.; van der Meer, L.; Berden, G.; Redlich, B.; Oomens, J.; Schlemmer, S. The FELion cryogenic ion trap beam line at the FELIX free-electron laser laboratory: Infrared signatures of primary alcohol cations. Faraday Discuss. 2019, 217, 172–202. [Google Scholar] [CrossRef]
- Asvany, O.; Thorwirth, S.; Redlich, B.; Schlemmer, S. Spectroscopy of the low-frequency vibrational modes of isotopologs. J. Mol. Spectrosc. 2018, 347, 1–6. [Google Scholar] [CrossRef]
- Asvany, O.; Schlemmer, S.; Szidarovszky, T.; Császár, A.G. Infrared Signatures of the (n = 3 − 6) Complexes. J. Phys. Chem. Lett. 2019, 10, 5325–5330. [Google Scholar] [CrossRef]
- Marimuthu, A.N.; Veld, F.H.i.; Thorwirth, S.; Redlich, B.; Brünken, S. Infrared predissociation spectroscopy of protonated methyl cyanide, CH3CNH+. J. Mol. Spectrosc. 2021, 379, 111477. [Google Scholar] [CrossRef]
- Schmid, P.C.; Asvany, O.; Salomon, T.; Thorwirth, S.; Schlemmer, S. Leak-Out Spectroscopy, A Universal Method of Action Spectroscopy in Cold Ion Traps. J. Phys. Chem. A 2022, 126, 8111–8117. [Google Scholar] [CrossRef]
- Asvany, O.; Thorwirth, S.; Schmid, P.C.; Salomon, T.; Schlemmer, S. High-resolution ro-vibrational and rotational spectroscopy of HC3O+. Phys. Chem. Chem. Phys. 2023. [Google Scholar] [CrossRef]
- Gupta, D.; Silva, W.G.D.P.; Doménech, J.L.; Plaar, E.; Thorwirth, S.; Schlemmer, S.; Asvany, O. High-resolution rovibrational and rotational spectroscopy of the singly deuterated cyclopropenyl cation, c-C3H2D+. Faraday Discuss. 2023, 245, 298–308. [Google Scholar] [CrossRef]
- Schlemmer, S.; Plaar, E.; Gupta, D.; Silva, W.G.D.P.; Salomon, T.; Asvany, O. High-resolution spectroscopy of the ν3 antisymmetric C–H stretch of C2 using leak-out action spectroscopy. Mol. Phys. 2023, e2241567. [Google Scholar] [CrossRef]
- Bast, M.; Böing, J.; Salomon, T.; Thorwirth, S.; Asvany, O.; Schäfer, M.; Schlemmer, S. Ro-vibrational spectra of C-C stretching modes of C3H+ and HC3O+. J. Mol. Spectrosc. 2023, 398, 111840. [Google Scholar] [CrossRef]
- Silva, W.G.D.P.; Cernicharo, J.; Schlemmer, S.; Marcelino, N.; Loison, J.C.; Agúndez, M.; Gupta, D.; Wakelam, V.; Thorwirth, S.; Cabezas, C.; et al. Discovery of H2CCCH+ in TMC-1. Astron. Astrophys. 2023, 676, L1. [Google Scholar] [CrossRef]
- Martinez, O., Jr.; Lattanzi, V.; Thorwirth, S.; McCarthy, M.C. Detection of protonated vinyl cyanide, CH2CHCNH+, a prototypical branched nitrile cation. J. Chem. Phys. 2013, 138, 094316. [Google Scholar] [CrossRef]
- Müller, H.S.P.; Maeda, A.; Thorwirth, S.; Lewen, F.; Schlemmer, S.; Medvedev, I.R.; Winnewisser, M.; De Lucia, F.C.; Herbst, E. Laboratory spectroscopic study of isotopic thioformaldehyde, H2CS, and determination of its equilibrium structure. Astron. Astrophys. 2019, 621, A143. [Google Scholar] [CrossRef]
- Zakharenko, O.; Ilyushin, V.V.; Lewen, F.; Müller, H.S.P.; Schlemmer, S.; Alekseev, E.A.; Pogrebnyak, M.L.; Armieieva, I.A.; Dorovskaya, O.; Xu, L.H.; et al. Rotational spectroscopy of methyl mercaptan CH332SH at millimeter and submillimeter wavelengths. Astron. Astrophys. 2019, 629, A73. [Google Scholar] [CrossRef]
- George, L.; Kalume, A.; Reid, S.A. Pulsed-jet discharge matrix isolation and computational study of CX2Br+ (X = H, F). Chem. Phys. Lett. 2010, 484, 214–218. [Google Scholar] [CrossRef]
Mode | Bare Ion | Ne–ip | Ne–oop |
---|---|---|---|
CH sym stretching | 3102 (, 18) | 3106 (, 17) | 3105 (, 16) |
CH2 scissoring | 1478 (, 0.3) | 1476 (, 1) | 1478 (, 0.2) |
Cl–C stretching | 1059 (, 80) | 1059 (, 78) | 1058 (, 82) |
oop bending | 1137 (, 22) | 1138 (, 21) | 1136 (, 20) |
CH asym stretching | 3239 (, 51) | 3243 (, 59) | 3243 (, 50) |
CH2 wagging | 1047 (, 0.02) | 1048 (, 0.3) | 1047 (, 0.003) |
2,3 | ⋯ | 93 (, 21) | 131 (, 1) |
2,4 | ⋯ | 70 (, 0.2) | 89 (, 22) |
2,5 | ⋯ | 25 (, 1) | 34 (, 4) |
Mode | Bare Ion | p-bound | CH3/Cl-bound |
---|---|---|---|
C–H asym stretching | 3220 (, 18) | 3220 (, 17) | 3224 (, 20) |
C–H sym stretching | 3087 (, 5) | 3087 (, 5) | 3089 (, 5) |
Cl–H stretching | 2823 (, 176) | 2811 (, 307) | 2824 (, 174) |
CH3 asym bending | 1472 (, 14) | 1472 (, 14) | 1471 (, 13) |
CH3 umbrella | 1386 (, 11) | 1386 (, 11) | 1385 (, 10) |
CH3 ip rocking | 1118 (, 3) | 1120 (, 3) | 1118 (, 3) |
C-Cl-H bending | 771 (, 13) | 784 (, 11) | 773 (, 14) |
Cl–C stretching | 565 (, 51) | 570 (, 50) | 566 (, 50) |
C–H asym stretching | 3238 (, 15) | 3237 (, 15) | 3238 (, 15) |
CH3 asym bending | 1468 (, 14) | 1469 (, 14) | 1470 (, 12) |
CH3 oop rocking | 1040 (, 0.5) | 1040 (, 0.5) | 1040 (, 0.4) |
torsion | 202 (, 39) | 244 (, 43) | 211 (, 42) |
2,3 | ⋯ | 90 (, 7) | 69 (, 8) |
2,4 | ⋯ | 72 (, 7) | 46 (, 0.4) |
2,5 | ⋯ | 20 (, 7) | 40 (, 10) |
Mode | CH235Cl+ | |||||
Harm | Anharm | Int | Exp 1 | FWHM | ||
CH sym stretching | 3105.2 | 2993.3 | 14 | ⋯ | ⋯ | |
CH2 scissoring | 1491.1 | 1451.1 | 0.7 | ⋯ | ⋯ | ⋯ |
Cl–C stretching | 1061.8 | 1045.6 | 81 | 1048 | 13 | 2 |
oop bending | 1151.9 | 1134.1 | 27 | 1129 | 17 | −5 |
CH asym stretching | 3243.9 | 3101.1 | 47 | ⋯ | ⋯ | |
CH2 wagging | 1054.8 | 1038.2 | <0.01 | ⋯ | ⋯ | ⋯ |
Mode | CH237Cl+ | |||||
Harm | Anharm | Int | Exp 1 | FWHM | ||
CH sym stretching | 3105.2 | 2993.3 | 14 | ⋯ | ⋯ | |
CH2 scissoring | 1491.0 | 1451.0 | 0.7 | ⋯ | ⋯ | ⋯ |
Cl–C stretching | 1053.6 | 1037.6 | 82 | 1037 | 15 | −1 |
oop bending | 1151.8 | 1134.0 | 27 | 1125 | 13 | −9 |
CH asym stretching | 3243.9 | 3101.1 | 47 | ⋯ | ⋯ | |
CH2 wagging | 1054.2 | 1037.6 | <0.01 | ⋯ | ⋯ | ⋯ |
Mode | CH335ClH+ | |||||
Harm | Anharm | Int | Exp 1 | FWHM | ||
C–H asym stretching | 3225.4 | 3084.9 | 16 | ⋯ | ⋯ | |
C–H sym stretching | 3091.6 | 2978.8 | 5 | ⋯ | ⋯ | |
Cl–H stretching | 2829.5 | 2713.5 | 173 | 2677 | 15 | −37 |
CH3 asym bending | 1465.1 | 1420.6 | 15 | 1415 | 10 | −6 |
CH3 umbrella | 1378.2 | 1348.1 | 10 | 1345 | 8 | −3 |
CH3 ip rocking | 1113.6 | 1080.8 | 3 | 1083 | 9 | 2 |
C-Cl-H bending | 768.4 | 757.1 | 14 | 766 | 9 | 9 |
Cl–C stretching | 569.8 | 544.1 | 55 | 551 | 11 | 7 |
C–H asym stretching | 3242.9 | 3100.6 | 14 | ⋯ | ⋯ | |
CH3 asym bending | 1462.5 | 1419.6 | 15 | 1415 | 10 | −5 |
CH3 oop rocking | 1033.2 | 1020.6 | 1 | blended | ⋯ | ⋯ |
torsion | 205.5 | 177.4 | 45 | ⋯ | ⋯ | |
Mode | CH337ClH+ | |||||
Harm | Anharm | Int | Exp 1 | FWHM | ||
C–H asym stretching | 3225.4 | 3084.9 | 16 | ⋯ | ⋯ | |
C–H sym stretching | 3091.6 | 2978.8 | 5 | ⋯ | ⋯ | |
Cl–H stretching | 2827.3 | 2711.5 | 173 | 2678 | 20 | −34 |
CH3 asym bending | 1465.1 | 1420.5 | 15 | 1416 | 13 | −5 |
CH3 umbrella | 1377.9 | 1347.9 | 10 | 1344 | 11 | −4 |
CH3 ip rocking | 1112.7 | 1079.9 | 3 | 1082 | 11 | 2 |
C-Cl-H bending | 768.1 | 756.8 | 14 | 765 | 9 | 8 |
Cl–C stretching | 565.3 | 539.9 | 56 | 547 | 11 | 7 |
C–H asym stretching | 3242.9 | 3100.6 | 14 | ⋯ | ⋯ | |
CH3 asym bending | 1462.5 | 1419.6 | 15 | 1416 | 13 | −4 |
CH3 oop rocking | 1032.8 | 1020.2 | 1 | 1023 | 12 | 3 |
torsion | 205.4 | 177.3 | 45 | ⋯ | ⋯ |
Parameter | H2CS | CH235Cl+ | ||
Calc. | Exp. [52] | Calc. | Scaled | |
295,043.772 | ⋯ | 278,232.178 | ⋯ | |
17,770.906 | ⋯ | 17,929.887 | ⋯ | |
16,761.346 | ⋯ | 16,844.397 | ⋯ | |
1928.402 | ⋯ | 2249.656 | ⋯ | |
76.366 | ⋯ | 91.765 | ⋯ | |
109.739 | ⋯ | 125.604 | ⋯ | |
293,115.370 | 291,613.339 | 275,982.522 | 274,568.285 | |
17,694.540 | 17,698.994 | 17,838.122 | 17,842.613 | |
16,651.607 | 16,652.498 | 16,718.793 | 16,719.687 | |
Parameter | CH3SH | CH335ClH+ | ||
Calc. | Exp. [53] 2 | Calc. | Scaled | |
103,863.953 | ⋯ | 103,144.040 | ⋯ | |
13,029.847 | ⋯ | 12,472.858 | ⋯ | |
12,493.723 | ⋯ | 12,016.948 | ⋯ | |
1054.186 | ⋯ | 1069.132 | ⋯ | |
131.546 | ⋯ | 207.375 | ⋯ | |
117.267 | ⋯ | 184.225 | ⋯ | |
102,809.767 | 102,767.147 | 102,074.907 | 102,032.592 | |
12,898.301 | 12,951.372 | 12,265.483 | 12,315.950 | |
12,376.457 | 12,388.033 | 11,832.724 | 11,843.792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorwirth, S.; Steenbakkers, K.; Danowski, T.; Schmid, P.C.; Bonah, L.; Asvany, O.; Brünken, S.; Schlemmer, S. Gas-Phase Infrared Action Spectroscopy of CH2Cl+ and CH3ClH+: Likely Protagonists in Chlorine Astrochemistry. Molecules 2024, 29, 665. https://doi.org/10.3390/molecules29030665
Thorwirth S, Steenbakkers K, Danowski T, Schmid PC, Bonah L, Asvany O, Brünken S, Schlemmer S. Gas-Phase Infrared Action Spectroscopy of CH2Cl+ and CH3ClH+: Likely Protagonists in Chlorine Astrochemistry. Molecules. 2024; 29(3):665. https://doi.org/10.3390/molecules29030665
Chicago/Turabian StyleThorwirth, Sven, Kim Steenbakkers, Timon Danowski, Philipp C. Schmid, Luis Bonah, Oskar Asvany, Sandra Brünken, and Stephan Schlemmer. 2024. "Gas-Phase Infrared Action Spectroscopy of CH2Cl+ and CH3ClH+: Likely Protagonists in Chlorine Astrochemistry" Molecules 29, no. 3: 665. https://doi.org/10.3390/molecules29030665
APA StyleThorwirth, S., Steenbakkers, K., Danowski, T., Schmid, P. C., Bonah, L., Asvany, O., Brünken, S., & Schlemmer, S. (2024). Gas-Phase Infrared Action Spectroscopy of CH2Cl+ and CH3ClH+: Likely Protagonists in Chlorine Astrochemistry. Molecules, 29(3), 665. https://doi.org/10.3390/molecules29030665