Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies
Abstract
1. Introduction
2. Mechanisms of Action and Signaling Pathways Activated by Isoflavones in the Skin
3. Protective Effect Against UV-Radiation-Induced Skin Damage
4. Anti-Inflammatory and Antioxidant Activity
5. Anti-Aging Effects
6. Other Effects of Isoflavones on the Skin
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef] [PubMed]
- Aboushanab, S.A.; Khedr, S.M.; Gette, I.F.; Danilova, I.G.; Kolberg, N.A.; Ravishankar, G.A.; Ambati, R.R.; Kovaleva, E.G. Isoflavones Derived from Plant Raw Materials: Bioavailability, Anti-Cancer, Anti-Aging Potentials, and Microbiome Modulation. Crit. Rev. Food Sci. Nutr. 2023, 63, 261–287. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.T.; Tan, S.S.; Tan, C.X. Soy Protein, Bioactive Peptides, and Isoflavones: A Review of Their Safety and Health Benefits. PharmaNutrition 2023, 25, 100352. [Google Scholar] [CrossRef]
- Chavda, V.P.; Chaudhari, A.Z.; Balar, P.C.; Gholap, A.; Vora, L.K. Phytoestrogens: Chemistry, Potential Health Benefits, and Their Medicinal Importance. Phytother. Res. 2024, 38, 3060–3079. [Google Scholar] [CrossRef]
- Laddha, A.P.; Kulkarni, Y.A. Pharmacokinetics, Pharmacodynamics, Toxicity, and Formulations of Daidzein: An Important Isoflavone. Phytother. Res. 2023, 37, 2578–2604. [Google Scholar] [CrossRef] [PubMed]
- Shete, V.; Mahajan, N.M.; Shivhare, R.; Akkewar, A.; Gupta, A.; Gurav, S. Genistein: A Promising Phytoconstituent with Reference to Its Bioactivities. Phytother. Res. 2024, 38, 3935–3953. [Google Scholar] [CrossRef]
- Yamagata, K.; Yamori, Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules 2021, 26, 5863. [Google Scholar] [CrossRef]
- Szymczak, G.; Wójciak-Kosior, M.; Sowa, I.; Zapała, K.; Strzemski, M.; Kocjan, R. Evaluation of Isoflavone Content and Antioxidant Activity of Selected Soy Taxa. J. Food Compos. Anal. 2017, 57, 40–48. [Google Scholar] [CrossRef]
- Shen, H.-H.; Huang, S.-Y.; Kung, C.-W.; Chen, S.-Y.; Chen, Y.-F.; Cheng, P.-Y.; Lam, K.-K.; Lee, Y.-M. Genistein Ameliorated Obesity Accompanied with Adipose Tissue Browning and Attenuation of Hepatic Lipogenesis in Ovariectomized Rats with High-Fat Diet. J. Nutr. Biochem. 2019, 67, 111–122. [Google Scholar] [CrossRef]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the Metabolic Syndrome: Results of a Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef]
- Barańska, A.; Kanadys, W.; Bogdan, M.; Stępień, E.; Barczyński, B.; Kłak, A.; Augustynowicz, A.; Szajnik, M.; Religioni, U. The Role of Soy Isoflavones in the Prevention of Bone Loss in Postmenopausal Women: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2022, 11, 4676. [Google Scholar] [CrossRef] [PubMed]
- Pejčić, T.; Zeković, M.; Bumbaširević, U.; Kalaba, M.; Vovk, I.; Bensa, M.; Popović, L.; Tešić, Ž. The Role of Isoflavones in the Prevention of Breast Cancer and Prostate Cancer. Antioxidants 2023, 12, 368. [Google Scholar] [CrossRef] [PubMed]
- Barsky, L.; Cook-Wiens, G.; Doyle, M.; Shufelt, C.; Rogers, W.; Reis, S.; Pepine, C.J.; Noel Bairey Merz, C. Phytoestrogen Blood Levels and Adverse Outcomes in Women with Suspected Ischemic Heart Disease. Eur. J. Clin. Nutr. 2021, 75, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.O. Phytoestrogens and Their Human Metabolites Show Distinct Agonistic and Antagonistic Properties on Estrogen Receptor (ER) and ER in Human Cells. Toxicol. Sci. 2004, 80, 14–25. [Google Scholar] [CrossRef]
- Patra, S.; Gorai, S.; Pal, S.; Ghosh, K.; Pradhan, S.; Chakrabarti, S. A Review on Phytoestrogens: Current Status and Future Direction. Phytother. Res. 2023, 37, 3097–3120. [Google Scholar] [CrossRef]
- Steinberg, F.M.; Murray, M.J.; Lewis, R.D.; Cramer, M.A.; Amato, P.; Young, R.L.; Barnes, S.; Konzelmann, K.L.; Fischer, J.G.; Ellis, K.J.; et al. Clinical Outcomes of a 2-y Soy Isoflavone Supplementation in Menopausal Women. Am. J. Clin. Nutr. 2011, 93, 356–367. [Google Scholar] [CrossRef]
- Singh, S.; Grewal, S.; Sharma, N.; Behl, T.; Gupta, S.; Anwer, M.K.; Vargas-De-La-Cruz, C.; Mohan, S.; Bungau, S.G.; Bumbu, A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023, 28, 1765. [Google Scholar] [CrossRef]
- Garbiec, E.; Cielecka-Piontek, J.; Kowalówka, M.; Hołubiec, M.; Zalewski, P. Genistein—Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022, 27, 815. [Google Scholar] [CrossRef]
- Nemitz, M.C.; Von Poser, G.L.; Teixeira, H.F. In Vitro Skin Permeation/Retention of Daidzein, Genistein and Glycitein from a Soybean Isoflavone Rich Fraction-Loaded Nanoemulsions and Derived Hydrogels. J. Drug Deliv. Sci. Technol. 2019, 51, 63–69. [Google Scholar] [CrossRef]
- Nemitz, M.C.; Moraes, R.C.; Koester, L.S.; Bassani, V.L.; Von Poser, G.L.; Teixeira, H.F. Bioactive Soy Isoflavones: Extraction and Purification Procedures, Potential Dermal Use and Nanotechnology-Based Delivery Systems. Phytochem. Rev. 2015, 14, 849–869. [Google Scholar] [CrossRef]
- Ugur Kaplan, A.B.; Cetin, M.; Orgul, D.; Taghizadehghalehjoughi, A.; Hacımuftuoglu, A.; Hekimoglu, S. Formulation and in Vitro Evaluation of Topical Nanoemulsion and Nanoemulsion-Based Gels Containing Daidzein. J. Drug Deliv. Sci. Technol. 2019, 52, 189–203. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Kleczkowska, P.; Olędzka, E.; Figat, R.; Sobczak, M. Poly(Chitosan-Ester-Ether-Urethane) Hydrogels as Highly Controlled Genistein Release Systems. Int. J. Mol. Sci. 2021, 22, 3339. [Google Scholar] [CrossRef]
- Pająk, J.; Nowicka, D.; Szepietowski, J.C. Inflammaging and Immunosenescence as Part of Skin Aging—A Narrative Review. Int. J. Mol. Sci. 2023, 24, 7784. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.-S.; Wu, W.-B.; Fang, J.-Y.; Chen, B.-H.; Kao, T.-H.; Chen, Y.-T.; Huang, C.-C.; Hung, C.-F. UVB-Protective Effects of Isoflavone Extracts from Soybean Cake in Human Keratinocytes. Int. J. Mol. Sci. 2007, 8, 651–661. [Google Scholar] [CrossRef]
- Chiu, T.-M.; Huang, C.-C.; Lin, T.-J.; Fang, J.-Y.; Wu, N.-L.; Hung, C.-F. In Vitro and in Vivo Anti-Photoaging Effects of an Isoflavone Extract from Soybean Cake. J. Ethnopharmacol. 2009, 126, 108–113. [Google Scholar] [CrossRef]
- Li, J.; Liu, R.; Zhang, P.; Li, J.; Yue, Y.; Hu, Y.; Cheng, W.; Pan, X. Genistein Suppresses Tumor Necrosis Factor α-Induced Inflammation via Modulating Reactive Oxygen Species/Akt/Nuclear Factor ΚB and Adenosine Monophosphate-Activated Protein Kinase Signal Pathways in Human Synoviocyte MH7A Cells. Drug Des. Dev. Ther. 2014, 8, 315–323. [Google Scholar] [CrossRef]
- Wang, A.; Wei, J.; Lu, C.; Chen, H.; Zhong, X.; Lu, Y.; Li, L.; Huang, H.; Dai, Z.; Han, L. Genistein Suppresses Psoriasis-Related Inflammation through a STAT3–NF-κB-Dependent Mechanism in Keratinocytes. Int. Immunopharmacol. 2019, 69, 270–278. [Google Scholar] [CrossRef]
- Li, H.-J.; Wu, N.-L.; Lee, G.-A.; Hung, C.-F. The Therapeutic Potential and Molecular Mechanism of Isoflavone Extract against Psoriasis. Sci. Rep. 2018, 8, 6335. [Google Scholar] [CrossRef]
- Savoia, P.; Raina, G.; Camillo, L.; Farruggio, S.; Mary, D.; Veronese, F.; Graziola, F.; Zavattaro, E.; Tiberio, R.; Grossini, E. Anti-Oxidative Effects of 17 β-Estradiol and Genistein in Human Skin Fibroblasts and Keratinocytes. J. Dermatol. Sci. 2018, 92, 62–77. [Google Scholar] [CrossRef]
- Anilkumar, S.; Wright-Jin, E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024, 13, 485. [Google Scholar] [CrossRef]
- Yamazaki, S. The Nuclear NF-κB Regulator IκBζ: Updates on Its Molecular Functions and Pathophysiological Roles. Cells 2024, 13, 1467. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Hong, J. Roles of NF-κB in Cancer and Inflammatory Diseases and Their Therapeutic Approaches. Cells 2016, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Martinez, M.; Cabail, M.Z. The PI3K/Akt Pathway in Meta-Inflammation. Int. J. Mol. Sci. 2022, 23, 15330. [Google Scholar] [CrossRef]
- Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; et al. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021, 26, 6570. [Google Scholar] [CrossRef]
- Zhao, D.; Shi, Y.; Dang, Y.; Zhai, Y.; Ye, X. Daidzein Stimulates Collagen Synthesis by Activating the TGF-β/Smad Signal Pathway. Australas. J. Dermatol. 2015, 56, E7–E14. [Google Scholar] [CrossRef]
- Hata, A.; Chen, Y.-G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb. Perspect. Biol. 2016, 8, a022061. [Google Scholar] [CrossRef]
- Casagrande, F.; Darbon, J.-M. Effects of Structurally Related Flavonoids on Cell Cycle Progression of Human Melanoma Cells: Regulation of Cyclin-Dependent Kinases CDK2 and CDK1. Biochem. Pharmacol. 2001, 61, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Łukasik, P.; Załuski, M.; Gutowska, I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development–Review. Int. J. Mol. Sci. 2021, 22, 2935. [Google Scholar] [CrossRef] [PubMed]
- Wójciak, M.; Drozdowski, P.; Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z.; Kubrak, T.; Sowa, I. ROS Scavenging Effect of Selected Isoflavones in Provoked Oxidative Stress Conditions in Human Skin Fibroblasts and Keratinocytes. Molecules 2024, 29, 955. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic Potential of Flavonoids in Cancer: ROS-Mediated Mechanisms. Biomed. Pharmacother. 2022, 146, 112442. [Google Scholar] [CrossRef]
- Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021, 26, 1844. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.L.; Lim, H.W.; Mohammad, T.F. Sunscreens and Photoaging: A Review of Current Literature. Am. J. Clin. Dermatol. 2021, 22, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Gromkowska-Kępka, K.J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. The Impact of Ultraviolet Radiation on Skin Photoaging—Review of in Vitro Studies. J. Cosmet. Dermatol. 2021, 20, 3427–3431. [Google Scholar] [CrossRef]
- Yarosh, D.; Dong, K.; Smiles, K. UV-Induced Degradation of Collagen I Is Mediated by Soluble Factors Released from Keratinocytes. Photochem. Photobiol. 2008, 84, 67–68. [Google Scholar] [CrossRef] [PubMed]
- El-Abaseri, T.B.; Fuhrman, J.; Trempus, C.; Shendrik, I.; Tennant, R.W.; Hansen, L.A. Chemoprevention of UV Light-Induced Skin Tumorigenesis by Inhibition of the Epidermal Growth Factor Receptor. Cancer Res. 2005, 65, 3958–3965. [Google Scholar] [CrossRef]
- Calvo, M.J.; Navarro, C.; Durán, P.; Galan-Freyle, N.J.; Parra Hernández, L.A.; Pacheco-Londoño, L.C.; Castelanich, D.; Bermúdez, V.; Chacin, M. Antioxidants in Photoaging: From Molecular Insights to Clinical Applications. Int. J. Mol. Sci. 2024, 25, 2403. [Google Scholar] [CrossRef]
- Iovine, B.; Iannella, M.L.; Gasparri, F.; Monfrecola, G.; Bevilacqua, M.A. Synergic Effect of Genistein and Daidzein on UVB-Induced DNA Damage: An Effective Photoprotective Combination. J. Biomed. Biotechnol. 2011, 2011, 692846. [Google Scholar] [CrossRef]
- Iovine, B.; Iannella, M.L.; Gasparri, F.; Giannini, V.; Monfrecola, G.; Bevilacqua, M.A. A Comparative Analysis of the Photo-Protective Effects of Soy Isoflavones in Their Aglycone and Glucoside Forms. Int. J. Mol. Sci. 2012, 13, 16444–16456. [Google Scholar] [CrossRef]
- Moore, J.O.; Wang, Y.; Stebbins, W.G.; Gao, D.; Zhou, X.; Phelps, R.; Lebwohl, M.; Wei, H. Photoprotective Effect of Isoflavone Genistein on Ultraviolet B-Induced Pyrimidine Dimer Formation and PCNA Expression in Human Reconstituted Skin and Its Implications in Dermatology and Prevention of Cutaneous Carcinogenesis. Carcinogenesis 2006, 27, 1627–1635. [Google Scholar] [CrossRef]
- Tang, S.-C.; Hsiao, Y.-P.; Ko, J.-L. Genistein Protects against Ultraviolet B–Induced Wrinkling and Photoinflammation in in Vitro and in Vivo Models. Genes Nutr. 2022, 17, 4. [Google Scholar] [CrossRef]
- Brand, R.M.; Jendrzejewski, J.L. Topical Treatment with (−)-Epigallocatechin-3-Gallate and Genistein after a Single UV Exposure Can Reduce Skin Damage. J. Dermatol. Sci. 2008, 50, 69–72. [Google Scholar] [CrossRef]
- Huang, Z.-R.; Hung, C.-F.; Lin, Y.-K.; Fang, J.-Y. In Vitro and in Vivo Evaluation of Topical Delivery and Potential Dermal Use of Soy Isoflavones Genistein and Daidzein. Int. J. Pharm. 2008, 364, 36–44. [Google Scholar] [CrossRef]
- Lim, T.-G.; Kim, J.-E.; Lee, S.-Y.; Park, J.; Yeom, M.; Chen, H.; Bode, A.; Dong, Z.; Lee, K. The Daidzein Metabolite, 6,7,4′-Trihydroxyisoflavone, Is a Novel Inhibitor of PKCα in Suppressing Solar UV-Induced Matrix Metalloproteinase 1. Int. J. Mol. Sci. 2014, 15, 21419–21432. [Google Scholar] [CrossRef]
- Huang, C.-C.; Hsu, B.-Y.; Wu, N.-L.; Tsui, W.-H.; Lin, T.-J.; Su, C.-C.; Hung, C.-F. Anti-Photoaging Effects of Soy Isoflavone Extract (Aglycone and Acetylglucoside Form) from Soybean Cake. Int. J. Mol. Sci. 2010, 11, 4782–4795. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zhang, X.; Wang, Y.; Lebwohl, M. Inhibition of Ultraviolet Light-Induced Oxidative Events in the Skin and Internal Organs of Hairless Mice by Isoflavone Genistein. Cancer Lett. 2002, 185, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Shyong, E.Q.; Lu, Y.; Lazinsky, A.; Saladi, R.N.; Phelps, R.G.; Austin, L.M.; Lebwohl, M.; Wei, H. Effects of the Isoflavone 4′,5,7-Trihydroxyisoflavone (Genistein) on Psoralen plus Ultraviolet A Radiation (PUVA)-Induced Photodamage. Carcinogenesis 2002, 23, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Smolińska, E.; Moskot, M.; Jakóbkiewicz-Banecka, J.; Węgrzyn, G.; Banecki, B.; Szczerkowska-Dobosz, A.; Purzycka-Bohdan, D.; Gabig-Cimińska, M. Molecular Action of Isoflavone Genistein in the Human Epithelial Cell Line HaCaT. PLoS ONE 2018, 13, e0192297. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, L.; Yang, X.; Huang, J.; Wang, J.; Wu, X.; Shi, J. Recent Advances in Anti-Inflammation via AMPK Activation. Heliyon 2024, 10, e33670. [Google Scholar] [CrossRef]
- Khan, A.Q.; Khan, R.; Rehman, M.U.; Lateef, A.; Tahir, M.; Ali, F.; Sultana, S. Soy Isoflavones (Daidzein & Genistein) Inhibit 12-O-Tetradecanoylphorbol-13-Acetate (TPA)-Induced Cutaneous Inflammation via Modulation of COX-2 and NF-κB in Swiss Albino Mice. Toxicology 2012, 302, 266–274. [Google Scholar] [CrossRef]
- Rüfer, C.E.; Kulling, S.E. Antioxidant Activity of Isoflavones and Their Major Metabolites Using Different in Vitro Assays. J. Agric. Food Chem. 2006, 54, 2926–2931. [Google Scholar] [CrossRef]
- Jurzak, M.; Ramos, P.; Pilawa, B. The Influence of Genistein on Free Radicals in Normal Dermal Fibroblasts and Keloid Fibroblasts Examined by EPR Spectroscopy. Med. Chem. Res. 2017, 26, 1297–1305. [Google Scholar] [CrossRef]
- Liang, J.; Tian, Y.-X.; Fu, L.-M.; Wang, T.-H.; Li, H.-J.; Wang, P.; Han, R.-M.; Zhang, J.-P.; Skibsted, L.H. Daidzein as an Antioxidant of Lipid: Effects of the Microenvironment in Relation to Chemical Structure. J. Agric. Food Chem. 2008, 56, 10376–10383. [Google Scholar] [CrossRef]
- Lee, C. Relative Antioxidant Activity of Soybean Isoflavones and Their Glycosides. Food Chem. 2005, 90, 735–741. [Google Scholar] [CrossRef]
- Patel, R. Antioxidant Mechanisms of Isoflavones in Lipid Systems: Paradoxical Effects of Peroxyl Radical Scavenging. Free Radic. Biol. Med. 2001, 31, 1570–1581. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, N.; Yan, Y.; Liu, Y.; Xiong, K.; Liu, Y.; Xia, Q.; Zhang, H.; Liu, Z. Recent Advances in the Anti-aging Effects of Phytoestrogens on Collagen, Water Content, and Oxidative Stress. Phytother. Res. 2020, 34, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, S.; Greco, A.; Cristina Melli, M.; Lotti, T.M. Phytoestrogens in Dermatocosmetology. Clinical and Instrumental Trial Conducted on a Cream Made from Glicine and Other Bioflavonoids in Spontaneous Menopausal Women. Ital. J. Dermatol. Venerol. 2006, 141, 409–414. [Google Scholar]
- Irrera, N.; Pizzino, G.; D’Anna, R.; Vaccaro, M.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Dietary Management of Skin Health: The Role of Genistein. Nutrients 2017, 9, 622. [Google Scholar] [CrossRef]
- Marini, H.; Polito, F.; Altavilla, D.; Irrera, N.; Minutoli, L.; Calò, M.; Adamo, E.; Vaccaro, M.; Squadrito, F.; Bitto, A. Genistein Aglycone Improves Skin Repair in an Incisional Model of Wound Healing: A Comparison with Raloxifene and Oestradiol in Ovariectomized Rats. Br. J. Pharmacol. 2010, 160, 1185–1194. [Google Scholar] [CrossRef]
- Park, E.; Lee, S.M.; Jung, I.-K.; Lim, Y.; Kim, J.-H. Effects of Genistein on Early-Stage Cutaneous Wound Healing. Biochem. Biophys. Res. Commun. 2011, 410, 514–519. [Google Scholar] [CrossRef]
- Emmerson, E.; Campbell, L.; Ashcroft, G.S.; Hardman, M.J. The Phytoestrogen Genistein Promotes Wound Healing by Multiple Independent Mechanisms. Mol. Cell. Endocrinol. 2010, 321, 184–193. [Google Scholar] [CrossRef]
- Natarelli, N.; Gahoonia, N.; Maloh, J.; Sivamani, R.K. Clinical Efficacy of Topical or Oral Soy Supplementation in Dermatology: A Systematic Review. J. Clin. Med. 2023, 12, 4171. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-S.; Hong, C.Y.; Lee, S.H. The Phytoestrogenic Effect of Daidzein in Human Dermal Fibroblasts. J. Soc. Cosmet. Sci. Korea 2014, 40, 279–287. [Google Scholar] [CrossRef]
- Kim, Y.M.; Huh, J.S.; Lim, Y.; Cho, M. Soy Isoflavone Glycitin (4′-Hydroxy-6-Methoxyisoflavone-7-D-Glucoside) Promotes Human Dermal Fibroblast Cell Proliferation and Migration via TGF-β Signaling: Glycitin Promotes Proliferation and Migration via TGF-β. Phytother. Res. 2015, 29, 757–769. [Google Scholar] [CrossRef]
- Sienkiewicz, P.; Surazyński, A.; Pałka, J.; Miltyk, W. Nutritional Concentration of Genistein Protects Human Dermal Fibroblasts from Oxidative Stress-Induced Collagen Biosynthesis Inhibition through IGF-I Receptor-Mediated Signaling. Acta Pol. Pharm. 2008, 65, 203–211. [Google Scholar]
- Jurzak, M.; Adamczyk, K. Influence of Genistein on C-Jun, c-Fos and Fos-B of AP-1 Subunits Expression in Skin Keratinocytes, Fibroblasts and Keloid Fibroblasts Cultured in Vitro. Acta Pol. Pharm. 2013, 70, 205–213. [Google Scholar] [PubMed]
- Miyazaki, K.; Hanamizu, T.; Iizuka, R.; Chiba, K. Genistein and Daidzein Stimulate Hyaluronic Acid Production in Transformed Human Keratinocyte Culture and Hairless Mouse Skin. Skin Pharmacol. Physiol. 2002, 15, 175–183. [Google Scholar] [CrossRef]
- Ban, Y.J.; Song, Y.H.; Kim, J.Y.; Baiseitova, A.; Lee, K.W.; Kim, K.D.; Park, K.H. Comparative Investigation on Metabolites Changes in Soybean Leaves by Ethylene and Activation of Collagen Synthesis. Ind. Crops Prod. 2020, 154, 112743. [Google Scholar] [CrossRef]
- Varani, J.; Kelley, E.A.; Perone, P.; Lateef, H. Retinoid-Induced Epidermal Hyperplasia in Human Skin Organ Culture: Inhibition with Soy Extract and Soy Isoflavones. Exp. Mol. Pathol. 2004, 77, 176–183. [Google Scholar] [CrossRef]
- Patriarca, M.T.; Barbosa De Moraes, A.R.; Nader, H.B.; Petri, V.; Martins, J.R.M.; Gomes, R.C.T.; Soares, J.M. Hyaluronic Acid Concentration in Postmenopausal Facial Skin after Topical Estradiol and Genistein Treatment: A Double-Blind, Randomized Clinical Trial of Efficacy. Menopause 2013, 20, 336–341. [Google Scholar] [CrossRef]
- Moraes, A.B.; Haidar, M.A.; Soares, J.M.; Simões, M.J.; Baracat, E.C.; Patriarca, M.T. The Effects of Topical Isoflavones on Postmenopausal Skin: Double-Blind and Randomized Clinical Trial of Efficacy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009, 146, 188–192. [Google Scholar] [CrossRef]
- Südel, K.M.; Venzke, K.; Mielke, H.; Breitenbach, U.; Mundt, C.; Jaspers, S.; Koop, U.; Sauermann, K.; Knußmann-Hartig, E.; Moll, I.; et al. Novel Aspects of Intrinsic and Extrinsic Aging of Human Skin: Beneficial Effects of Soy Extract. Photochem. Photobiol. 2004, 81, 581–587. [Google Scholar] [CrossRef]
- Bhattacharyya, T.K.; Higgins, N.P.; Scott Sebastian, J.; Regan Thomas, J. Comparison of Epidermal Morphologic Response to Commercial Antiwrinkle Agents in the Hairless Mouse. Dermatol. Surg. 2009, 35, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, K.; Hanamizu, T.; Sone, T.; Chiba, K.; Kinoshita, T.; Yoshikawa, S. Topical Application of Bifidobacterium-Fermented Soy Milk Extract Containing Genistein and Daidzein Improves Rheological and Physiological Properties of Skin. J. Cosmet. Sci. 2004, 55, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Cardile, V.; Lombardo, L.; Vanella, L.; Acquaviva, R. Genistin Inhibits UV Light-Induced Plasmid DNA Damage and Cell Growth in Human Melanoma Cells. J. Nutr. Biochem. 2006, 17, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.-H.; Chen, X.-G.; Li, V.; Han, R. Effects of Genistein, A Soybean-Derived Isoflavone, on Proliferation and Differentiation of B16-BL6 Mouse Melanoma Cells. J. Asian Nat. Prod. Res. 1999, 1, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Nemitz, M.C.; Fachel, F.N.S.; Beckenkamp, A.; Buffon, A.; Teixeira, H.F.; Poser, G.L.V. Soybeans Isoflavone Aglycone-Rich Extracts: Optimization by Different Bioprocesses and Production of a Purified Fraction with Promising Wound Healing Property. Ind. Crops Prod. 2017, 105, 193–202. [Google Scholar] [CrossRef]
- Ahn, S.; Chantre, C.O.; Ardoña, H.A.M.; Gonzalez, G.M.; Campbell, P.H.; Parker, K.K. Biomimetic and Estrogenic Fibers Promote Tissue Repair in Mice and Human Skin via Estrogen Receptor β. Biomaterials 2020, 255, 120149. [Google Scholar] [CrossRef]
- Cao, C.; Li, S.; Dai, X.; Chen, Y.; Feng, Z.; Zhao, Y.; Wu, J. Genistein Inhibits Proliferation and Functions of Hypertrophic Scar Fibroblasts. Burns 2009, 35, 89–97. [Google Scholar] [CrossRef]
- Record, I.R.; Broadbent, J.L.; King, R.A.; Dreosti, I.E.; Head, R.J.; Tonkin, A.L. Genistein Inhibits Growth of B16 Melanoma Cellsin Vivo Andin Vitro and Promotes Differentiationin Vitro. Int. J. Cancer 1997, 72, 860–864. [Google Scholar] [CrossRef]
- Venza, I.; Visalli, M.; Oteri, R.; Beninati, C.; Teti, D.; Venza, M. Genistein Reduces Proliferation of EP3-Expressing Melanoma Cells through Inhibition of PGE2-Induced IL-8 Expression. Int. Immunopharmacol. 2018, 62, 86–95. [Google Scholar] [CrossRef]
- Yan, C.; Han, R. Genistein Suppresses Adhesion-Induced Protein Tyrosine Phosphorylation and Invasion of B16-BL6 Melanoma Cells. Cancer Lett. 1998, 129, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Farina, H.; Pomies, M.; Alonso, D.; Gomez, D. Antitumor and Antiangiogenic Activity of Soy Isoflavone Genistein in Mouse Models of Melanoma and Breast Cancer. Oncol. Rep. 2006, 16, 885–891. [Google Scholar] [CrossRef] [PubMed]
Compounds (Concentrations Tested) | Observed Effect | Ref. |
---|---|---|
Cyclooxygenase-2 (COX-2) | ||
genistein (Gen) (2, 4, 6, 10 µM) | ↑ expression: 2, 4, 6 μM | [47] |
daidzein (Dai) (8, 16, 24, 30 µM) | ↑ expression COX-2 (8 μM) | [47] |
mix of Gen:Dai (2:8; 4:16; 6:24; 10:30 μM) | ↓ expression: 2:8, 4:16, 6:24 μM ↑ expression: 10:30 μM | [47] |
genistein (GenG) (2, 4, 6, 8, 10, 20, 30, 60 µM) | ↓ expression for all concentrations | [48] |
daidzein (DaiG) (2, 4, 6, 8, 10, 20, 30, 60 µM) | ↓ expression: 2, 4, 8 μM | [48] |
mix of GenG:DaiD (2:2; 2:4; 4:8; 6:8; 8:8; 8:2; 10:4; 10:10 µM) | ↓ expression: 6:8 μM; 10:10 μM ↑ expression 10:4 μM | [48] |
RPH–aglycone mix * (2, 4, 6, 8, 10, 20, 30 µM) | ↓ expression COX-2: 8, 10 μM | [48] |
DNA damage (comet assay) | ||
genistein (Gen) (10, 30, 60 µM) | ↓ tail moment: 30, 60 µM | [47] |
daidzein (Dai) (10, 30, 60 µM) | ↓ tail moment: 10, 30, 60 µM | [47] |
mix of Gen:Dai (2:8; 4:16; 6:24 μM) | ↓ tail moment (2:8, 4:16, 6:24 μM) | [47] |
genistein (GenG) (2, 6, 10 µM) | ↑ tail moment for all concentrations | [48] |
daidzein (DaiG) (2, 6, 10 µM) | ↑ tail moment for all concentrations | [48] |
mix of GenG:DaiD (2:2; 2:10; 4:10; 6:8 µM) | ↓ tail moment: 2:2 µM | [48] |
RPH–aglycone mix * (2, 4, 6, 8, 10, 20, 30 µM) | ↓ tail moment (8, 10 µM) | [48] |
DNA damage (Gadd45 expression) | ||
genistein (Gen) (2, 4, 6, 10 µM) | ↑ expression: 2, 6 μM | [47] |
daidzein (Dai) (8, 16, 24, 30 µM) | ↑ expression: 8, 16 μM | [47] |
mix of Gen:Dai (2:8; 4:16; 6:24; 10:30 μM) | ↓ expression: 2:8, 4:16, 6:24 μM ↑ expression: 10:30 μM | [47] |
genistein (GenG) (2, 4, 6, 8, 10, 20, 30, 60 µM) | ↑ expression: 2, 6, 10, 30, 60 μM | [48] |
daidzein (DaiG) (2, 4, 6, 8, 10, 20, 30, 60 µM) | ↓ expression: 2, 4 μM ↑ expression: 10–60 μM | [48] |
mix of GenG:DaiD (2:2; 2:4; 4:8; 6:8; 8:8; 8:2; 10:4; 10:10 µM) | ↓ expression (2:2 μM) ↑ expression (the other mix) | [48] |
RPH–aglycone mix * (2, 4, 6, 8, 10, 20, 30 µM) | ↑ expression for all concentrations | [48] |
Component/Treatment | Model | Observed Effects | Ref. |
---|---|---|---|
Genistein (10, 20, 50 µM) added 1 h prior to UVB | EpiDermFT Full Thickness (skin model comprising NHK)/UVB 20, 60 mJ/cm2) | ↓ UV induced PD formation Preservation of PCNA expression | [49] |
Genistein (5 µM) added 24 h prior to UVB | HaCaT/UVB 50 mJ/cm2 | ↓ UV induced IL-1, MIF, PLANH1 CXCL1; IL-8—no effect | [50] |
Gen, Dai, Glycitin (10 mM) Mix (55% Gen, 43% Dai, 1.8% Gly) (10 mM) added 12 h prior to UVB | HaCaT/UVB 70 mJ/cm2 | ↓ UV induced H2O2 (no effect for glycitine) | [52] |
Fraction (0.5, 1%): G1-aglycone, G2-glucoside, G3-acetylglucoside, G4-malonylglucoside added prior to UVB and incubated for 24 h | HaCaT/UVB 40 mJ/cm2 | ↑ Viability of UVB-irradiated cell (G3 most effective) ↓ UVB-induced intracellular H2O2 ↓ UVB induced phosphorylation of JNK (no effect on ERK1/2 or p38) | [24] |
Extract with 12 isoflavones (total Iso: 43.8 µg/g) added prior to UVB and incubated for 24 h | HaCaT/UVB 50 mJ/cm2 | ↑ Viability of UVB-irradiated cell ↓ UVB induced phosphorylation of ERK1/2, JNK, p38 Prevention of the depletion of catalase | [25] |
Extract with Gen, Dai, Gly, and their acetyl glucosides (total Iso: 7.86 mg/g) added 24 h prior to UVB | HaCaT/UVB 50 mJ/cm2 | ↑ Viability of UVB-irradiated cell ↓ UVB induced phosphorylation of ERK1/2, JNK, p38 | [54] |
Genistein (10 μM) applied 1 h prior to UVB | SKH-1 hairless mouse skin/UVB 0.15-15 kJ/m2 | ↓ UVB induced H2O2 ↓ UVB induced MDA ↓ Indicators of DNA damage (8-OHdG, TD) | [55] |
Genistein (0.5, 2 nmol/cm2) applied 1 h prior to UVA | SKH-1 mouse skin/8-methoxy-psolaren and UVA | ↓ UV induced the epidermal thickness | [56] |
Genistein (0.1%, 1%) applied 24 h prior to UVB | Rat model/UVB 50 mJ/cm2 | Prevent wrinkle formation | [50] |
Genistein (5 μM) applied 1 h prior to UVB 1 or 4 h after UVB | SKH-1 hairless mouse skin/UVB 60 mJ/cm2 | ↓ Sunburned cells (Gen prior to UVB exposure) ↓ Leukocyte infiltration (Gen after UVB exposure) No effect on epidermal hyperproliferation Restoration of E-cadherin levels | [51] |
Extract with 12 isoflavones (total Iso: 43.8 µg/g); genistein (1, 3 mg/mL) applied prior to UVB for 7 days | Mouse dorsal skin/UVB 150 mJ/cm2 | ↓ The epidermal thickness ↓ Erythema ↓ TEWL ↓ Desquamation ↓ UVB-induced H2O2 levels ↓ COX-2 ↓ PCNA expression Prevention of catalase depletion | [25] |
Extract with Gen, Dai, Gly, and their acetyl glucosides (7.86 mg/g) applied prior to UVB for 7 days | Mouse dorsal skin/UVB 150 mJ/cm2 | ↓ The epidermal thickness ↓ Erythema ↓ TEWL ↓ Desquamation | [54] |
Compound/Extract | Model | Effect | Ref. |
---|---|---|---|
Genistein 50, 10 µM | TNF-α-treated HaCaT | ↓ IL-1β, IL-6, IL-8, IL-23, TNF-α, VEGFA, MCP1 ↓ TNF-α-induced proliferation | [27] |
Genistein 20 μM | TNF-α-stimulated human synoviocytes (MH7A) | ↓ IL-1β, IL-6, and IL-8 ↓ ROS | [26] |
Genistein 100 μM | Normal HaCaT, “psoriasis-like” HaCaT * | ↓ IL-8, IL-20, and CCL2 ↓ ROS No changes in IL-1β or TGF-β1 | [57] |
Genistein 1, 10, 100 μM | Human fibroblasts and keratinocytes induced with H2O2 | ↓ NO, ↓ ROS, ↑ GSH Prevents H2O2-induced cytotoxicity ↑ Mitochondrial membrane potential ↓ MMP-1, MMP-9 | [29] |
Nova Soy containing 33 mg of Gen, 67 mg of Dai/100 mg | Swiss albino mice with TPA-induced cutaneous inflammation | ↓ COX-2, ↓ NO ↓ MDA (lipid peroxidation) ↓ Edema Restoration of SOD, CAT, GSH ↓ TNF-α, IL-6, IL-1 β | [59] |
Isoflavone extract ** | NHEK induced with IL-22, IL-17A, TNF-α | ↓ Phosphorylation of STAT3, JAK2, ERK, JNK, and p38 | [28] |
Cream containing genistein (0.5% or 2%) | Imiquimod (IMQ)-induced skin lesions in mice | ↓ IL-1β, IL-6, IL-17, IL-23, TNF-α, CCL2 Reduction of epidermal thickness | [27] |
Isoflavone extract ** | Imiquimod (IMQ)-induced skin lesions in mice | ↓ TEWL, erythema, blood flow, thickness Attenuation of hyperplasia and cell infiltration | [28] |
Compound/Extract | Model | Effect | Ref. |
---|---|---|---|
Daidzein (0.1, 1, 10 μg/mL) | Normal human dermal fibroblasts | ↑ Collagen type I and IV ↑ Elastin, fibrillin-1 | [72] |
Daidzein (0.5, 5, 50 μg/mL) | Human skin fibroblasts | ↓ MMP1 and 2 ↑ Collagen type I ↑ TGF-β ↑ Phosphorylated Smad2 and 3 | [35] |
Glycitin (20 μM) | Human skin fibroblasts | ↓ MMP1, ↑ collagen type I, III ↑ TGF-β ↑ fibronectin ↑ Phosphorylated Smad2 and 3 and AKT | [73] |
Genistein (4 × 10−9–4 × 10−7 M) Daidzein (4 × 10−7 M) | Normal human keratinocytes | ↑ Hyaluronic acid | [76] |
Genistein, daidzein (100 ng/mL) | Human dermal fibroblasts | ↑ Collagen for genistein No effect for daidzein | [81] |
Genistein (1, 10, 100 μM) | Fibroblasts induced with t-BHP | ↑ Collagen (1 μM) ↓ collagen (10, 100 μM) Protection of DNA biosynthesis (1, 10 μM) | [74] |
Soy powder (250 mg/2 mL) (40, 200 μg/mL) | Human dermal fibroblasts | ↑ Type I procollagen | [78] |
Daidzein (200 μg/mL 6 weeks) | BALB/C mice | ↑ Type I collagen | [35] |
Gen (4 × 10−5–4 × 10−4 M) Dai (2 × 10−4–4 × 10−4 M) (2 weeks 0.1 mL/5 cm2/day) | Hairless mice | ↑ Hyaluronic acid | [76] |
4% genistein gel (24 weeks) | Postmenopausal women | ↑ Hyaluronic acid ↑ Epidermal thickness ↑ Number of blood vessels | [79,80] |
Type of Activity | Compound/Model | Effect | Ref. |
---|---|---|---|
Wound healing | Glicitin (0.5, 1, 2, 5, 10, 20 µM)/human dermal fibroblasts | ↑ Cell proliferation (10, 20 µM) ↑ Cell migration (10, 20 µM) | [73] |
Isoflavone-aglycone-rich extracts/human keratinocytes | ↑ Cell proliferation | [86] | |
Anti-melanoma | Genistin (GenG), daidzin (DaiG) (12, 25, 50, and 100 µM)/skin melanoma cells | ↓ Cell viability (59.1% for 100 µM GenG; no effect for DaiG) ↑ ROS (50, 100 µM)—DaiD not studied ↑ DNA damage (50, 100 µM)—DaiD not studied | [84] |
Genistein (5, 10, 20, 30 µM)/skin melanoma cells | ↓ Cell viability (IC50 15.5 μM) Changes in cell shape and cytoskeleton ↑ Melanin content ↑ Tyrosinase activity | [85] | |
Genistein/skin melanoma cells | ↓ Cell viability (IC50 after 24 h 200 μM; IC50 after 48 h 35 μM; IC50 after 5 days 12.5 μM) | [89] | |
Genistein (30, 50, and 80 μmol/L)/skin melanoma cells | ↓ Basal and PGE2-stimulated cell proliferation | [90] | |
Genistein 100, 150, 200 μM)/skin melanoma cells | ↓ Protein tyrosine phosphorylation ↓ Cells to invade through ECM | [91] | |
Genistein (0.5, 1, 5, 10, 50, 100 μM)/skin melanoma cells | IC50 6.6 μM after 96 h of exposure (no cytotoxic effects for 24 h treatment) ↑ Adhesion of cells (0.5 to 50 μM) ↓ Cell migration (20 to 50 μM) | [92] | |
Anti-scarring | Genistein (25, 50, 100 µM)/hypertrophic scar specimens | ↓ Collagen synthesis (50, 100 µM) ↓ Fibroblast proliferation 50, 100 µM (after 24 h) 25, 50, 10 µM (after 48 and 72 h) | [88] |
Anti-hyperplasia | Genistein (0.5, 1 μg/mL)/ retinoid-induced cultured skin | ↓ Epidermal thickness Daidzein and glycitein—no effect | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójciak, M.; Drozdowski, P.; Skalska-Kamińska, A.; Zagórska-Dziok, M.; Ziemlewska, A.; Nizioł-Łukaszewska, Z.; Latalska, M. Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules 2024, 29, 5790. https://doi.org/10.3390/molecules29235790
Wójciak M, Drozdowski P, Skalska-Kamińska A, Zagórska-Dziok M, Ziemlewska A, Nizioł-Łukaszewska Z, Latalska M. Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules. 2024; 29(23):5790. https://doi.org/10.3390/molecules29235790
Chicago/Turabian StyleWójciak, Magdalena, Piotr Drozdowski, Agnieszka Skalska-Kamińska, Martyna Zagórska-Dziok, Aleksandra Ziemlewska, Zofia Nizioł-Łukaszewska, and Małgorzata Latalska. 2024. "Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies" Molecules 29, no. 23: 5790. https://doi.org/10.3390/molecules29235790
APA StyleWójciak, M., Drozdowski, P., Skalska-Kamińska, A., Zagórska-Dziok, M., Ziemlewska, A., Nizioł-Łukaszewska, Z., & Latalska, M. (2024). Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules, 29(23), 5790. https://doi.org/10.3390/molecules29235790