Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Synthesis of PEI-PDA@M-PFs Adsorbent
2.3. Characterizations of Materials
2.4. Batch Adsorption Experiments
2.5. Reusability Experiments
3. Results and Discussion
3.1. Chemical Structure and Morphology Characterization of PEI-PDA@M-PFs
3.2. Adsorption Properties and Kinetics of PEI-PDA@M-PFs
3.3. Adsorption Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iqbal, A.; Qureshi, K.; Unar, I.N.; Bhatti, Z.A. Recent trends and advancement in the removal of persistent organic pollutants from wastewater by hybrid electrocoagulation chemical degradation processes. Port. Electrochim. Acta 2024, 42, 395–418. [Google Scholar] [CrossRef]
- Yaseen, M.; Khan, A.; Humayun, M.; Bibi, S.; Farooq, S.; Bououdina, M.; Ahmad, S. Fabrication and characterization of CuO-SiO2/PVA polymer nanocomposite for effective wastewater treatment and prospective biological applications. Green Chem. Lett. Rev. 2024, 17, 2321251. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, F.P.; Li, Y.J.; Wu, D.F.; Yang, D.L.; Sun, D.; Cheng, D.J.; Tian, W.L. Bentonite-assisted construction of magnesium-silicate-based composite as efficient adsorbent for organic dye removal. J. Exp. Nanosci. 2024, 19, 229–237. [Google Scholar] [CrossRef]
- Amreen, S.; Dash, S.K.; Naik, B.; Dash, A.K.; Verma, A.K.; Pradhan, A. Marine macro algae-derived activated carbon an efficient bio-sorbent for Malachite green removal from wastewater. Environ. Qual. Manag. 2024, 34, 1088–1099. [Google Scholar] [CrossRef]
- Deniz, F. Cost-efficient and sustainable treatment of malachite green, a model micropollutant with a wide range of uses, from wastewater with Pyracantha coccinea M. J. Roemer plant, an effective and eco-friendly biosorbent. J. Taibah Univ. Sci. 2024, 18, 2253592. [Google Scholar] [CrossRef]
- Behera, M.; Nayak, J.; Banerjee, S.; Chakrabortty, S.; Tripathy, S.K. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J. Environ. Chem. Eng. 2021, 9, 231–242. [Google Scholar] [CrossRef]
- Pandey, S.; Makhado, E.; Kim, S.; Kang, M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater—A review. Environ. Res. 2023, 217, 97–106. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Q.N.; Peng, Y.Y.; Papadakis, V.G.; Goula, M.A.; Li, X.Y.; Xie, T.Z.; Yang, Z.Y. Efficient degradation of methyl orange in wastewater via bio-electro-Fenton system: Optimization, pathway investigation and process evaluation. J. Chem. Technol. Biotechnol. 2024, 65, 1097–1108. [Google Scholar] [CrossRef]
- Palas, B.; Ersöz, G.; Atalay, S. Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase. Ecotoxicol. Environ. Saf. 2019, 182, 109367. [Google Scholar] [CrossRef]
- Kaur, K.; Jindal, R. Synergistic effect of organic-inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents. J. Environ. Chem. Eng. 2018, 6, 7091–7101. [Google Scholar] [CrossRef]
- Yuan, D.L.; Yang, K.; Pan, S.Y.; Xiang, Y.; Tang, S.F.; Huang, L.T.; Sun, M.T.; Zhang, X.Y.; Jiao, T.F.; Zhang, Q.R.; et al. Peracetic acid enhanced electrochemical advanced oxidation for organic pollutant elimination. Sep. Purif. Technol. 2021, 276, 119317. [Google Scholar] [CrossRef]
- Ali, S.S.; Al-Tohamy, R.; Sun, J.Z. Performance of Meyerozyma caribbica as a novel manganese peroxidase-producing yeast inhabiting wood-feeding termite gut symbionts for azo dye decolorization and detoxification. Sci. Total Environ. 2022, 806, 150665. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yi, L.; Huang, F.X.; Huang, Q.L.; Zhou, T.G. Facile synthesis of graphene nanosheets on wastewater sediments for high efficient adsorption of methylene blue. Sep. Purif. Technol. 2024, 337, 126366. [Google Scholar] [CrossRef]
- Swain, J.; Samal, P.P.; Qaiyum, M.A.; Dey, B.; Dey, S. Biosorption of crystal violet, a cationic dye onto alkali treated rauvolfia tetraphylla leaf: Kinetics, isotherm and thermodynamics. Water Conserv. Sci. Eng. 2024, 9, 1. [Google Scholar] [CrossRef]
- Bahadi, S.A.; Drmosh, Q.A.; Onaizi, S.A. Adsorption of anionic and cationic azo dyes from wastewater using novel and effective multicomponent adsorbent. Sep. Purif. Technol. 2024, 337, 124–132. [Google Scholar] [CrossRef]
- Kamaraj, M.; Nithya, T.G.; Shyamalagowri, S.; Aravind, J.; Mythili, R. Activated carbon derived from almond tree dry leaves waste for enhanced multi dye removal from aqueous solutions. Mater. Lett. 2022, 308, 95–108. [Google Scholar] [CrossRef]
- Safa, Y.; Bhatti, H.N. Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chem. Eng. J. 2011, 167, 35–41. [Google Scholar] [CrossRef]
- An, Y.P.; Luo, Q.; Zhong, Y.Y.; Ma, X.Z.; Li, S.Q.; Wu, J.L.; Na, H.N.; Sun, Z.; Zhu, J.; Chen, J. The green design of corncob cellulose/reduced graphene oxide-derived hierarchical porous aerogels for efficient dye adsorption. New J. Chem. 2022, 46, 15024–15031. [Google Scholar] [CrossRef]
- Wang, L.X.; Shen, J.; Li, L.; Liu, P.D.; Fang, H.; Li, X.F.; Song, Y.H.; Zhang, L.S. Heteroatom-doped hollow carbon micro-tube derived from platanus catkins fiber for sodium ion supercapacitor. Inorg. Chem. Commun. 2020, 114, 2255–2271. [Google Scholar] [CrossRef]
- Tan, H.; Wang, X.N.; Jia, D.D.; Hao, P.; Sang, Y.H.; Liu, H. Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J. Mater. Chem. A 2019, 5, 2580–2591. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Z.Y.; Chang, J.L.; Wu, D.P.; Wang, X.R.; Xu, F.; Guo, Y.M.; Jiang, K. Electrochemical energy storage and adsorptive dye removal of Platanus fruit-derived porous carbon. RSC Adv. 2017, 5, 15969–15976. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.X.; Zhou, T.T.; Lai, Q.; Egabaierdi, G.; Chen, S.; Song, H.; Zhang, S.; Shi, C.; Yang, S.; et al. Platanus acerifolia (Aiton) Willd. fruit-derived nitrogen-doped porous carbon as an electrode material for the capacitive deionization of brackish water. J. Environ. Chem. Eng. 2023, 11, 66–79. [Google Scholar] [CrossRef]
- Baseri, H.; Farhadi, A. Valorization of pistachio bark as the biosorbent for adsorption of dye and heavy metal ions from the contaminated water. Biomass Convers. Biorefinery 2024, 43, 1–12. [Google Scholar] [CrossRef]
- Li, H.; Cao, W.; Qian, Z.W.; Zhou, Z.M.; Fu, M.L. Removal of Cr(VI) from water by using schwertmannite-loaded lignocellulose beads from sugarcane bagasse. Environ. Eng. Sci. 2024, 21, 43–52. [Google Scholar] [CrossRef]
- Yazid, H.; Bouzid, T.; El Himri, M.; Regti, A.; El Haddad, M. Bisphenol A (BPA) remediation using walnut shell as activated carbon employing experimental design for parameter optimization and theoretical study to establish the adsorption mechanism. Inorg. Chem. Commun. 2024, 161, 112064. [Google Scholar] [CrossRef]
- Yildiz, H. The production of a novel adsorbent from forest waste (Platanus orientalis L.) for dye adsorption: Adsorption process optimization and experimental design. Mater. Sci. Eng. B 2024, 304, 117366. [Google Scholar] [CrossRef]
- Khan, F.A.; Bhat, M.A.; Arif, P.M.; Farooqui, M. A Comparative Study of Adsorption of Methylene Blue Dye onto Untreated Platanus orientalis (chinar tree) Leaves Powder and its Biochar—Equilibrium, Kinetic and Thermodynamic Study. Orbital Electron. J. Chem. 2023, 15, 163–170. [Google Scholar] [CrossRef]
- Yang, K.; Ren, J.; Cui, Y.; Wang, Y.; Shah, T.; Zhang, Q.; Zhang, B. Fabrication of porous tubular carbon fibers from the fruits of Platanus orientalis and their high oil adsorption properties. J. Environ. Chem. Eng. 2021, 9, 94–103. [Google Scholar] [CrossRef]
- Wu, P.K.; Feng, Y.R.; Xu, J.; Fang, Z.G.; Liu, Q.C.; Kong, X.K. Ultralight N-doped platanus acerifolia biomass carbon microtubes/RGO composite aerogel with enhanced mechanical properties and high-performance microwave absorption. Carbon 2023, 202, 194–203. [Google Scholar] [CrossRef]
- Wang, J.K.; Liu, W.X.; Huang, Y.C.; Zou, X.Q.; Yan, J.N.; Feng, Y.W.; Wang, K. Self-cleaning PDA-Ag@PVDF membranes for oil/water separation and dye adsorption from emulsion. New J. Chem. 2024, 48, 3136–3148. [Google Scholar] [CrossRef]
- Guo, X.-J.; Fu, W.-K.; Ma, J.-Y.; Xi, B.-J.; Wang, C.; Guan, M.-Y. Efficient removal of Cr(VI) by polydopamine-modified lignin from aqueous solution: Batch and XAFS studies. Water Sci. Eng. 2024, 17, 51–61. [Google Scholar] [CrossRef]
- Zhu, Y.-W.; Sun, Y.-J.; Wang, J.-L.; Yu, B.-R. Antimicrobial and antifouling surfaces through polydopamine bio-inspired coating. Rare Met. 2022, 41, 499–518. [Google Scholar] [CrossRef]
- Lei, T.; Jiang, X.; Zhou, Y.; Chen, H.O.; Bai, H.P.; Wang, S.X.; Yang, X.J. A multifunctional adsorbent based on 2,3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles for the removal of heavy-metal ions. J. Colloid Interface Sci. 2023, 636, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Li, S.-J.; Jiang, F.; Ren, Z.-X.; Wang, L.-L.; Yang, X.-J.; Tang, L.-H.; Wang, S.-X. Adsorption of cadmium ions from an aqueous solution on a highly stable dopamine-modified magnetic nano-adsorbent. Nanoscale Res. Lett. 2019, 14, 12–14. [Google Scholar] [CrossRef]
- Xu, X.H.; Bai, B.; Wang, H.L.; Suo, Y.R. Enhanced adsorptive removal of Safranine T from aqueous solutions by waste sea buckthorn branch powder modified with dopamine: Kinetics, equilibrium, and thermodynamics. J. Phys. Chem. Solids 2018, 87, 23–31. [Google Scholar] [CrossRef]
- Arica, T.A.; Kuman, M.; Gercel, O.; Ayas, E. Poly(dopamine) grafted bio-silica composite with tetraethylenepentamine ligands for enhanced adsorption of pollutants. Chem. Eng. Res. Des. 2019, 141, 317–327. [Google Scholar] [CrossRef]
- Jin, X.X.; Yuan, J.; Shen, J. Zwitterionic polymer brushes via dopamine-initiated ATRP from PET sheets for improving hemocompatible and antifouling properties. Colloids Surf. B Biointerfaces 2017, 145, 275–284. [Google Scholar] [CrossRef]
- Hu, N.; Yu, J.Z.; Hou, L.R.; Shi, C.R.; Li, K.; Hang, F.X.; Xie, C.F. Amine-functionalized MOF-derived carbon materials for efficient removal of Congo red dye from aqueous solutions: Simulation and adsorption studies. RSC Adv. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Juang, R.-S.; Liu, C.-A.; Fu, C.-C. Polyaminated electrospun chitosan fibrous membranes for highly selective removal of anionic organics from aqueous solutions in continuous operation. Sep. Purif. Technol. 2023, 319, 362–369. [Google Scholar] [CrossRef]
- Zhou, K.M.; Yan, L.P.; Zhang, R.; Zhu, X.D. Easily separated and sustainable cellulose-based adsorbent using a facile two-step modification for highly efficient methylene blue removal. Biomass Convers. Biorefinery 2023, 13, 432–442. [Google Scholar] [CrossRef]
- Chen, H.F.; Zhou, Y.; Wang, J.Y.; Lu, J.; Zhou, Y.B. Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+. J. Hazard. Mater. 2020, 389, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.N.; Shin, C.H.; Kim, D.; Park, J.S.; Rao, P.H.; Wang, R.K. Synthesis, characterization, and mercury removal application of surface modified kapok fibers with dopamine (DA): Investigation of bidentate adsorption. Environ. Earth Sci. 2020, 79, 620–627. [Google Scholar] [CrossRef]
- Xiong, M.H.; Sun, Y.; Chai, B.; Fan, G.Z.; Song, G.S. Efficient peroxymonosulfate activation by magnetic CoFe2O4 nanoparticle immobilized on biochar toward sulfamethoxazole degradation: Performance, mechanism and pathway. Appl. Surf. Sci. 2023, 615, 56–63. [Google Scholar] [CrossRef]
- Xu, H.W.; Sun, J.D.; Wang, H.M.; Zhang, Y.Z.; Sun, X.L. Adsorption of aflatoxins and ochratoxins in edible vegetable oils with dopamine-coated magnetic multi-walled carbon nanotubes. Food Chem. 2021, 365, 130409. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Jiang, J.Y.; Li, Y.F.; Wu, Y.Y.; Ma, J.Y.; Li, H.; Zheng, H.L. Eco-friendly poly(dopamine)-modified glass microspheres as a novel self-floating adsorbent for enhanced adsorption of tetracycline. Sep. Purif. Technol. 2022, 292, 182–186. [Google Scholar] [CrossRef]
- Hu, S.-Z.; Deng, Y.-F.; Li, L.; Zhang, N.; Huang, T.; Lei, Y.-Z.; Wang, Y. Biomimetic polylactic acid electrospun fibers grafted with polyethyleneimine for highly efficient methyl orange and Cr(VI) removal. Langmuir 2023, 39, 3770–3783. [Google Scholar] [CrossRef]
- Liu, W.Q.; Huang, X.F.; Peng, K.M.; Xiong, Y.J.; Zhang, J.L.; Lu, L.J.; Liu, J.; Li, S.Y. PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration. Surf. Coat. Technol. 2021, 406, 235–247. [Google Scholar] [CrossRef]
- Ma, J.Z.; Hou, L.Y.; Li, P.; Zhang, S.M.; Zheng, X.Y. Modified fruit pericarp as an effective biosorbent for removing azo dye from aqueous solution: Study of adsorption properties and mechanisms. Environ. Eng. Res. 2022, 27, 321–332. [Google Scholar] [CrossRef]
- Sun, J.X.; Zhou, Y.; Jiang, X.T.; Fan, J.X. Different Adsorption Behaviors and Mechanisms of Anionic Azo Dyes on Polydopamine-Polyethyleneimine Modified Thermoplastic Polyurethane Nanofiber Membranes. Water 2022, 14, 3865. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Peng, G.B.; Liao, J.B.; Shen, J.N.; Gao, C.J. Preparation of molecular selective GO/DTiO2-PDA-PEI composite nanofiltration membrane for highly pure dye separation. J. Membr. Sci. 2020, 601, 117–127. [Google Scholar] [CrossRef]
- Wan, J.S.; Li, H.; Cai, X.Y.; Yan, J.; Liao, Y.P. Developing the functional cotton fabric with N-halamine antibacterial structure based on DA/PEI. Cellulose 2022, 29, 9953–9967. [Google Scholar] [CrossRef]
- Fang, J.C.; Chen, Y.J.; Fang, C.J.; Zhu, L.P. Regenerable adsorptive membranes prepared by mussel-inspired co-deposition for aqueous dye removal. Sep. Purif. Technol. 2022, 281, 119–131. [Google Scholar] [CrossRef]
- Li, X.J.; Wang, Z.M.; Ning, J.L.; Gao, M.M.; Jiang, W.B.; Zhou, Z.D.; Li, G.Y. Preparation and characterization of a novel polyethyleneimine cation-modified persimmon tannin bioadsorbent for anionic dye adsorption. J. Environ. Manag. 2018, 217, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Han, F.Y.; Huang, H.; Wang, Y.; Liu, L.F. Crosslinking polydopamine/cellulose nanofibril composite aerogels by metal coordination bonds for significantly improved thermal stability, flame resistance, and thermal insulation properties. Cellulose 2021, 28, 10987–10997. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ding, L.J.; Yan, A.; Wei, J.T.; Liu, Y.; Niu, Y.Z.; Qu, R.J. Facile fabrication of UiO-66-NH2 modified with dodecyl and polyethyleneimine by post-synthesis functionalization strategy and simultaneous adsorption removal of anionic and cationic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 134019. [Google Scholar] [CrossRef]
- Chen, S.S.; Cao, Y.W.; Feng, J.C. Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS Appl. Mater. Interfaces 2017, 6, 349–356. [Google Scholar] [CrossRef]
- Ojstrsek, A.; Chemelli, A.; Osmic, A.; Gorgieva, S. Dopamine-assisted modification of polypropylene film to attain hydrophilic mineral-rich surfaces. Polymers 2023, 15, 902. [Google Scholar] [CrossRef]
- Chai, F.; Wang, R.; Rao, P.; Zhang, W.; Yan, L.; Yang, N.; Cai, Y.; Xi, C. Layer-by-layer self-assembled dopamine/PEI fibers derived from Ceiba pentandra for the anionic dye adsorption. Desalination Water Treat. 2019, 171, 408–417. [Google Scholar] [CrossRef]
- Cao, S.; Hu, S.-Z.; Luo, D.; Huang, T.; Zhang, N.; Lei, Y.-Z.; Wang, Y. Bio-inspired one-step structure adjustment and chemical modification of melamine foam toward highly efficient removal of hexavalent chromium ions. Sep. Purif. Technol. 2021, 275, 257–271. [Google Scholar] [CrossRef]
- Huang, J.; Huang, B.; Jin, T.X.; Liu, Z.R.; Huang, D.J.; Qian, Y. Electrosorption of uranium (VI) from aqueous solution by phytic acid modified chitosan: An experimental and DFT study. Sep. Purif. Technol. 2022, 284, 1202–1208. [Google Scholar] [CrossRef]
- Li, D.K.; Zhan, W.; Gao, X.L.; Wang, Q.; Li, L.P.; Zhang, J.; Cai, G.Y.; Zuo, W.; Tian, Y. Aminated waste paper membrane for efficient and rapid filtration of anionic dyes and antibiotics from water. Chem. Eng. J. 2023, 455, 140–146. [Google Scholar] [CrossRef]
- Tang, Y.L.; Li, M.H.; Mu, C.H.; Zhou, J.F.; Shi, B. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. Chemosphere 2019, 229, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.X.; Zhang, S.Y.; Luo, C.H.; Wan, L.; Wu, S.; Baig, S.A.; Xu, X.H. Enhanced removal of Sb(V) from aqueous solutions using layered double hydroxide modified with sodium dodecyl sulfate. J. Environ. Chem. Eng. 2022, 10, 107776. [Google Scholar] [CrossRef]
- Xiong, C.; Wang, S.X.; Hu, P.; Huang, L.-Y.; Xue, C.; Yang, Z.-J.; Zhou, X.-T.; Wang, Y.Q.; Ji, H.-B. Efficient selective removal of Pb(II) by using 6-aminothiouracil-modified Zr-based organic frameworks: From experiments to mechanisms. ACS Appl. Mater. Interfaces 2020, 12, 7162–7178. [Google Scholar] [CrossRef]
- Chen, Y.S.; Li, Q.; Chen, X.H.; Xu, X. Functionalization of biodegradable PLA nonwoven fabrics as super-wetting membranes for simultaneous efficient dye and oil/water separation. New J. Chem. 2019, 43, 9696–9705. [Google Scholar] [CrossRef]
- Wan, X.; Liu, Z.Q.; Xie, L.Y.; Qu, G.; Zhang, H.; Wang, B.; Li, Y.; Zhang, Y.-F.; Zhao, S.-C. Efficiently ion-enhanced adsorption of anion dyes by acrolein crosslinked polyethylenimine/chitosan hydrogel with excellent recycling stability. Int. J. Biol. Macromol. 2022, 222, 2017–2027. [Google Scholar] [CrossRef]
- Hu, S.-Z.; Huang, T.; Zhang, N.; Lei, Y.-Z.; Wang, Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep. Purif. Technol. 2022, 297, 113–124. [Google Scholar] [CrossRef]
- Sun, Y.B.; Yuan, N.; Ge, Y.L.; Ye, T.Z.; Yang, Z.; Zou, L.P.; Ma, W.; Lu, L. Adsorption behavior and mechanism of U(VI) onto phytic Acid-modified Biochar/MoS2 heterojunction materials. Sep. Purif. Technol. 2022, 294, 891–901. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, S.; Pang, H.W.; Wang, J.Q.; Wang, X.X.; Song, G.; Yu, S.J. Insights into enhanced removal of U(VI) by melamine sponge supported sulfurized nanoscale zero-valent iron. J. Clean. Prod. 2021, 329, 129662. [Google Scholar] [CrossRef]
- Chen, R.; Hu, T.L.; Li, Y.Q. Stable nitrogen-containing covalent organic framework as porous adsorbent for effective iodine capture from water. React. Funct. Polym. 2021, 159, 104806. [Google Scholar] [CrossRef]
- Charafi, S.; Janani, F.Z.; Elhalil, A.; Abdennouri, M.; Sadiq, M.; Barka, N. Adsorption and Reusability Performances of Ni/Al Layered Double Hydroxide for the Removal of Eriochrome Black T dye. Biointerface Res. Appl. Chem. 2023, 13, 265. [Google Scholar]
- Manzar, M.S.; Ahmad, T.; Ullah, N. Comparative adsorption of Eriochrome Black T and Tetracycline by NaOH modified steel dust: Kinetic and process modeling. Sep. Purif. Technol. 2022, 287, 120559. [Google Scholar] [CrossRef]
- Waheed, A.; Kazi, I.W.; Manzar, M.S.; Ahmad, T.; Mansha, M.; Ullah, N.; Blaisi, N.I.A. Ultrahigh and efficient removal of Methyl orange, Eriochrom Black T and acid Blue 92 by triazine based cross-linked polyamine resin: Synthesis, isotherm and kinetic studies. Colloids Surf. A Physicochem. Eng. Asp. 2020, 607, 125472. [Google Scholar] [CrossRef]
- Qin, Y.; Sun, J.X.; Zhou, Y.; Fan, J.X.; Hu, Y. Adsorption and removal of composite contaminants in water using thermoplastic polyurethane nanofiber membranes with polydopamine—polyethyleneimine coatings. Water 2023, 15, 2546. [Google Scholar] [CrossRef]
- Wu, Q.H.; Yu, W.H.; Wen, W.; Mai, Y.L.; Fan, L.F. Polydopamine-mediated grafting polyethylenimine on blended polystyrene/dopamine electrospun nanofibrous adsorbent for removal Congo red from water. Polymer 2023, 281, 27–36. [Google Scholar] [CrossRef]
- Zhuang, Z.F.; Cheng, X.; Cao, L.Y.; He, G.Q.; Zhou, J.; Wei, Y.X. Secondary bond interface assembly of polyethyleneimine on zein microparticles for rapid adsorption of Reactive Black 5. Colloids Surf. B Biointerfaces 2023, 225, 113–127. [Google Scholar] [CrossRef]
- Yu, J.; Xu, D.Y.; Jiang, D.B.; Xu, C.H. Adsorption mechanism of methylene blue from water using core-shell structured magnetic as efficient recyclable adsorbent. Mater. Chem. Phys. 2021, 273, 125–136. [Google Scholar] [CrossRef]
- Wu, H.Y.; Gong, L.; Zhang, X.; He, F.R.; Li, Z.L. Bifunctional porous polyethyleneimine-grafted lignin microspheres for efficient adsorption of 2,4-dichlorophenoxyacetic acid over a wide pH range and controlled release. Chem. Eng. J. 2021, 411, 128539. [Google Scholar] [CrossRef]
Materials | C (%) | O (%) | N (%) | Fe (%) | Co (%) | N/C |
---|---|---|---|---|---|---|
M-PFs | 60.29 | 36.46 | 1.08 | 1.48 | 0.69 | 0.018 |
PDA@M-PFs | 67.89 | 22.31 | 5.48 | 0.62 | 0.27 | 0.076 |
PEI-PDA@M-PFs | 57.55 | 20.75 | 20.65 | 0.59 | 0.44 | 0.359 |
C0 (mg·L−1) | qe,exp (mg·g−1) | Pseudo-First-Order Model | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
K1 (min−1) | qe,cal (mg·g−1) | R2 | K1 × 10−4 (g·mg−1min−1) | qe,cal (mg·g−1) | R2 | ||
50 | 121.79 | 0.0096 | 109.51 | 0.9572 | 0.974 | 124.13 | 0.9918 |
75 | 143.53 | 0.0150 | 125.10 | 0.9156 | 1.510 | 137.75 | 0.9762 |
100 | 153.41 | 0.0161 | 135.47 | 0.9385 | 1.492 | 148.79 | 0.9870 |
C0 mg·L−1 | kd1 mg·g−1·min−0.5 | C1 mg·g−1 | R2 | kd2 | C2 mg·g−1 | R2 | kd3 | C3 mg·g−1 | R2 |
---|---|---|---|---|---|---|---|---|---|
50 | 6.88 | 2.12 | 0.9844 | 2.29 | 52.62 | 0.9988 | 0.67 | 96.63 | 0.9134 |
75 | 9.91 | 1.85 | 0.9896 | 3.03 | 59.12 | 0.9867 | 1.19 | 99.79 | 0.9254 |
100 | 11.8 | 1.48 | 0.9964 | 4.29 | 55.20 | 0.9665 | 1.49 | 100.24 | 0.9550 |
T/K | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qm (mg·g−1) | b | R2 | KF (L·g−1) | n | R2 | |
298 | 166.11 | 0.4204 | 0.9984 | 48.65 | 3.29 | 0.9456 |
ΔG (kJ·mol−1) | ΔH (kJ·mol−1) | ΔS (J·mol−1·K−1) | |||||
---|---|---|---|---|---|---|---|
T | 293 K | 303 K | 313 K | 323 K | 333 K | ||
50 mg/L | −2.79 | −3.54 | −4.23 | −4.71 | −4.95 | 13.344 | 55.54 |
75 mg/L | −0.21 | −0.50 | −1.18 | −1.47 | −1.64 | 11.114 | 38.703 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Song, T.; Huang, B.; Qi, C.; Peng, Z.; Wang, T.; Li, Y.; Ye, L. Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water. Molecules 2024, 29, 5730. https://doi.org/10.3390/molecules29235730
Jiang Z, Song T, Huang B, Qi C, Peng Z, Wang T, Li Y, Ye L. Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water. Molecules. 2024; 29(23):5730. https://doi.org/10.3390/molecules29235730
Chicago/Turabian StyleJiang, Zefeng, Tongyang Song, Bowen Huang, Chengqiang Qi, Zifu Peng, Tong Wang, Yuliang Li, and Linjing Ye. 2024. "Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water" Molecules 29, no. 23: 5730. https://doi.org/10.3390/molecules29235730
APA StyleJiang, Z., Song, T., Huang, B., Qi, C., Peng, Z., Wang, T., Li, Y., & Ye, L. (2024). Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water. Molecules, 29(23), 5730. https://doi.org/10.3390/molecules29235730