Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals
Abstract
:1. Introduction
2. Plant Growth Bioregulators
2.1. Abscisic Acid
2.2. Auxins
2.3. Brassinosteroids
2.4. Cytokinins
2.5. Ethylene
2.6. Gibberellins
2.7. Jasmonates
2.8. Karrikins
2.9. Melatonin
2.10. Nitric Oxide
2.11. Peptides
2.12. Phenolic Compounds
2.13. Polyamines
2.14. Strigolactones
2.15. Turgorins
3. Biological Activity of Plant Growth Bioregulators
3.1. Abscisic Acid
3.2. Auxins
3.3. Brassinosteroids
3.4. Cytokinins
3.5. Ethylene
3.6. Gibberellins
3.7. Jasmonates
3.8. Karrikins
3.9. Melatonin
3.10. Nitric Oxide
3.11. Peptides
3.12. Phenolic Compounds
3.13. Polyamines
3.14. Strigolactones
3.15. Turgorins
4. Effects of Plant Growth Bioregulators on Mammals
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pennazio, S. The discovery of the chemical nature of the plant hormone auxin. Riv. Biol. 2002, 92, 289–308. [Google Scholar]
- Kumar, B. Plant bio-regulators for enhancing grain yield and quality of legumes: A review. Agric. Rev. 2021, 42, 175–182. [Google Scholar] [CrossRef]
- Olaiya, C.O. Enzyme activity in bioregulators-treated tomato (Solanum lycopersicon) genotypes. Afr. J. Biotechnol. 2010, 9, 3264–3271. [Google Scholar]
- Singh, V.; Pate, R.; Kumar, S.; Sahu, M.P.; Ahirwal, A. Plant growth regulators and their use in plant growth and development. Agric. Environ. 2021, 2, 26–28. [Google Scholar]
- Garban, Z. Biochemistry: Comprehensive Treatise, Vol. II. Biochemical Effectors, 5th ed.; Publishing House of the Romanian Academy: Bucharest, Romania, 2018. (In Romanian) [Google Scholar]
- Bayliss, W.; Starling, E. The mechanism of pancreatic secretion. J. Physiol. 1902, 28, 325–352. [Google Scholar] [CrossRef]
- Eagles, C.F.; Wareing, P.F. Dormancy regulators in woody plants: Experimental induction of dormancy in Betula pubescens. Nature 1963, 199, 874–875. [Google Scholar] [CrossRef]
- Addicott, F.T.; Lyon, J.L.; Ohkuma, K.; Thiessen, W.E.; Carns, H.R.; Smith, O.E.; Cornforth, J.W.; Milborrow, B.V.; Ryback, G.; Wareing, P.F. Abscisic acid: A new name for abscisin II (dormin). Science 1968, 159, 1493. [Google Scholar] [CrossRef]
- Went, F.W. On a substance, causing root formation. Proc. K. Ned. Akad. Van Wet. 1929, 32, 35–39. [Google Scholar]
- Thimann, K.V. On the plant growth hormone produced by Rhizopus Suinus. J. Bio. Chem. 1935, 109, 279–291. [Google Scholar] [CrossRef]
- Raggi, S.; Doyle, S.M.; Robert, S. Auxin: At the crossroads between chemistry and biology. In The Chemical Biology of Plant Biostimulators; Geelen, D., Xu, L., Eds.; John Wily & Sons: New York, NY, USA, 2020; pp. 123–153. [Google Scholar]
- Grove, M.D.; Spencer, G.F.; Rohwedder, W.K.; Mandava, N.; Worley, J.F.; Warthen, J.D.; Steffens, G.L.; Flippen-Anderson, J.L.; Cook, J.C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 1979, 281, 216–217. [Google Scholar] [CrossRef]
- Li, J.; Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 1997, 90, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-J.; Russinova, E. Brassinosteroid signaling. Curr. Biol. 2020, 30, R294–R298. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.O.; Skoog, F.; Von Saltza, M.H.; Strong, F.M. Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 1955, 77, 1392. [Google Scholar] [CrossRef]
- Skoog, F.; Strong, F.M.; Miller, C.O. Cytokinins. Science 1965, 148, 532–533. [Google Scholar] [CrossRef]
- Svolacchia, N.; Sabatini, S. Cytokinins. Curr. Biol. 2023, 33, R1–R15. [Google Scholar] [CrossRef]
- Fahnestock, G.W. Memoranda of the effects of carburetted hydrogen gas upon a collection of exotic plants. Proc. Acad. Nat. Sci. Phil. 1858, 9–10, 118–134. [Google Scholar]
- Neljubow, D. Uber die horizontale nutation der stengel von Pisum sativum und einiger anderen pflanzen. Beih. Bot. Zentralb. 1901, 10, 128–139. [Google Scholar]
- Plackett, R.G.A.; Wilson, Z.A. Gibberellins and plant reproduction. Ann. Plant Rev. 2016, 49, 323–358. [Google Scholar]
- Minguet, E.G.; Alabadí, D.; Blázquez, M.A. Gibberellin implication in plant growth and stress responses. In Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications; Tran, L.S.P., Pal, S., Eds.; Springer Science: New York, NY, USA, 2014; pp. 119–161. [Google Scholar]
- Demole, E.; Lederer, E.; Mercier, D. Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant caractéristique de lessence de jasmin. Helv. Chim. Acta 1962, 45, 675–685. [Google Scholar] [CrossRef]
- Aldridge, D.C.; Galt, S.; Giles, D.; Turner, W.B. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. C 1971, 1623–1627. [Google Scholar] [CrossRef]
- Fukui, H.; Koshimizu, K.; Usuda, S.; Yamazaki, Y. Isolation of plant-growth regulators from seeds of Cucurbita-pepo L. Agric. Biol. Chem. Tokyo 1977, 41, 175–180. [Google Scholar]
- Dathe, W.; Roensch, H.; Preiss, A.; Schade, W.; Sembdner, G.; Schreiber, K. Endogenous plant hormones of the broad bean, Vicia-faba L. (−)-jasmonic acid, a plant-growth inhibitor in pericarp. Planta 1981, 153, 530–535. [Google Scholar] [CrossRef]
- Solomon, E.P.; Berg, L.R.; Martin, D.W. Biology, 9th ed.; Brooks/Cole: Pacific Grove, CA, USA, 2011. [Google Scholar]
- Dixon, K.W.; Merritt, D.J.; Flematti, G.R.; Ghisalberti, E.L. Karrikinolide—A phytoractive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. Acta Hortic. 2009, 813, 155–170. [Google Scholar] [CrossRef]
- Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Trengove, R.D. A compound from smoke that promotes seed germination. Science 2004, 305, 977. [Google Scholar] [CrossRef]
- Flematti, G.R.; Dixon, K.W.; Smith, S.M. What are karrikins and how were they ‘discovered’ by plants? BMC Biol. 2015, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W.; Trengove, R.D. Germination stimulant in smoke: Isolation and identification. In Bioactive Natural Products: Detection, Isolation and Structural Elucidation; Colegate, S.M., Molyneux, R.J., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 531–554. [Google Scholar]
- Nawaz, M.A.; Huang, Y.; Bie, Z.; Ahmed, W.; Reiter, R.J.; Niu, M.; Hameed, S. Melatonin: Current status and future perspectives in plant science. Front. Plant Sci. 2016, 6, 1230. [Google Scholar] [CrossRef]
- Kolár, J.; Machácková, I. Melatonin in higher plants: Occurrence and possible functions. J. Pineal Res. 2005, 39, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Manchester, L.C.; Tan, D.-X.; Reiter, R.J.; Park, W.; Monis, K.; Qi, W. High levels of melatonin in the seeds of edible plants: Possible function in germ tissue protection. Life Sci. 2000, 67, 3023–3029. [Google Scholar] [CrossRef] [PubMed]
- Klepper, L. Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos. Environ. 1979, 13, 537–542. [Google Scholar] [CrossRef]
- Mur, L.A.; Mandon, J.; Persijn, S.; Cristescu, S.M.; Moshkov, I.E.; Novikova, G.V.; Hall, M.A.; Harren, F.J.M.; Hebelstrup, K.H.; Gupta, K.J. Nitric oxide in plants: An assessment of the current state of knowledge. AoB Plants 2013, 5, pls052. [Google Scholar] [CrossRef]
- Matsubayashi, Y.; Sakagami, Y. Peptide hormones in plants. Annu. Rev. Plant Biol. 2006, 57, 649–674. [Google Scholar] [CrossRef] [PubMed]
- Vanyushin, B.F.; Ashapkin, V.V.; Aleksandrushkina, N.I. Regulatory peptides in plants. Biochem. Med. 2017, 82, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Dodueva, I.; Lebedeva, M.; Lutova, L. Dialog between kingdoms: Enemies, allies and peptide phytohormones. Plants 2021, 10, 2243. [Google Scholar] [CrossRef] [PubMed]
- Pratyusha, S. Phenolic compounds in the plant development and defense: An overview. In Plant Stress Physiology—Perspectives in Agriculture; Hasanuzzaman, M., Nahar, K., Eds.; Intech Open Ltd.: London, UK, 2022; Chapter 7; p. 1. [Google Scholar] [CrossRef]
- Harborne, J.B. General procedures and measurement of total phenolics. In Plant Phenolics; Dey, P.M., Harborne, J.B., Eds.; Academic Press: London, UK, 1989; pp. 1–28. [Google Scholar] [CrossRef]
- Liu, Q.; Nishibori, N.; Imai, I.; Al, E. Response of polyamine pools in marine phytoplankton to nutrient limitation and variation in temperature and salinity. Mar. Ecol. Prog. 2016, 544, 93–105. [Google Scholar] [CrossRef]
- Mustafavi, S.H.; Badi, H.N.; Sekara, A.; Al, E. Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol. Plant. 2018, 40, 102. [Google Scholar] [CrossRef]
- Cook, C.E.; Whichard, L.P.; Turner, B.; Wall, M.E.; Egley, G.H. Germination of witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Science 1966, 154, 1189–1190. [Google Scholar] [CrossRef]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; et al. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef]
- Zwanenburg, B.; Pospíšil, T.; Ćavar Zeljković, S. Strigolactones: New plant hormones in action. Planta 2016, 243, 1311–1326. [Google Scholar] [CrossRef]
- Schildknecht, H. Turgorins, hormones of the endogeneous daily rhythms of higher organized plants detection, isolation, structure, synthesis, and activity. Angew. Chem. Int. Ed. Engl. 1983, 22, 695–710. [Google Scholar] [CrossRef]
- Schildknecht, H. Turgorins—New chemical messengers for plant behavior. Endeavour 1984, 8, 113–117. [Google Scholar] [CrossRef]
- Zhang, D.-P. (Ed.) Abscisic Acid: Metabolism, Transport and Signaling; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [PubMed]
- Alazem, M.; Lin, N.-S. Antiviral roles of abscisic acid in plants. Front. Plant Sci. 2017, 8, 1760. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, G.-J.; Bressan, R.A.; Song, C.-P.; Zhu, Y.; Zhao, J.-K. Abscisic acid dynamics, signaling, and functions in plants. J. Integ. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Gupta, K.; Wani, S.H.; Razzaq, A.; Skalicky, M.; Samantara, K.; Gupta, S.; Pandita, D.; Goel, S.; Grewal, S.; Hejnak, V.; et al. Abscisic acid: Role in fruit development and ripening. Front. Plant Sci. 2022, 13, 817500. [Google Scholar] [CrossRef]
- Sauer, M.; Robert, S.; Kleine-Vehn, J. Auxin: Simply complicated. J. Exp. Bot. 2013, 64, 2565–2577. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-B.; Xie, Z.-Z.; Hu, C.-G.; Zhang, J.-Z. A review of auxin response factors (arfs) in plants. Front. Plant Sci. 2016, 7, 47. [Google Scholar] [CrossRef]
- Leyser, O. Auxin signaling. Plant Phys. 2018, 176, 465–479. [Google Scholar] [CrossRef]
- Jami, M.; Saher, A.; Javed, S.; Farooq, Q.; Shakir, M.; Zafar, T.; Koma, L.; Hussain, K.; Shabir, A.; Javed, A.; et al. A review on potential role of auxins in plants, current applications, and future directions. J. Bio. Environ. Sci. 2021, 18, 11–16. [Google Scholar]
- Cohen, J.D.; Strader, L.C. An auxin research odyssey: 1989–2023. Plant Cell 2024, 36, 1410–1428. [Google Scholar] [CrossRef]
- Fridman, Y.; Savaldi-Goldstein, S. Brassinosteroids in growth control: How, when and where. Plant Sci. 2013, 209, 24–31. [Google Scholar] [CrossRef]
- Coll, Y.; Coll, F.; Amorós, A.; Pujol, M. Brassinosteroids roles and applications: An up-date. Biologia 2015, 70, 726–732. [Google Scholar] [CrossRef]
- Wei, Z.; Li, J. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 2016, 9, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Hussain, A.; Ali, Q.; Liu, F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int. J. Mol. Sci. 2022, 23, 1012. [Google Scholar] [CrossRef] [PubMed]
- Mok, D.W.S. Cytokinins: Chemistry, Activity, and Function, 1st ed.; eBook 2019; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Wu, W.; Du, K.; Kang, X.; Wei, H. The diverse roles of cytokinins in regulating leaf development. Hortic. Res. 2021, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Li, S. -M.; Zheng, H.-X.; Zhang, X.-S.; Sui, N. Cytokinins as central regulators during plant growth and stress response. Plant Cell Rep. 2021, 40, 271–282. [Google Scholar] [CrossRef]
- Bakshi, A.; Shemansky, J.M.; Chang, C.; Binder, B.M. History of research on the plant hormone ethylene. J. Plant Growth Regul. 2015, 34, 809–827. [Google Scholar] [CrossRef]
- Van de Poel, B.; Smet, D.; Van Der, S. Ethylene and hormonal cross talk in vegetative growth and development. Plant Phys. 2015, 169, 61–72. [Google Scholar] [CrossRef]
- Dubois, M.; Van den Broeck, L.; Marieke, D.I. The pivotal role of ethylene in plant growth. Trends Plant Sci. 2018, 23, 311–323. [Google Scholar] [CrossRef]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef]
- Hedden, P.; Sponsel, V. A century of gibberellin research. J. Plant. Growth. Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef]
- Martínez, C.; Espinosa-Ruiz, A.; Prat, S. Gibberellins and plant vegetative growth. Ann. Plant Rev. 2016, 49, 285–322. [Google Scholar]
- Tian, H.; Xu, Y.; Liu, S.; Jin, D.; Zhang, J.; Duan, L.; Tan, W. Synthesis of gibberellic acid derivatives and their effects on plant growth. Molecules 2017, 22, 694. [Google Scholar] [CrossRef] [PubMed]
- Bagale, P.; Pandey, S.; Regmi, P.; Bhusal, S. Role of plant growth regulator “gibberellins” in vegetable production: An overview. Int. J. Hort. Sci. Technol. 2022, 9, 291–299. [Google Scholar]
- Shah, S.H.; Islam, S.; Mohammad, F.; Siddiqui, M.H. Gibberellic acid: A versatile regulator of plant growth, development and stress responses. J. Plant Growth Regul. 2023, 42, 7352–7373. [Google Scholar] [CrossRef]
- Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C. Jasmonate biosynthesis in Arabidopsis thaliana—Enzymes, products, regulation. Plant Biol. 2006, 8, 297–306. [Google Scholar] [CrossRef]
- Galis, I.; Gaquerel, E.; Pandey, S.P.; Baldwin, I.N.T. Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant Cell Environ. 2009, 32, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, B.; Liu, L.; Song, S. Jasmonate action in plant growth and development. J. Exp. Bot. 2017, 68, 1349–1359. [Google Scholar] [CrossRef]
- Chiwocha, S.D.S.; Dixon, K.W.; Lematti, G.R.F.; Ghisalberti, E.L.; Merritt, D.J.; Nelson, D.C.; Riseborough, J.-A.M.; Smith, S.M.; Stevens, J.C. Karrikins: A new family of plant growth regulators in smoke. Plant Sci. 2009, 177, 252–256. [Google Scholar] [CrossRef]
- Yao, J.; Waters, M.T. Perception of karrikins by plants: A continuing enigma. J. Exp. Bot. 2020, 71, 1774–1781. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernandez-Ruiz, J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends Plant Sci. 2014, 19, 789–797. [Google Scholar]
- Arnao, M.B.; Hernandez-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef]
- Sharif, R.; Xie, C.; Zhang, H.; Arnao, M.B.; Ali, M.; Ali, Q.; Muhammad, I.; Shalmani, A.; Nawaz, M.A.; Chen, P.; et al. Melatonin and its effects on plant systems. Molecules 2018, 23, 2352. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Thakur, N.; Mann, N.A.; Umar, A. Melatonin as plant growth regulator in sustainable agriculture. Scientia Hortic. 2024, 323, 112421. [Google Scholar] [CrossRef]
- San, L.; Albertos, P.; Mateos, I.; Sánchez-Vicente, I.; Lechón, T.; Fernández-Marcos, M.; Lorenzo, O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. J. Exp. Bot. 2015, 66, 2857–2868. [Google Scholar]
- Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Yun, B.-W. Nitric oxide acts as a key signaling molecule in plant development under stressful conditions. Int. J. Mol. Sci. 2023, 24, 4782. [Google Scholar] [CrossRef] [PubMed]
- Bedinger, P.A.; Pearce, G.; Covey, P.A. RALFs: Peptide regulators of plant growth. Plant Signal. Behav. 2010, 5, 1342–1346. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Ye, D.-X.; Liu, Y.; Zhang, X.-Y.; Zhou, Y.-L.; Zhang, L.; Yang, X.-L. Peptides, new tools for plant protection in eco-agriculture. Adv. Agrochem. 2023, 2, 58–78. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, Y.; Chen, Z.; Xue, X.; Fan, H. Research progress of small plant peptides on the regulation of plant growth, development, and abiotic stress. Int. J. Mol. Sci. 2024, 25, 4114. [Google Scholar] [CrossRef]
- Bagautdinova, Z.Z.; Omelyanchuk, N.; Tyapkin, A.V.; Kovrizhnykh, V.V.; Lavrekha, V.V.; Zemlyanskaya, E.V. Salicylic acid in root growth and development. Int. J. Mol. Sci. 2022, 23, 2228. [Google Scholar] [CrossRef]
- Kaur-Sawhney, R.; Tiburcio, A.F.; Altabella, T.; Galston, A.W. Polyamines in plants: An overview. J. Cell Mol. Biol. 2003, 2, 1–12. [Google Scholar]
- Tyagi, A.; Ali, S.; Ramakrishna, G.; Singh, A.; Park, S.; Mahmoudi, H.; Bae, H. Revisiting the role of polyamines in plant growth and abiotic stress resilience: Mechanisms, crosstalk, and future perspectives. J. Plant Growth Regul. 2023, 42, 5074–5098. [Google Scholar] [CrossRef]
- Jia, K.-P.; Baz, L.; Al-Babili, S. From carotenoids to strigolactones. J. Exp. Bot. 2018, 69, 2189–2204. [Google Scholar] [CrossRef] [PubMed]
- Faizan, M.; Faraz, A.; Sami, F.; Siddiqui, H.; Yusuf, M.; Gruszka, D.; Hayat, S. Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sci. 2020, 15, 217–228. [Google Scholar] [CrossRef]
- Ogunyale, O.G.; Fawibe, O.O.; Ajiboye, A.A.; Agboola, D.A. A review of plant growth substances: Their forms, structures, synthesis and functions. J. Adv. Lab. Res. Biol. 2014, 5, 152–168. [Google Scholar]
- Garban, Z.; Ujhelyi, R.P.; Muselin, F. Specific biochemical activity of plant growth regulators and their role in food and human health. J. Agroalim. Proc. Tech. 2018, 24, 338–345. [Google Scholar]
- Wang, X.; Hao, W. Reproductive and developmental toxicity of plant growth regulators in humans and animals. Pest. Biochem. Phys. 2023, 196, 105640. [Google Scholar] [CrossRef]
- Chaqour, J.; Lee, S.; Ravichandra, A.; Chaqour, B. Abscisic acid—An anti-angiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages. J. Cell Sci. 2018, 131, jcs210492. [Google Scholar] [CrossRef]
- Li, H.-H.; Hao, R.-L.; Wu, S.-S.; Guo, P.-C.; Chen, C.-J.; Pan, L.-P.; Ni, H. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochem. Pharmacol. 2011, 82, 701–712. [Google Scholar] [CrossRef]
- Liao, P.; Wu, Q.-Y.; Li, S.; Hu, K.-B.; Liu, H.-L.; Wang, H.-Y.; Long, Z.-Y.; Lu, X.-M.; Wang, Y.-T. The ameliorative effects and mechanisms of abscisic acid on learning and memory. Neuropharmacology 2023, 224, 109365. [Google Scholar] [CrossRef]
- Pizzio, G.A. Potential implications of the phytohormone abscisic acid in human health improvement at the central nervous system. Ann. Epidemiol. Public Health 2022, 5, 1090. [Google Scholar]
- Zocchi, E.; Hontecillas, R.; Leber, A.; Einerhand, A.; Carbo, A.; Bruzzone, S.; Tubau-Juni, N.; Philipson, N.; Zoccoli-Rodriguez, V.; Sturla, L.; et al. Abscisic acid: A novel nutraceutical for glycemic control. Front. Nutr. 2017, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Vigliarolo, T.; Guida, L.; Millo, E.; Fresia, C.; Turco, E.; De Flora, A.; Zocchi, E. Abscisic acid transport in human erythrocytes. J. Bio. Chem. 2015, 290, 13042–13052. [Google Scholar] [CrossRef] [PubMed]
- Fresia, C.; Vigliarolo, T.; Guida, L.; Booz, V.; Bruzzone, S.; Sturla, L.; Di Bona, M.; Pesce, M.; Usai, C.; De Flora, A.; et al. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL. Sci. Rep. 2016, 6, 26658. [Google Scholar] [CrossRef]
- Kharenko, O.A.; Polichuk, D.; Nelson, K.M.; Abrams, S.R.; Loewen, M.C. Identification and characterization of interactions between abscisic acid and human heat shock protein 70 family members. J. Biochem. 2013, 154, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, P.; Sharma, N.; Klahn, P.; Gereke, M.; Bruder, D. Abscisic acid: A phytohormone and mammalian cytokine as novel pharmacon with potential for future development into clinical applications. Curr. Med. Chem. 2016, 23, 1549–1570. [Google Scholar] [CrossRef]
- Sánchez-Sarasúa, S.; Moustafa, S.; García-Avilés, A.; López-Climent, M.F.; Gómez-Cadenas, A.; Olucha-Bordonau, F.E.; Sánchez-Pérez, A.M. The effect of abscisic acid chronic treatment on neuroinflammatory markers and memory in a rat model of high-fat diet induced neuroinflammation. Nutr. Metabol. 2016, 13, 73. [Google Scholar] [CrossRef]
- Qi, C.-C.; Zhang, Z.; Fang, H.; Liu, J.; Zhou, N.; Ge, J.-F.; Chen, F.-H.; Xiang, C.-B.; Zhou, J.-N. Antidepressant effects of abscisic acid mediated by the ownregulation of corticotrophin-releasing hormone gene expression in rats. Int. J. Neuropsychopharmacol. 2024, 18, pyu006. [Google Scholar]
- Shabani, M.; Soti, M.; Ranjbar, H.; Naderi, R. Abscisic acid ameliorates motor disabilities in 6-OHDA-induced mice model of Parkinson’s disease. Heliyon 2023, 9, e18473. [Google Scholar] [CrossRef]
- Magnone, M.; Sturla, L.; Guida, L.; Spinelli, S.; Begani, G.; Bruzzone, S.; Fresia, C.; Zocchi, E. Abscisic acid: A conserved hormone in plants and humans and a promising aid to combat prediabetes and the metabolic syndrome. Nutrients 2020, 12, 1724. [Google Scholar] [CrossRef]
- Isik, I.; Celik, I. Investigation of neurotoxic and immunotoxic effects of some plant growth regulators at subacute and subchronic applications on rats. Tox. Ind. Health 2015, 31, 1095–1105. [Google Scholar] [CrossRef]
- Ester, K.; Ćurković-Perica, M.; Kralj, M. The phytohormone auxin induces G1 cell-cycle arrest of human tumor cells. Planta Med. 2009, 75, 1423–1426. [Google Scholar] [CrossRef] [PubMed]
- Cernaro, V.; Medici, M.A.; Leonello, G.; Buemi, A.; Kohnke, F.H.; Villari, A.; Santoro, D.; Buemi, M. Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells. Ren. Fail. 2015, 37, 911–913. [Google Scholar] [CrossRef] [PubMed]
- Cokugras, A.N.; Bodur, E. Comparative effects of two plant growth regulators; indole-3-acetic acid and chlorogenic acid on human and horse serum butyrylcholinesterase. Pest. Biochem. Phys. 2003, 77, 24–33. [Google Scholar] [CrossRef]
- Ismail, H.T.H. Assessment toxic effects of exposure to 3-indoleacetic acid via hemato-biochemical, hormonal, and histopathological screening in rats. Environ. Sci. Poll. Res. 2022, 29, 90703–90718. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.A.; Isa, A.M.; El-Kholy, W.M.; Nour, S.E. Testicular disorders induced by plant growth regulators: Cellular protection with proanthocyanidins grape seeds extract. Cytotechnology 2013, 65, 851–862. [Google Scholar] [CrossRef]
- Celik, I.; Kara, M. The effects of plant growth regulators on activity of eight serum enzymes in vitro. J. Environ. Sci. Health Part A Environ. Sci. Eng. Tox. 1997, 32, 755–1761. [Google Scholar]
- Celik, I.; Ozbek, H.; Tülüce, Y. Effects of subchronic treatment of some plant growth regulators on serum enzyme levels in rats. Turk. J. Biol. 2002, 26, 73–76. [Google Scholar]
- Beyaztas, S.; Arslan, O. Affinity to some plant growth regulators on human erythrocytes cytosolic carbonic anhydrase I and II. Hacett. J. Biol. Chem. 2009, 37, 281–288. [Google Scholar]
- Bhardwaj, R.; Sharma, I.; Kanwar, M.; Handa, N.; Kapoor, D. Current scenario of applications of brassinosteroids in human welfare. In Brassinosteroids: Practical Applications in Agriculture and Human Health; Pereira-Netto, A.B., Ed.; Bentham Science Publisher: Sharjah, United Arab Emirates, 2012; pp. 3–15. [Google Scholar] [CrossRef]
- Oklestkova, J.; Rarova, L.; Strnad, M. Brassinosteroids and theirbiological activities. In Natural Products; Ramawat, K.G., Merillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3852–3866. [Google Scholar]
- Kohli, S.K.; Bhardwaj, A.; Bhardwaj, V.; Sharma, A.; Kalia, N.; Landi, M.; Bhardwaj, R. Therapeutic potential of brassinosteroids in biomedical and clinical research. Biomolecules 2020, 10, 572. [Google Scholar] [CrossRef]
- Ma, F.; An, Z.; Yue, Q.; Zhao, C.; Zhang, S.; Sun, X.; Li, K.; Zhao, L.; Su, L. Effects of brassinosteroids on cancer cells: A review. J. Biochem. Mol. Toxicol. 2022, 36, e23026. [Google Scholar] [CrossRef]
- Lorca, M.; Cabezas, D.; Araque, I.; Teran, A.; Hernandez, S.; Mellado, M.; Espinoza, L.; Mella, J. Cancer and brassinosteroids: Mechanisms of action, SAR and future perspectives. Steroids 2023, 190, 109153. [Google Scholar] [CrossRef]
- Esposito, D.; Komarnytsky, S.; Shapses, S.; Raskin, I. Anabolic effect of plant brassinosteroid. FASEB J. 2011, 25, 3708–3719. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Kizelsztein, P.; Komarnytsky, S.; Raskin, I. Hypoglycemic effects of brassinosteroid in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E652–E658. [Google Scholar] [CrossRef]
- Esposito, D.; Rathinasabapathy, T.; Schmidt, B.; Shakarjian, M.P.; Komarnytsky, S.; Raskin, I. Acceleration of cutaneous wound healing by brassinosteroids. Wound. Rep. Reg. 2013, 21, 688–696. [Google Scholar] [CrossRef]
- Voller, J.; Maková, B.; Kadlecová, A.; Gonzalez, G.; Strnad, M. Plant hormone cytokinins for modulating human aging and age-related diseases. In Hormones in Ageing and Longevity. Healthy Ageing and Longevity; Rattan, S., Sharma, R., Eds.; Springer: Cham, Switzerland, 2017; Volume 6, pp. 311–335. [Google Scholar]
- Voller, J.; Zatloukal, M.; Lenobel, R.; Dolezal, K.; Béreš, T.; Kryštof, V.; Spíchal, L.; Niemann, P.; Dzubák, P.; Hajdúch, M.; et al. Anticancer activity of natural cytokinins: A structure-activity relationship study. Phytochemistry 2010, 71, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Othman, E.M.; Naseem, M.; Awad, E.; Dandekar, T.; Stopper, H. The plant hormone Cytokinin confers protection against oxidative stress in mammalian cells. PLoS ONE 2016, 11, e0168386. [Google Scholar] [CrossRef]
- Gonzalez, G.; Grúz, J.; D’Acunto, C.W.; Kanovský, P.; Strnad, M. Cytokinin plant hormones have neuroprotective activity in in vitro models of Parkinson’s disease. Molecules 2021, 26, 361. [Google Scholar] [CrossRef]
- Xu, C.-S.; Zhou, Y.; Jiang, Z.; Wang, L.-E.; Huang, J.-J.; Zhang, T.-Y.; Zhao, Y.; Shen, W.; Zou, S.-H.; Zang, L.-L. The in vitro effects of gibberellin on human sperm motility. Aging 2019, 11, 3080–3093. [Google Scholar] [CrossRef] [PubMed]
- Sakr, S.A.; Okdaha, Y.A.; El-Abd, S.F. Gibberellin A3 induced histological and histochemical alterations in the liver of albino rats. Sci. Asia 2003, 29, 327–331. [Google Scholar] [CrossRef]
- Rahm, M.A.M.; Atty, Y.H.A.; Rahman, M.M.A.; Sabry, M. Structural changes induced by gibberellic acid in the renal cortex of adult male albino rats. MOJ Anat. Physiol. 2017, 3, 21–27. [Google Scholar]
- Erina, N.; Afacan, B.; Ersoy, Y.; Ercan, F.; Balc, M.K. Gibberellic acid, a plant growth regulator, increases mast cell recruitment and alters substance P levels. Toxicology 2008, 254, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Flescher, E. Jasmonates in cancer therapy. Cancer Lett. 2007, 45, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Umukoro, S.; Olugbemide, A.S. Antinociceptive effects of methyl jasmonate in experimental animals. J. Nat. Med. 2011, 65, 466–470. [Google Scholar] [CrossRef]
- Modi, S.; Yaluri, N.; Kokkola, T.; Laakso, M. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Sci. Rep. 2017, 7, 17606. [Google Scholar] [CrossRef]
- Antika, G.; Cinar, Z.O.; Secen, E.; Ozbil, M.; Tokay, E.; Kockar, F.; Prandi, C.; Tumer, T.B. Strigolactone analogs: Two new potential bioactiphores for glioblastoma. ACS Chem. Neurosci. 2022, 13, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Dell’Oste, V.; Spyrakis, F.; Prandi, C. Strigolactones, from plants to human health: Achievements and challenges. Molecules 2021, 26, 4579. [Google Scholar] [CrossRef]
- Pyrzanowska-Banasiak, A.; Boyunegmez Tumer, T.; Bukowska, B.; Krokosz, A. A multifaceted assessment of strigolactone GR24 and its derivatives: From anticancer and antidiabetic activities to antioxidant capacity and beyond. Front. Mol. Biosci. 2023, 10, 1242935. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garban, Z.; Ilia, G. Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules 2024, 29, 5671. https://doi.org/10.3390/molecules29235671
Garban Z, Ilia G. Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules. 2024; 29(23):5671. https://doi.org/10.3390/molecules29235671
Chicago/Turabian StyleGarban, Zeno, and Gheorghe Ilia. 2024. "Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals" Molecules 29, no. 23: 5671. https://doi.org/10.3390/molecules29235671
APA StyleGarban, Z., & Ilia, G. (2024). Structure-Activity of Plant Growth Bioregulators and Their Effects on Mammals. Molecules, 29(23), 5671. https://doi.org/10.3390/molecules29235671