Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Structural Characterization
2.3. Magnetic Properties
2.3.1. Static Magnetic Measurements
2.3.2. Dynamic Magnetic Measurements
2.4. Luminescent Properties of Solid-State 2 and H6L
3. Materials and Methods
3.1. Materials and Measurements
3.2. Synthesis of 1
3.3. Synthesis of 2
3.4. Single-Crystal X-Ray Diffraction Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Feng, R.; Zhu, J.; Chang, Z.; Bu, X.H. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev. 2018, 375, 558–586. [Google Scholar] [CrossRef]
- Ou, Y.C.; Zhong, R.M.; Wu, J.Z. Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Trans. 2022, 51, 2992–3003. [Google Scholar] [CrossRef]
- Li, X.Z.; Tian, C.B.; Sun, Q.F. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem. Rev. 2022, 122, 6374–6458. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Kremer, C. Coordination chemistry of lanthanide ions with X-(CH2-COO-)2 (X = O, NH, S) ligands: The leading role of X as carboxylate-connecting group. Coord. Chem. Rev. 2023, 494, 215347. [Google Scholar] [CrossRef]
- Wan, Q.; Wakizaka, M.; Yamashita, M. Single-ion magnetism behaviors in lanthanide(III) based coordination frameworks. Inorg. Chem. Front. 2023, 10, 5212–5224. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ma, Y.; Chai, Y.; Shi, W.; Sun, Y.; Cheng, P. Observation of magnetodielectric effect in a dysprosium-based single-molecule magnet. J. Am. Chem. Soc. 2018, 140, 7795–7798. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Guo, M.; Li, X.L.; Tang, J. Molecular magnetism of lanthanide: Advances and perspectives. Coord. Chem. Rev. 2019, 378, 350–364. [Google Scholar] [CrossRef]
- Yuan, G.; Chen, Z.Q.; Zhang, C.; Xie, Z.Y.; Liu, S.Y.; Meng, X.H.; Hao, X.R. 2D lanthanide coordination polymers as multi-responsive luminescence sensors for selective and sensitive recognition of Cr(VI)/MnO4− anions and broad-spectrum detection of antibiotics. J. Solid State Chem. 2022, 315, 123442. [Google Scholar] [CrossRef]
- Petiote, L.; Cabral, F.M.; Formiga, A.L.B.; Mazali, I.O.; Sigoli, F.A. A series of three isostructural 1D lanthanide coordination network based on 4, 4′, 4″-((benzene-1, 3, 5-triyltris (methylene))tris(oxy))tribenzoate ligand: Synthesis, crystal structure and photophysical properties. Inorg. Chim. Acta 2019, 494, 21–29. [Google Scholar] [CrossRef]
- Boone, M.; Artizzu, F.; Goura, J.; Mara, D.; Van Deun, R.; D’hooghe, M. Lanthanide phosphonate coordination polymers. Coord. Chem. Rev. 2024, 501, 215525. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, Z.; Gao, T.; Liang, Y. Advance progress on luminescent sensing of nitroaromatics by crystalline lanthanide-organic complexes. Molecules 2023, 28, 4481–4501. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Qiu, C.Q.; Zaręba, J.K.; Frontera, A.; Jassal, A.K.; Sahoo, S.C.; Sheikh, H.N. Magnetic, luminescence, topological and theoretical studies of structurally diverse supramolecular lanthanide coordination polymers with flexible glutaric acid as a linker. New J. Chem. 2019, 43, 14546–14564. [Google Scholar] [CrossRef]
- Yu, W.J.; Chen, X.; Li, J.; Li, B.; Tao, J. Lanthanide coordination polymers with hexa-carboxylate ligands derived from cyclotriphosphazene as bridging linkers: Synthesis, thermal and luminescent properties. CrystEngComm 2013, 15, 7732–7739. [Google Scholar] [CrossRef]
- Ling, Y.; Jiao, J.; Zhang, M.; Liu, H.; Bai, D.; Feng, Y.; He, Y. A porous lanthanide metal-organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption. CrystEngComm 2016, 18, 6254–6261. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Wei, R.; Yu, F.; Chen, X.; Xie, Y.P.; Tao, J. A three-dimensional complex with a one-dimensional cobalt-hydroxyl chain based on planar nonanuclear clusters showing spin-canted antiferromagnetism. Inorg. Chem. 2015, 54, 3331–3336. [Google Scholar] [CrossRef]
- Ling, Y.; Bai, D.; Feng, Y.; He, Y. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate. J. Solid State Chem. 2016, 242, 47–54. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Xu, S.; Chen, Y.; Tong, J.P.; Li, B. A self-assembled metal-organic framework for enhanced UO22+ fluorescence sensing: Integration of an octa-nuclear zinc cluster with hexakis (4-carboxyphenoxy) cyclotriphosphazene. CrystEngComm 2024, 26, 3341–3348. [Google Scholar] [CrossRef]
- Chen, X.; Dong, H.X.; Peng, H.N.; Hong, L.M.; Luo, D.; Zhuang, G.L.; Ye, Q. Three Cd (II) coordination polymers constructed from a series of multidentate ligands derived from cyclotriphosphazene: Synthesis, structures and luminescence properties. CrystEngComm 2018, 20, 3535–3542. [Google Scholar] [CrossRef]
- Jeevananthan, V.; Senadi, G.C.; Muthu, K.; Arumugam, A.; Shanmugan, S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg. Chem. 2024, 63, 5446–5463. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, C.; Wu, Y.; Yin, Y.; Wu, H.; Li, H.; Zheng, B.; Huo, F. Fabrication of Two-Dimensional Metal-Organic Framework Nanosheets through Crystal Dissolution-Growth Kinetics. ACS App. Mater. Interfaces 2022, 14, 7192–7199. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Doherty, C.M.; Liang, K.; Hill, A.J.; Styles, M.J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 2014, 43, 5513–5560. [Google Scholar] [CrossRef] [PubMed]
- Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2019, 12, 295–315. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Zhu, Z.H.; Liang, F.P.; Zou, H.H. Recent advances in the structural design and regulation of lanthanide clusters: Formation and self-assembly mechanisms. Coord. Chem. Rev. 2023, 493, 215322. [Google Scholar] [CrossRef]
- Chen, F.G.; Xu, W.; Chen, J.; Xiao, H.P.; Wang, H.Y.; Chen, Z.; Ge, J.Y. Dysprosium(III) metal-organic framework demonstrating ratiometric luminescent detection of pH, magnetism, and proton conduction. Inorg. Chem. 2022, 61, 5388–5396. [Google Scholar] [CrossRef]
- Tu, H.R.; Chen, P.; Zhang, W.Y.; Tian, Y.M.; Sun, W.B. Different single-molecule magnets behaviors of carboxyl bridged dinuclear Dy(III) complexes induced by charged and neutral ligand. Inorg. Chim. Acta 2019, 494, 42–48. [Google Scholar] [CrossRef]
- Lin, S.Y.; Zhao, L.; Ke, H.; Guo, Y.N.; Tang, J.; Guo, Y.; Dou, J. Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour. Dalton Trans. 2012, 41, 3248–3252. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Hu, Z.; Chen, Z.; Li, B.; Zhang, Y.Q.; Liang, Y.; Liu, D.; Yao, D.; Liang, F.P. Two Dy(III) single-molecule magnets with their performance tuned by Schiff base ligands. Inorg. Chem. 2019, 58, 1191–1200. [Google Scholar] [CrossRef]
- Bera, S.P.; Mondal, A.; Konar, S. Investigation of the role of terminal ligands in magnetic relaxation in a series of dinuclear dysprosium complexes. Inorg. Chem. Front. 2020, 7, 3352–3363. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, J.; Meng, Y.S.; Liu, T. Structures and magnetic relaxation properties of cyclopentadienyl/β-diketonate/trispyrazolylborate hybridized dysprosium single-molecule magnets. Chin. Chem. Let. 2023, 34, 108055. [Google Scholar] [CrossRef]
- Huang, X.D.; Ma, X.F.; Shang, T.; Zhang, Y.Q.; Zheng, L.M. Photocontrollable magnetism and photoluminescence in a binuclear dysprosium anthracene complex. Inorg. Chem. 2022, 62, 1864–1874. [Google Scholar] [CrossRef]
- Gusev, A.; Nemec, I.; Herchel, R.; Baluda, Y.; Babeshkin, K.; Efimov, N.; Kiskin, M.; Linert, W. Lanthanide(III) SMMs with cationic and anionic complex fragments formed by a Schiff base: Structure, luminescence, magnetic properties and ab initio calculations. Dalton Trans. 2024, 53, 11531–11542. [Google Scholar] [CrossRef] [PubMed]
- Chin, W.; Lin, P.H. Influence of energy barriers in triangular dysprosium single-molecule magnets through different substitutions on a nitrophenolate-type coligand. Inorg. Chem. 2018, 57, 12448–12451. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.R.; Clérac, R. Controlled association of single-molecule magnets (SMMs) into coordination networks: Towards a new generation of magnetic materials. Dalton Trans. 2012, 41, 9569–9586. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Leiva, M.J.; Solis-Céspedes, E.; Páez-Hernández, D. The role of the excited state dynamic of the antenna ligand in the lanthanide sensitization mechanism. Dalton Trans. 2020, 49, 7444–7450. [Google Scholar] [CrossRef] [PubMed]
- Pershagen, E.; Nordholm, J.; Borbas, K.E. Luminescent lanthanide complexes with analyte-triggered antenna formation. J. Am. Chem. Soc. 2012, 134, 9832–9835. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Chen, Z.C.; Zhu, Z.H.; Liu, Y.C.; Yang, R.Y.; Liang, F.P.; Zou, H.H. Lanthanoid hydrogen-bonded organic frameworks: Enhancement of luminescence by the coordination-promoted antenna effect and applications in heavy-metal ion sensing and sterilization. Chem. Eng. J. 2023, 451, 138880. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2014, Program for Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXS-2014, Program for Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
Compound | 1 | 2 |
---|---|---|
Formula | C87H54 Dy2N7O37P6 | C87H54 Tb2N7O37P6 |
Mr (g mol−1) | 2301.2 | 2294.06 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/c |
a/Å | 32.278 (7) | 32.335 (7) |
b/Å | 16.642 (3) | 16.637 (3) |
c/Å | 16.308 (3) | 16.305 (3) |
α/° | 90 | 90 |
β/° | 103.09 (3) | 103.04 (3) |
γ/° | 90 | 90 |
V/Å3 | 8533 (3) | 8545 (3) |
Z | 4 | 4 |
Dc (g cm−3) | 1.791 | 1.783 |
μ (mm−1) | 1.952 | 1.855 |
F(000) | 4576 | 4568 |
Reflections collected | 21,488 | 14,146 |
Unique reflections | 22,882 | 15,049 |
Rint | 0.0874 | 0.1010 |
Goodness of fit on F2 | 1.221 | 1.026 |
R1 a, wR2b [I > 2σ(I)] | 0.0878, 0.2456 | 0.0662, 0.1788 |
R1, wR2 (all data) | 0.0899, 0.2524 | 0.0666, 0.1796 |
CCDC | 2,384,305 | 2,384,307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Yao, Y.; Zhu, X.; Wang, J.; Li, Z.; Ji, L.; Hu, P. Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules 2024, 29, 5602. https://doi.org/10.3390/molecules29235602
Jia Q, Yao Y, Zhu X, Wang J, Li Z, Ji L, Hu P. Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules. 2024; 29(23):5602. https://doi.org/10.3390/molecules29235602
Chicago/Turabian StyleJia, Qi, Yicheng Yao, Xiaoming Zhu, Juntao Wang, Zeyu Li, Liudi Ji, and Peng Hu. 2024. "Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand" Molecules 29, no. 23: 5602. https://doi.org/10.3390/molecules29235602
APA StyleJia, Q., Yao, Y., Zhu, X., Wang, J., Li, Z., Ji, L., & Hu, P. (2024). Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules, 29(23), 5602. https://doi.org/10.3390/molecules29235602