Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Structural Characterization
2.3. Magnetic Properties
2.3.1. Static Magnetic Measurements
2.3.2. Dynamic Magnetic Measurements
2.4. Luminescent Properties of Solid-State 2 and H6L
3. Materials and Methods
3.1. Materials and Measurements
3.2. Synthesis of 1
3.3. Synthesis of 2
3.4. Single-Crystal X-Ray Diffraction Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Feng, R.; Zhu, J.; Chang, Z.; Bu, X.H. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev. 2018, 375, 558–586. [Google Scholar] [CrossRef]
- Ou, Y.C.; Zhong, R.M.; Wu, J.Z. Recent advances in structures and applications of coordination polymers based on cyclohexanepolycarboxylate ligands. Dalton Trans. 2022, 51, 2992–3003. [Google Scholar] [CrossRef]
- Li, X.Z.; Tian, C.B.; Sun, Q.F. Coordination-directed self-assembly of functional polynuclear lanthanide supramolecular architectures. Chem. Rev. 2022, 122, 6374–6458. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Kremer, C. Coordination chemistry of lanthanide ions with X-(CH2-COO-)2 (X = O, NH, S) ligands: The leading role of X as carboxylate-connecting group. Coord. Chem. Rev. 2023, 494, 215347. [Google Scholar] [CrossRef]
- Wan, Q.; Wakizaka, M.; Yamashita, M. Single-ion magnetism behaviors in lanthanide(III) based coordination frameworks. Inorg. Chem. Front. 2023, 10, 5212–5224. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ma, Y.; Chai, Y.; Shi, W.; Sun, Y.; Cheng, P. Observation of magnetodielectric effect in a dysprosium-based single-molecule magnet. J. Am. Chem. Soc. 2018, 140, 7795–7798. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Guo, M.; Li, X.L.; Tang, J. Molecular magnetism of lanthanide: Advances and perspectives. Coord. Chem. Rev. 2019, 378, 350–364. [Google Scholar] [CrossRef]
- Yuan, G.; Chen, Z.Q.; Zhang, C.; Xie, Z.Y.; Liu, S.Y.; Meng, X.H.; Hao, X.R. 2D lanthanide coordination polymers as multi-responsive luminescence sensors for selective and sensitive recognition of Cr(VI)/MnO4− anions and broad-spectrum detection of antibiotics. J. Solid State Chem. 2022, 315, 123442. [Google Scholar] [CrossRef]
- Petiote, L.; Cabral, F.M.; Formiga, A.L.B.; Mazali, I.O.; Sigoli, F.A. A series of three isostructural 1D lanthanide coordination network based on 4, 4′, 4″-((benzene-1, 3, 5-triyltris (methylene))tris(oxy))tribenzoate ligand: Synthesis, crystal structure and photophysical properties. Inorg. Chim. Acta 2019, 494, 21–29. [Google Scholar] [CrossRef]
- Boone, M.; Artizzu, F.; Goura, J.; Mara, D.; Van Deun, R.; D’hooghe, M. Lanthanide phosphonate coordination polymers. Coord. Chem. Rev. 2024, 501, 215525. [Google Scholar] [CrossRef]
- Ren, Y.; Ma, Z.; Gao, T.; Liang, Y. Advance progress on luminescent sensing of nitroaromatics by crystalline lanthanide-organic complexes. Molecules 2023, 28, 4481–4501. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Qiu, C.Q.; Zaręba, J.K.; Frontera, A.; Jassal, A.K.; Sahoo, S.C.; Sheikh, H.N. Magnetic, luminescence, topological and theoretical studies of structurally diverse supramolecular lanthanide coordination polymers with flexible glutaric acid as a linker. New J. Chem. 2019, 43, 14546–14564. [Google Scholar] [CrossRef]
- Yu, W.J.; Chen, X.; Li, J.; Li, B.; Tao, J. Lanthanide coordination polymers with hexa-carboxylate ligands derived from cyclotriphosphazene as bridging linkers: Synthesis, thermal and luminescent properties. CrystEngComm 2013, 15, 7732–7739. [Google Scholar] [CrossRef]
- Ling, Y.; Jiao, J.; Zhang, M.; Liu, H.; Bai, D.; Feng, Y.; He, Y. A porous lanthanide metal-organic framework based on a flexible cyclotriphosphazene-functionalized hexacarboxylate exhibiting selective gas adsorption. CrystEngComm 2016, 18, 6254–6261. [Google Scholar] [CrossRef]
- Li, B.; Li, Z.; Wei, R.; Yu, F.; Chen, X.; Xie, Y.P.; Tao, J. A three-dimensional complex with a one-dimensional cobalt-hydroxyl chain based on planar nonanuclear clusters showing spin-canted antiferromagnetism. Inorg. Chem. 2015, 54, 3331–3336. [Google Scholar] [CrossRef]
- Ling, Y.; Bai, D.; Feng, Y.; He, Y. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate. J. Solid State Chem. 2016, 242, 47–54. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Z.; Xu, S.; Chen, Y.; Tong, J.P.; Li, B. A self-assembled metal-organic framework for enhanced UO22+ fluorescence sensing: Integration of an octa-nuclear zinc cluster with hexakis (4-carboxyphenoxy) cyclotriphosphazene. CrystEngComm 2024, 26, 3341–3348. [Google Scholar] [CrossRef]
- Chen, X.; Dong, H.X.; Peng, H.N.; Hong, L.M.; Luo, D.; Zhuang, G.L.; Ye, Q. Three Cd (II) coordination polymers constructed from a series of multidentate ligands derived from cyclotriphosphazene: Synthesis, structures and luminescence properties. CrystEngComm 2018, 20, 3535–3542. [Google Scholar] [CrossRef]
- Jeevananthan, V.; Senadi, G.C.; Muthu, K.; Arumugam, A.; Shanmugan, S. Construction of Indium(III)-Organic Framework Based on a Flexible Cyclotriphosphazene-Derived Hexacarboxylate as a Reusable Green Catalyst for the Synthesis of Bioactive Aza-Heterocycles. Inorg. Chem. 2024, 63, 5446–5463. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, C.; Wu, Y.; Yin, Y.; Wu, H.; Li, H.; Zheng, B.; Huo, F. Fabrication of Two-Dimensional Metal-Organic Framework Nanosheets through Crystal Dissolution-Growth Kinetics. ACS App. Mater. Interfaces 2022, 14, 7192–7199. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Doherty, C.M.; Liang, K.; Hill, A.J.; Styles, M.J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 2014, 43, 5513–5560. [Google Scholar] [CrossRef] [PubMed]
- Seetharaj, R.; Vandana, P.V.; Arya, P.; Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 2019, 12, 295–315. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Zhu, Z.H.; Liang, F.P.; Zou, H.H. Recent advances in the structural design and regulation of lanthanide clusters: Formation and self-assembly mechanisms. Coord. Chem. Rev. 2023, 493, 215322. [Google Scholar] [CrossRef]
- Chen, F.G.; Xu, W.; Chen, J.; Xiao, H.P.; Wang, H.Y.; Chen, Z.; Ge, J.Y. Dysprosium(III) metal-organic framework demonstrating ratiometric luminescent detection of pH, magnetism, and proton conduction. Inorg. Chem. 2022, 61, 5388–5396. [Google Scholar] [CrossRef]
- Tu, H.R.; Chen, P.; Zhang, W.Y.; Tian, Y.M.; Sun, W.B. Different single-molecule magnets behaviors of carboxyl bridged dinuclear Dy(III) complexes induced by charged and neutral ligand. Inorg. Chim. Acta 2019, 494, 42–48. [Google Scholar] [CrossRef]
- Lin, S.Y.; Zhao, L.; Ke, H.; Guo, Y.N.; Tang, J.; Guo, Y.; Dou, J. Steric hindrances create a discrete linear Dy4 complex exhibiting SMM behaviour. Dalton Trans. 2012, 41, 3248–3252. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Hu, Z.; Chen, Z.; Li, B.; Zhang, Y.Q.; Liang, Y.; Liu, D.; Yao, D.; Liang, F.P. Two Dy(III) single-molecule magnets with their performance tuned by Schiff base ligands. Inorg. Chem. 2019, 58, 1191–1200. [Google Scholar] [CrossRef]
- Bera, S.P.; Mondal, A.; Konar, S. Investigation of the role of terminal ligands in magnetic relaxation in a series of dinuclear dysprosium complexes. Inorg. Chem. Front. 2020, 7, 3352–3363. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, J.; Meng, Y.S.; Liu, T. Structures and magnetic relaxation properties of cyclopentadienyl/β-diketonate/trispyrazolylborate hybridized dysprosium single-molecule magnets. Chin. Chem. Let. 2023, 34, 108055. [Google Scholar] [CrossRef]
- Huang, X.D.; Ma, X.F.; Shang, T.; Zhang, Y.Q.; Zheng, L.M. Photocontrollable magnetism and photoluminescence in a binuclear dysprosium anthracene complex. Inorg. Chem. 2022, 62, 1864–1874. [Google Scholar] [CrossRef]
- Gusev, A.; Nemec, I.; Herchel, R.; Baluda, Y.; Babeshkin, K.; Efimov, N.; Kiskin, M.; Linert, W. Lanthanide(III) SMMs with cationic and anionic complex fragments formed by a Schiff base: Structure, luminescence, magnetic properties and ab initio calculations. Dalton Trans. 2024, 53, 11531–11542. [Google Scholar] [CrossRef] [PubMed]
- Chin, W.; Lin, P.H. Influence of energy barriers in triangular dysprosium single-molecule magnets through different substitutions on a nitrophenolate-type coligand. Inorg. Chem. 2018, 57, 12448–12451. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.R.; Clérac, R. Controlled association of single-molecule magnets (SMMs) into coordination networks: Towards a new generation of magnetic materials. Dalton Trans. 2012, 41, 9569–9586. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Leiva, M.J.; Solis-Céspedes, E.; Páez-Hernández, D. The role of the excited state dynamic of the antenna ligand in the lanthanide sensitization mechanism. Dalton Trans. 2020, 49, 7444–7450. [Google Scholar] [CrossRef] [PubMed]
- Pershagen, E.; Nordholm, J.; Borbas, K.E. Luminescent lanthanide complexes with analyte-triggered antenna formation. J. Am. Chem. Soc. 2012, 134, 9832–9835. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, H.L.; Chen, Z.C.; Zhu, Z.H.; Liu, Y.C.; Yang, R.Y.; Liang, F.P.; Zou, H.H. Lanthanoid hydrogen-bonded organic frameworks: Enhancement of luminescence by the coordination-promoted antenna effect and applications in heavy-metal ion sensing and sterilization. Chem. Eng. J. 2023, 451, 138880. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-2014, Program for Refinement of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXS-2014, Program for Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
Compound | 1 | 2 |
---|---|---|
Formula | C87H54 Dy2N7O37P6 | C87H54 Tb2N7O37P6 |
Mr (g mol−1) | 2301.2 | 2294.06 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/c | P21/c |
a/Å | 32.278 (7) | 32.335 (7) |
b/Å | 16.642 (3) | 16.637 (3) |
c/Å | 16.308 (3) | 16.305 (3) |
α/° | 90 | 90 |
β/° | 103.09 (3) | 103.04 (3) |
γ/° | 90 | 90 |
V/Å3 | 8533 (3) | 8545 (3) |
Z | 4 | 4 |
Dc (g cm−3) | 1.791 | 1.783 |
μ (mm−1) | 1.952 | 1.855 |
F(000) | 4576 | 4568 |
Reflections collected | 21,488 | 14,146 |
Unique reflections | 22,882 | 15,049 |
Rint | 0.0874 | 0.1010 |
Goodness of fit on F2 | 1.221 | 1.026 |
R1 a, wR2b [I > 2σ(I)] | 0.0878, 0.2456 | 0.0662, 0.1788 |
R1, wR2 (all data) | 0.0899, 0.2524 | 0.0666, 0.1796 |
CCDC | 2,384,305 | 2,384,307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Yao, Y.; Zhu, X.; Wang, J.; Li, Z.; Ji, L.; Hu, P. Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules 2024, 29, 5602. https://doi.org/10.3390/molecules29235602
Jia Q, Yao Y, Zhu X, Wang J, Li Z, Ji L, Hu P. Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules. 2024; 29(23):5602. https://doi.org/10.3390/molecules29235602
Chicago/Turabian StyleJia, Qi, Yicheng Yao, Xiaoming Zhu, Juntao Wang, Zeyu Li, Liudi Ji, and Peng Hu. 2024. "Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand" Molecules 29, no. 23: 5602. https://doi.org/10.3390/molecules29235602
APA StyleJia, Q., Yao, Y., Zhu, X., Wang, J., Li, Z., Ji, L., & Hu, P. (2024). Synthesis, Structure, and Properties of 2D Lanthanide(III) Coordination Polymers Constructed from Cyclotriphosphazene-Functionlized Hexacarboxylate Ligand. Molecules, 29(23), 5602. https://doi.org/10.3390/molecules29235602