A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng
Abstract
:1. Introduction
2. Results
2.1. Analysis of Visual Characteristics and Color Changes
2.2. GC-IMS Analysis of VOCs
2.3. Identification of VOCs in Different Samples
2.4. Comparison of the Fingerprints of VOCs
2.5. Chemometric Analysis
2.5.1. Principal Component Analysis (PCA)
2.5.2. Euclidean Distance Analysis
2.5.3. Partial Least Square-Discriminant Analysis (PLS-DA)
2.5.4. Cluster Analysis (CA)
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Drying Procedures
4.3. Color Measurement
4.4. GC-IMS Analysis
4.4.1. Headspace Sampling Conditions
4.4.2. GC-IMS Conditions
4.4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, J.; Su, Q.; Hu, S.; Ruan, X.; Ouyang, S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023, 15, 3286. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, F.; Wang, T.; Liu, J.; Hu, C.; Sun, L.; Wang, G. Polysaccharides Extracted from Panax Ginseng C.A. Mey Enhance Complement Component 4 Biosynthesis in Human Hepatocytes. Front. Pharmacol. 2021, 12, 734394. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Y.; Li, Q.C.; Zhou, W.J.; Zhang, H.B.; Chen, Z.X.; Peng, N.; Gong, S.Y.; Liu, B.; Zeng, F. Anti-Oxidative and Anti-Aging Effects of Probiotic Fermented Ginseng by Modulating Gut Microbiota and Metabolites in Caenorhabditis elegans. Plant Foods Hum. Nutr. 2023, 78, 320–328. [Google Scholar] [CrossRef]
- Wang, H.; Lv, J.; Jiang, N.; Huang, H.; Wang, Q.; Liu, X. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother. Res. 2021, 35, 2523–2535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, C.; Xue, J.; Jin, D.; Tian, L.; Zhao, D.; Li, X.; Qi, W. Ginseng in vascular dysfunction: A review of therapeutic potentials and molecular mechanisms. Phytother. Res. 2022, 36, 857–872. [Google Scholar] [CrossRef]
- Fathi, F.; Ebrahimi, S.N.; Matos, L.C.; Oliveira, M.B.P.P.; Alves, R.C. Emerging drying techniques for food safety and quality: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1125–1160. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Li, Z.; Wang, X.; Liu, Y. Moisture transfer and microstructure change of banana slices during contact ultrasound strengthened far-infrared radiation drying. Innov. Food Sci. Emerg. Technol. 2020, 66, 102537. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Fan, L. Effects of different drying methods on the storage stability of barley grass powder. J. Sci. Food Agric. 2022, 102, 1076–1084. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, D.; Zhang, X.; Zhao, H.; Gong, G.; Tang, X.; Li, L. Drying performance and energy consumption of Camelliaoleifera seeds under microwave-vacuum drying. Food Sci. Biotechnol. 2023, 32, 969–977. [Google Scholar] [CrossRef]
- Nunes, J.C.; Lago, M.G.; Castelo-Branco, V.N.; Oliveira, F.R.; Torres, A.G.; Perrone, D.; Monteiro, M. Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chem. 2016, 197, 881–890. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Z.; Fang, S.; Gu, J.; Liang, X. Effect of Drying Methods on Volatile Compounds of Burdock (Arctium lappa L.) Root Tea as Revealed by Gas Chromatography Mass Spectrometry-Based Metabolomics. Foods 2021, 10, 868. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, X.; Zhang, T.; Liu, S.; Cai, E.; Zhu, H. Study on the antidepressant effect of panaxynol through the IκB-α/NF-κB signaling pathway to inhibit the excessive activation of BV-2 microglia. Biomed. Pharmacother. 2021, 138, 111387. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Y.; Zhang, X.Z.; Du, H.L.; Tao, S.J.; Wang, X.M.; Chen, G.; Dong, J.H. Synthesis and antitumor activity of β-elemene derivatives bearing amino acid moiety. Chin. J. Mater. Med. Chem. 2013, 23, 169–175. [Google Scholar] [CrossRef]
- Cho, J.Y.; Chang, H.J.; Lee, S.K.; Kim, H.J.; Hwang, J.K.; Chun, H.S. Amelioration of dextran sulfate sodium-induced colitis in mice by oral administration of beta-caryophyllene, a sesquiterpene. Life Sci. 2007, 80, 932–939. [Google Scholar] [CrossRef]
- Wu, D.; Xia, Q.; Cheng, H.; Zhang, Q.; Wang, Y.; Ye, X. Changes of Volatile Flavor Compounds in Sea Buckthorn Juice during Fermentation Based on Gas Chromatography-Ion Mobility Spectrometry. Foods 2022, 11, 3471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, J.; Ding, B.; Qiao, Q.; Wang, H.; Liang, Y.; Song, P.; Wu, Y.; Wang, C.; Tang, K.; et al. Electron ionization mass spectrometry feature peak relationships combined with deep classification model to assist similarity algorithm for fast and accurate identification of compounds. Rapid Commun. Mass. Spectrom. 2024, 38, e9752. [Google Scholar] [CrossRef]
- Song, Z.; Cao, Y.; Qiao, H.; Wen, P.; Sun, G.; Zhang, W.; Han, L. Analysis of the effect of Tenebrio Molitor rennet on the flavor formation of Cheddar cheese during ripening based on gas chromatography-ion mobility spectrometry (GC-IMS). Food Res. Int. 2023, 171, 113074. [Google Scholar] [CrossRef]
- de-la-Fuente-Blanco, A.; Ferreira, V. Gas Chromatography Olfactometry (GC-O) for the (Semi)Quantitative Screening of Wine Aroma. Foods 2020, 9, 1892. [Google Scholar] [CrossRef]
- Mishra, P.K.; Tripathi, J.; Gupta, S.; Variyar, P.S. GC-MS olfactometric characterization of odor active compounds in cooked red kidney beans (Phaseolus vulgaris). Heliyon 2019, 5, e02459. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.; Liu, B.; Chen, R.; Qiao, Y.; Zhang, Q.; Li, Q.; Wang, X.; Wang, Z. Analysis for different flavor compounds in mature milk from human and livestock animals by GC×GC-TOFMS. Food Chem. X 2023, 19, 100760. [Google Scholar] [CrossRef]
- Peng, Q.; Li, S.; Zheng, H.; Meng, K.; Jiang, X.; Shen, R.; Xue, J.; Xie, G. Characterization of different grades of Jiuqu hongmei tea based on flavor profiles using HS-SPME-GC-MS combined with E-nose and E-tongue. Food Res. Int. 2023, 172, 113198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Gao, L.; Zhang, C.; Feng, T.; Zhuang, H. Analysis of Volatile Flavor Compounds of Corn Under Different Treatments by GC-MS and GC-IMS. Front. Chem. 2022, 10, 725208. [Google Scholar] [CrossRef]
- Mao, Y.; Zhu, L.; Fu, F.; Zhu, L.; Chen, J.; Liu, J.; Huang, D.; Lei, C. A Comparison of Volatile Organic Compounds in Puerariae Lobatae Radix and Puerariae Thomsonii Radix Using Gas Chromatography–Ion Migration Spectrometry. Separations 2024, 11, 31. [Google Scholar] [CrossRef]
- Yuan, J.; Li, H.; Cao, S.; Liu, Z.; Li, N.; Xu, D.; Mo, H.; Hu, L. Monitoring of Volatile Compounds of Ready-to-Eat Kiwifruit Using GC-IMS. Foods 2023, 12, 4394. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.; Li, L.; Wei, Y.; Sun, J.; Tang, B.; Yang, Y.; Chen, J.; Wu, L. GC-IMS-Based Volatile Characteristic Analysis of Hypsizygus marmoreus Dried by Different Methods. Foods 2024, 13, 1322. [Google Scholar] [CrossRef]
- Sun, M.; Ni, L.; Huang, Y.; Yang, M.; Cheng, G.; Zhang, M.; Wu, M.; Ma, C. Effects of different drying treatments on the microstructure, free amino acids, volatile compounds and antioxidant activity of Flammulina velutipes root. Food Chem. X 2023, 18, 100656. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cui, Y.F.; Jiang, H.Z.; Wang, S.P.; Song, X.G.; Han, L.J.; Dai, L.; Li, N.; Zhang, J.Y. Effects of different drying methods on ginsenosides based on UHPLC-Q-Exactive Orbitrap MS technique. China J. Chin. Mater. Medica 2022, 47, 5246–5255. [Google Scholar] [CrossRef]
- Song, L.H.; Zhang, R.; Xu, T.Y.; Yu, P. Effects of different drying methods and temperatures on the content of chemical components and antioxidant activity of Ginseng decoction pieces. LiShiZhen Med. Mater. Medica Res. 2023, 34, 2412–2418. [Google Scholar] [CrossRef]
- Guo, N.; Bai, Y.; Huang, X.; Liu, X.; Cai, G.; Liu, S.; Guo, Y.; Gong, J. Comparison of the Saponins in Three Processed American Ginseng Products by Ultra-High Performance Liquid Chromatography-Quadrupole Orbitrap Tandem Mass Spectrometry and Multivariate Statistical Analysis. Int. J. Anal. Chem. 2022, 2022, 6721937. [Google Scholar] [CrossRef]
- Ai, Z.; Lin, Y.; Xie, Y.; Mowafy, S.; Zhang, Y.; Li, M.; Liu, Y. Effect of High-Humidity Hot Air Impingement Steaming on Cistanche deserticola Slices: Drying Characteristics, Weight Loss, Microstructure, Color, and Active Components. Front. Nutr. 2022, 9, 824822. [Google Scholar] [CrossRef]
- Wu, B.; Guo, X.; Guo, Y.; Ma, H.; Zhou, C. Enhancing jackfruit infrared drying by combining ultrasound treatments: Effect on drying characteristics, quality properties and microstructure. Food Chem. 2021, 358, 129845. [Google Scholar] [CrossRef] [PubMed]
- Benzing-Purdie, L.M.; Ripmeester, J.A.; Ratcliffe, C.I. Effects of temperature on Maillard reaction products. J. Agric. Food Chem. 1985, 33, 31–33. [Google Scholar] [CrossRef]
- Zhu, L.; Ou, F.; Xiang, Y.; Wang, B.; Mao, Y.; Zhu, L.; Zhang, Q.; Lei, C. Detection and Comparison of Volatile Organic Compounds in Four Varieties of Hawthorn Using HS-GC-IMS. Separations 2024, 11, 100. [Google Scholar] [CrossRef]
- Shi, D.H.; Dai, Y.P.; Lu, Q.; Sun, L.L.; Zhang, X.L.; Zhang, J. Primary study on identification of carbonizing degree of Platycladi Cacumen based on odor detection by GC-IMS. Chin. Tradit. Herb. Drugs 2021, 52, 6510–6517. [Google Scholar]
- Peng, J.; Ai, W.; Yin, X.; Huang, D.; Li, S. A Comparison Analysis of Four Different Drying Treatments on the Volatile Organic Compounds of Gardenia Flowers. Molecules 2024, 29, 4300. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Feng, D.; Zhou, Y.X.; Zhao, J.; Zhao, J.Y.; Guo, Y.; Yan, W.J. HS-GC-IMS detection of volatile organic compounds in cistanche powders under different treatment methods. Lebensm. Wiss. Technol. 2022, 165, 113730. [Google Scholar] [CrossRef]
- Ning, X.; Lee, J.; Han, C. Drying characteristics and quality of red ginseng using far-infrared rays. J. Ginseng Res. 2015, 4, 371–375. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Huang, X.P.; Ma, G.J.; Zhang, J.; Jiang, C.H.; Wang, F.X. Evaluation of drying characteristics and physicochemical properties of Angelicae Sinensis Radix under different drying methods based on combination entropy weight and variable coefficient method. Chin. Tradit. Herb. Drugs 2022, 23, 7403–7413. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhang, M.M.; Ma, W.Y.; Zhao, H.Q.; Liu, J.; Cui, L.; Wang, X. Effect of Different Drying Methods on Volatile Components in Pseudostellariae Radix Based on GC-IMS. Chin. J. Exp. Tradit. Med. Formulae. 2022, 28, 100–107. [Google Scholar] [CrossRef]
- Kang, M.; Tao, N.P.; Yu, J.; Wang, X.C.; Ji, L.J.; Le, C.H.; Yin, M.Y. Comparison of texture quality and volatile components of dried figs by different drying methods. Food Ferment. Ind. 2020, 46, 204–210. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Chen, Y.Y.; Zhang, H.L.; Shen, Y.B. The role of 1-penten-3-one in plant defense responses. Plant Physiol. J. 2019, 55, 225–231. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.W.; Jo, I.H.; Kwon, N.; Kim, D.; Chung, J.W.; Bang, K.H.; Sung, J. Volatile Compositions of Panax ginseng and Panax quinquifolium Grown for Different Cultivation Years. Foods 2022, 12, 136. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Liu, X.; Qin, Y.; Yan, J.; Li, R.; Yang, Q. The impact of different drying methods on the physical properties, bioactive components, antioxidant capacity, volatile components and industrial application of coffee peel. Food Chem. X 2023, 19, 100807. [Google Scholar] [CrossRef] [PubMed]
Drying | L | a | b | ΔE |
---|---|---|---|---|
ND | 72.72 ± 6.89 c | 1.68 ± 0.76 bc | 15.91 ± 1.76 bc | 23.32 ± 5.66 ab |
HAD | 70.17 ± 4.22 c | 2.64 ± 0.70 a | 18.01 ± 1.61 a | 26.52 ± 3.23 a |
VD | 70.44 ± 2.04 c | 1.89 ± 0.31 b | 17.87 ± 0.34 a | 25.98 ± 1.69 a |
MVD | 77.68 ± 1.96 b | 1.18 ± 0.43 c | 17.41 ± 1.45 ab | 20.05 ± 1.73 b |
VFD | 88.06 ± 1.03 a | −0.91 ± 0.2 d | 14.82 ± 1.27 c | 11.94 ± 1.41 c |
No | Compounds | CAS | Molecular Formula | RI | Rt/s | Dt/ms | Odor Description |
---|---|---|---|---|---|---|---|
1 | (E, E)-α-Farnesene D | C502614 | C15H24 | 1487.1 | 2464.654 | 1.48579 | citrus, herbal, lavender, neroli |
2 | (E, E)-α-Farnesene M | C502614 | C15H24 | 1485.7 | 2454.604 | 1.42258 | citrus, herbal, lavender, green |
3 | Safranal | C116267 | C10H14O | 1208.9 | 1077.33 | 1.28714 | herbal, phenolic, tobacco, spicy |
4 | α-Terpieol | C10482561 | C10H14O | 1188.8 | 1014.845 | 1.28968 | floral, lilac, terpenic |
5 | Nonanal | C124196 | C9H18O | 1104.8 | 790.476 | 1.49418 | rose, citrus, strong oily |
6 | 2-Isopropyl-3-methoxypyrazine | C25773404 | C8H12N2O | 1095.1 | 768.11 | 1.25062 | mung bean |
7 | Linalool | C78706 | C10H18O | 1086.2 | 748.099 | 1.21862 | citrus, rose, woody, blueberry |
8 | (E)-2-Octenal M | C2548870 | C8H14O | 1065.5 | 703.366 | 1.32707 | fresh cucumber, fatty, green herbal, banana, green leaf |
9 | (E)-2-Octenal D | C2548870 | C8H14O | 1065.5 | 703.366 | 1.82308 | fresh cucumber, fatty, green herbal, banana, green leaf |
10 | p-Cymene M | C99876 | C10H14 | 1020.4 | 615.079 | 1.21506 | fresh, citrus, terpene, woody, spice |
11 | p-Cymene D | C99876 | C10H14 | 1021.1 | 616.256 | 1.31284 | resh, citrus, terpene, woody, spice |
12 | p-Cymene P | C99876 | C10H14 | 1017.8 | 610.371 | 1.7253 | fresh, citrus, terpene, woody, spice |
13 | Octanal D | C124130 | C8H16O | 1013.9 | 603.308 | 1.81241 | aldehyde, waxy, citrus, orange, fruity, fatty |
14 | Octanal M | C124130 | C8H16O | 1008 | 592.713 | 1.41418 | aldehyde, waxy, citrus, orange, fruity, fatty |
15 | 1-Octen-3-ol D | C3391864 | C8H16O | 983.8 | 545.935 | 1.59477 | mushroom, lavender, rose, hay |
16 | Benzaldehyde M | C100527 | C7H6O | 961.9 | 502.347 | 1.1525 | bitter almond, cherry, nutty |
17 | Benzaldehyde D | C100527 | C7H6O | 961.9 | 502.347 | 1.46539 | bitter almond, cherry, nutty |
18 | (E)-2-Heptenal D | C18829555 | C7H12O | 959.7 | 498.128 | 1.6621 | spicy, green vegetables, fresh, fatty |
19 | (E)-2-Heptenal M | C18829555 | C7H12O | 957.8 | 494.613 | 1.25811 | spicy, green vegetables, fresh, fatty |
20 | Heptanal D | C111717 | C7H14O | 899.9 | 396.891 | 1.69906 | fresh, aldehyde, fatty, green herbs, wine, fruity |
21 | Heptanal M | C111717 | C7H14O | 902.7 | 401.109 | 1.35053 | fresh, aldehyde, fatty, green herbs, wine, fruity |
22 | Cyclohexanone D | C108941 | C6H10O | 893.3 | 387.049 | 1.44426 | strong pungent, earthy |
23 | Cyclohexanone M | C108941 | C6H10O | 892.3 | 385.643 | 1.15646 | strong pungent, earthy |
24 | 1-Hexanol M | C111273 | C6H14O | 869.7 | 354.709 | 1.32808 | fresh, fruity, wine, sweet, green |
25 | 1-Hexanol D | C111273 | C6H14O | 867.2 | 351.447 | 1.64167 | fresh, fruity, wine, sweet, green |
26 | (E)-2-Hexenal M | C6728263 | C6H10O | 853.9 | 334.544 | 1.17881 | green, banana, fat |
27 | (E)-2-hexenal D | C6728263 | C6H10O | 849.1 | 328.569 | 1.51598 | green, banana, fat |
28 | hexanal D | C66251 | C6H12O | 797.3 | 271.21 | 1.55279 | fresh, green, fat, fruity |
29 | Hexanal M | C66251 | C6H12O | 800.8 | 274.795 | 1.26863 | fresh, green, fat, fruity |
30 | 1-Pentanol D | C71410 | C5H12O | 767.1 | 241.335 | 1.52334 | balsamic |
31 | 1-Pentanol M | C71410 | C5H12O | 768.4 | 242.53 | 1.24801 | balsamic |
32 | 3-Methylbutanal | C590863 | C5H10O | 668.3 | 164.979 | 1.40801 | chocolate, fat |
33 | Ethyl Acetate D | C141786 | C4H8O2 | 628.6 | 144.91 | 1.33439 | fresh, fruity, sweet, grassy |
34 | ethyl acetate M | C141786 | C4H8O2 | 633.5 | 147.226 | 1.0998 | fresh, fruity, sweet, grassy |
35 | 3-Hydroxy-2-butanone D | C513860 | C4H8O2 | 715.4 | 196.24 | 1.32556 | butter, cream |
36 | 3-Hydroxy-2-butanone M | C513860 | C4H8O2 | 722.2 | 201.644 | 1.07231 | butter, cream |
37 | Furfural D | C98011 | C5H4O2 | 831.1 | 307.393 | 1.33734 | sweet, woody, almond, bready |
38 | Furfural M | C98011 | C5H4O2 | 829 | 305.077 | 1.08507 | sweet, woody, almond, bready |
39 | Butyrolactone M | C96480 | C4H6O2 | 918.2 | 425.469 | 1.08166 | cream, fat, caramel |
40 | β-Pinene M | C127913 | C10H16 | 977.3 | 532.626 | 1.21289 | resin, green |
41 | β-Pinene D | C127913 | C10H16 | 976 | 529.856 | 1.29733 | resin, green |
42 | β-Pinene P | C127913 | C10H16 | 975 | 528.009 | 1.63287 | resin, green |
43 | Camphene | C79925 | C10H16 | 952.5 | 484.605 | 1.20951 | woody, camphor |
44 | α-Pinene M | C80568 | C10H16 | 932.7 | 449.65 | 1.21413 | fresh, camphor, sweet, pine wood |
45 | α-Pinene D | C80568 | C10H16 | 934 | 451.727 | 1.67103 | fresh, camphor, sweet, pine wood |
46 | α-Pinene P | C80568 | C10H16 | 934.3 | 452.246 | 1.72246 | fresh, camphor, sweet, pine wood |
47 | 3-Methyl-2-butenal D | C107868 | C5H8O | 786 | 260.17 | 1.35635 | fruity |
48 | 3-Methyl-2-butenal M | C107868 | C5H8O | 779.3 | 253.422 | 1.08907 | fruity |
49 | 1-penten-3-one | C1629589 | C5H8O | 667.2 | 164.389 | 1.30212 | strong pungent odors |
50 | 2-butanone | C78933 | C4H8O | 601.2 | 132.494 | 1.23571 | fruity, camphor |
51 | 2-Heptanone M | C110430 | C7H14O | 885.6 | 376.157 | 1.26226 | pear, banana, fruity, slight medicinal fragrance |
52 | 3-Heptanone D | C106354 | C7H14O | 889.3 | 381.315 | 1.62728 | fruity, grass, oil |
53 | Butyrolactone D | C96480 | C4H6O2 | 917.2 | 423.868 | 1.29782 | cream, fat, caramel |
54 | Limonene M | C138863 | C10H16 | 1039.9 | 651.878 | 1.21338 | lemon, sweet, orange, pine oil |
55 | Limonene D | C138863 | C10H16 | 1038.1 | 648.35 | 1.29803 | lemon, sweet, orange, pine oil |
56 | Limonene | C138863 | C10H16 | 1038.5 | 649.055 | 1.6614 | lemon, sweet, orange, pine oil |
57 | Limonene P | C138863 | C10H16 | 1038.5 | 649.055 | 1.72667 | lemon, sweet, orange, pine oil |
58 | 2-Pentylfuran | C3777693 | C9H14O | 996.3 | 572.413 | 1.25131 | bean, fruity, earthy, green, vegetable |
59 | 3-Carene M | C13466789 | C10H16 | 997.9 | 575.175 | 1.21279 | citrus, lemon, woody |
60 | 3-Carene D | C13466789 | C10H16 | 995.3 | 570.204 | 1.30035 | citrus, lemon, woody |
61 | 3-Carene P | C13466789 | C10H16 | 995.5 | 570.756 | 1.71712 | citrus, lemon, woody |
62 | 1-Octen-3-ol M | C3391864 | C8H16O | 985.8 | 550.111 | 1.15382 | mushroom, lavender, rose, hay |
63 | 3-Heptanone M | C106354 | C7H14O | 899.9 | 396.892 | 1.19904 | fruity, grass, oil |
64 | (E, E)-2,4-decadecenal | C25152845 | C10H16O | 1331.6 | 1552.147 | 1.4288 | cucumber, melon, citrus, pumpkin, nutty |
65 | (E)-2-Nonenal | C18829566 | C9H16O | 1147.7 | 898.066 | 1.41052 | fatty, green, waxy, cucumber, melon |
66 | 2-Ethyl-1-hexanol M | C104767 | C8H18O | 1044.2 | 660.107 | 1.41773 | citrus, fresh floral, greasy |
67 | 2-Ethyl-1-hexanol D | C104767 | C8H18O | 1045.6 | 662.876 | 1.79912 | citrus, fresh floral, greasy |
68 | 2-Nonanone | C821556 | C9H18O | 1092.8 | 762.817 | 1.4051 | fresh, sweet, green, herb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Zou, M.; Ou, F.; Zhu, L.; Xu, Y.; Zhou, Q.; Lei, C. A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng. Molecules 2024, 29, 5235. https://doi.org/10.3390/molecules29225235
Xiang Y, Zou M, Ou F, Zhu L, Xu Y, Zhou Q, Lei C. A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng. Molecules. 2024; 29(22):5235. https://doi.org/10.3390/molecules29225235
Chicago/Turabian StyleXiang, Yun, Manshu Zou, Feilin Ou, Lijun Zhu, Yingying Xu, Qingqing Zhou, and Chang Lei. 2024. "A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng" Molecules 29, no. 22: 5235. https://doi.org/10.3390/molecules29225235
APA StyleXiang, Y., Zou, M., Ou, F., Zhu, L., Xu, Y., Zhou, Q., & Lei, C. (2024). A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng. Molecules, 29(22), 5235. https://doi.org/10.3390/molecules29225235