New Sulfenate Sources for Double Pallado-Catalyzed Cross-Coupling Reaction: Application in Symmetrical Biarylsulfoxide Synthesis, and Evidence of TADF Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Reagents and Solvents
3.2. Analysis and Characterization
3.3. Synthesis of the Sulfenate Sources
3.4. General Procedures for the Pallado-Catalyzed Cross Coupling Reactions
3.5. Biarylsulfoxide Characterization
3.6. Photophysical Properties of 4,4′-Sulfinylbis(N,N-Diphenylaniline) 4b and 4,4′-Sulfonylbis(N,N-Diphenylaniline) 5
3.7. X-ray Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- David, N.A. The Pharmacology of Dimethyl Sulfoxide. Annu. Rev. Pharmacol. 1972, 12, 353–374. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.F. Toxicity of dimethyl sulfoxide, alone and in combination. Ann. N. Y. Acad. Sci. 1975, 243, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Brayton, C.F. Dimethyl sulfoxide (DMSO), a review. Cornell Vet. 1986, 76, 61–90. [Google Scholar] [PubMed]
- Aronson, J.K. (Ed.) Meyler’s Side Effects of Drugs, 16th ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 992–993. [Google Scholar]
- Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Medicinal Chemistry. Curr. Top. Med. Chem. 2016, 16, 1200–1216. [Google Scholar] [CrossRef]
- Bentley, R. Role of sulfur chirality in the chemical processes of biology. Chem. Soc. Rev. 2005, 34, 609–624. [Google Scholar] [CrossRef]
- Calligaris, M. Structure and bonding in metal sulfoxide complexes. Coord. Chem. Rev. 1996, 153, 83–154. [Google Scholar] [CrossRef]
- Calligaris, M. Structure and bonding in metal sulfoxide complexes: An update. Coord. Chem. Rev. 2004, 248, 351–375. [Google Scholar] [CrossRef]
- Mellah, M.; Voituriez, A.; Schulz, E. Chiral Sulfur Ligands for Asymmetric Catalysis. Chem. Rev. 2007, 107, 5133–5209. [Google Scholar] [CrossRef]
- Sipos, G.; Drinkel, E.E.; Dorta, R. The emergence of sulfoxides as efficient ligands in transition metal catalysis. Chem. Soc. Rev. 2015, 44, 3834–3860. [Google Scholar] [CrossRef]
- Lentz, N.; Mallet-Ladeira, S.; Baceiredo, A.; Kato, T.; Madec, D. Germylene–sulfoxide as a potential hemilabile ligand: Application in coordination chemistry. Dalton Trans. 2018, 47, 15751–15756. [Google Scholar] [CrossRef]
- Deak, N.; du Boullay, O.T.; Moraru, I.-T.; Mallet-Ladeira, S.; Madec, D.; Nemes, G. A non-symmetric sulfur-basedO,C,O-chelating pincer ligand leading to chiral germylene and stannylene. Dalton Trans. 2019, 48, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Deak, N.; du Boullay, O.T.; Mallet-Ladeira, S.; Moraru, I.; Madec, D.; Nemes, G. Synthesis and Characterization of a Novel Bis-Sulfoxide and Its Evaluation as a Ligand in p-Block Chemistry. Eur. J. Inorg. Chem. 2020, 2020, 3729–3737. [Google Scholar] [CrossRef]
- Lentz, N.; Cuevas-Chavez, C.; Mallet-Ladeira, S.; Sotiropoulos, J.-M.; Baceiredo, A.; Kato, T.; Madec, D. Germylene-β-sulfoxide Hemilabile Ligand in Coordination Chemistry. Inorg. Chem. 2020, 60, 423–430. [Google Scholar] [CrossRef]
- Authesserre, U.; Hameury, S.; Dajnak, A.; Saffon-Merceron, N.; Baceiredo, A.; Madec, D.; Maerten, E. Complexes of Dichlorogermylene with Phosphine/Sulfoxide-Supported Carbone as Ligand. Molecules 2021, 26, 2005. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Takayama, T.; Nishio, H.; Matsushima, K.; Tanaka, Y.; Saito, S.; Sun, Y.; Oyaizu, K. Synthesis of colorless and high-refractive-index sulfoxide-containing polymers by the oxidation of poly(phenylene sulfide) derivatives. Polym. Chem. 2022, 13, 1705–1711. [Google Scholar] [CrossRef]
- Li, M.; Berritt, S.; Wang, C.; Yang, X.; Liu, Y.; Sha, S.-C.; Wang, B.; Wang, R.; Gao, X.; Li, Z.; et al. Sulfenate anions as organocatalysts for benzylic chloromethyl coupling polymerization via C=C bond formation. Nat. Commun. 2018, 9, 1754. [Google Scholar] [CrossRef]
- Kaiser, D.; Klose, I.; Oost, R.; Neuhaus, J.; Maulide, N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem. Rev. 2019, 119, 8701–8780. [Google Scholar] [CrossRef]
- Maitro, G.; Prestat, G.; Madec, D.; Poli, G. An escapade in the world of sulfenate anions: Generation, reactivity and applications in domino processes. Tetrahedron Asymmetry 2010, 21, 1075–1084. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.; Yin, X.; Zeng, Q. Advances of Sulfenate Anions in Catalytic Asymmetric Synthesis of Sulfoxides. Chem. Rec. 2021, 22, e202100242. [Google Scholar] [CrossRef]
- Riddell, A.B.; Smith, M.R.A.; Schwan, A.L. The generation and reactions of sulfenate anions. An update. J. Sulfur Chem. 2022, 43, 540–592. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Q.; Zeng, Q. Advance in the Synthesis of Sulfoxides and Sulfinamides from β-Sulfinyl Esters. Organics 2023, 4, 173–185. [Google Scholar] [CrossRef]
- Saito, F. Recent Developments on the Synthesis of Sulfoxides via Sulfenate Anions. Synthesis 2023, 56, 220–228. [Google Scholar] [CrossRef]
- Maitro, G.; Vogel, S.; Prestat, G.; Madec, D.; Poli, G. Aryl Sulfoxides via Palladium-Catalyzed Arylation of Sulfenate Anions. Org. Lett. 2006, 8, 5951–5954. [Google Scholar] [CrossRef]
- Maitro, G.; Vogel, S.; Sadaoui, M.; Prestat, G.; Madec, D.; Poli, G. Enantioselective Synthesis of Aryl Sulfoxides via Palladium-Catalyzed Arylation of Sulfenate Anions. Org. Lett. 2007, 9, 5493–5496. [Google Scholar] [CrossRef]
- Bernoud, E.; Le Duc, G.; Bantreil, X.; Prestat, G.; Madec, D.; Poli, G. Aryl Sulfoxides from Allyl Sulfoxides via [2,3]-Sigmatropic Rearrangement and Domino Pd-Catalyzed Generation/Arylation of Sulfenate Anions. Org. Lett. 2009, 12, 320–323. [Google Scholar] [CrossRef]
- Izquierdo, F.; Chartoire, A.; Nolan, S.P. Direct S-Arylation of Unactivated Arylsulfoxides Using [Pd(IPr*)(cin)Cl]. ACS Catal. 2013, 3, 2190–2193. [Google Scholar] [CrossRef]
- Gelat, F.; Lohier, J.; Gaumont, A.; Perrio, S. tert-Butyl Sulfoxides: Key Precursors for Palladium-Catalyzed Arylation of Sulfenate Salts. Adv. Synth. Catal. 2015, 357, 2011–2016. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, T.; Sagamanova, I.K.; Pericás, M.A.; Walsh, P.J. tert-Butyl Phenyl Sulfoxide: A Traceless Sulfenate Anion Precatalyst. Org. Lett. 2015, 17, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Zhang, M.; Jiang, H.; Wang, C.Y.; Walsh, P.J. Palladium-Catalyzed Arylation of Alkyl Sulfenate Anions. J. Am. Chem. Soc. 2015, 137, 13887–13893. [Google Scholar] [CrossRef]
- Jiang, H.; Jia, T.; Zhang, M.; Walsh, P.J. Palladium-Catalyzed Arylation of Aryl Sulfenate Anions with Aryl Bromides under Mild Conditions: Synthesis of Diaryl Sulfoxides. Org. Lett. 2016, 18, 972–975. [Google Scholar] [CrossRef]
- Jia, T.; Bellomo, A.; Montel, S.; Zhang, M.; EL Baina, K.; Zheng, B.; Walsh, P.J. Diaryl Sulfoxides from Aryl Benzyl Sulfoxides: A Single Palladium-Catalyzed Triple Relay Process. Angew. Chem. Int. Ed. 2013, 53, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Zhang, M.; Sagamanova, I.K.; Wang, C.Y.; Walsh, P.J. Palladium Catalyzed Diaryl Sulfoxide Generation from Aryl Benzyl Sulfoxides and Aryl Chlorides. Org. Lett. 2015, 17, 1168–1171. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, M.; McCollom, S.P.; Bellomo, A.; Montel, S.; Mao, J.; Dreher, S.D.; Welch, C.J.; Regalado, E.L.; Williamson, R.T.; et al. Palladium-Catalyzed Enantioselective Arylation of Aryl Sulfenate Anions: A Combined Experimental and Computational Study. J. Am. Chem. Soc. 2017, 139, 8337–8345. [Google Scholar] [CrossRef]
- Wu, C.; Berritt, S.; Liang, X.; Walsh, P.J. Palladium-Catalyzed Enantioselective Alkenylation of Sulfenate Anions. Org. Lett. 2019, 21, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang, J. Palladium/PC-Phos-Catalyzed Enantioselective Arylation of General Sulfenate Anions: Scope and Synthetic Applications. J. Am. Chem. Soc. 2018, 140, 3467–3473. [Google Scholar] [CrossRef]
- Zhang, J.; Suzuki, K.; Ohmori, K. Total Syntheses of Sparsomycin and Sparoxomycins A1 and A2 via Sulfenate-Anion-Mediated Iterative C–S Bond Formation. Org. Lett. 2023, 25, 9036–9040. [Google Scholar] [CrossRef]
- Christensen, P.R.; Patrick, B.O.; Caron, É.; Wolf, M.O. Oxidation-State-Dependent Photochemistry of Sulfur-Bridged Anthracenes. Angew. Chem. Int. Ed. 2013, 52, 12946–12950. [Google Scholar] [CrossRef] [PubMed]
- Magné, V.; Lenk, R.; Mallet-Ladeira, S.; Maerten, E.; Madec, D. Pentafluorophenyl Copper–Biarylsulfoxide Complexes: Synthesis and Photoreactivity. Molecules 2024, 29, 3332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. J. Am. Chem. Soc. 2012, 134, 14706–14709. [Google Scholar] [CrossRef]
- Wong, M.Y.; La-Placa, M.-G.; Pertegas, A.; Bolink, H.J.; Zysman-Colman, E. Deep-blue thermally activated delayed fluorescence (TADF) emitters for light-emitting electrochemical cells (LEECs). J. Mater. Chem. C 2017, 5, 1699–1705. [Google Scholar] [CrossRef]
- Hepguler, A.; Ulukan, P.; Catak, S. The photophysical properties of sulfone-based TADF emitters in relation to their structural properties. Phys. Chem. Chem. Phys. 2023, 25, 31457–31470. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, R.P. Selective Oxidation of Phenyl Sulphides to Sulphoxides or Sulphones Using Oxone® and Wet Alumina. Synlett 1992, 1992, 235–236. [Google Scholar] [CrossRef]
- Johnson, J.A.; Zhang, X.; Reeson, T.C.; Chen, Y.-S.; Zhang, J. Facile Control of the Charge Density and Photocatalytic Activity of an Anionic Indium Porphyrin Framework via in Situ Metalation. J. Am. Chem. Soc. 2014, 136, 15881–15884. [Google Scholar] [CrossRef]
- Wright, S.W.; Hageman, D.L.; Wright, A.S.; McClure, L.D. Convenient preparations of t-butyl esters and ethers from t-butanol. Tetrahedron Lett. 1997, 38, 7345–7348. [Google Scholar] [CrossRef]
- Li, W.-X.; Yang, B.-W.; Ying, X.; Zhang, Z.-W.; Chu, X.-Q.; Zhou, X.; Ma, M.; Shen, Z.-L. Nickel-Catalyzed Direct Cross-Coupling of Diaryl Sulfoxide with Aryl Bromide. J. Org. Chem. 2022, 87, 11899–11908. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Zhang, B.; Zhang, F.; Yang, Y.; Wang, X. Palladium-Catalyzed Enantioselective C−H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization. Angew. Chem. Int. Ed. 2018, 57, 5129–5133. [Google Scholar] [CrossRef]
- Chun, J.-H.; Morse, C.L.; Chin, F.T.; Pike, V.W. No-carrier-added [18F]fluoroarenes from the radiofluorination of diaryl sulfoxides. Chem. Commun. 2013, 49, 2151–2153. [Google Scholar] [CrossRef]
- Jeon, H.B.; Kim, K.T.; Kim, S.H. Selective oxidation of sulfides to sulfoxides with cyanuric chloride and urea–hydrogen peroxide adduct. Tetrahedron Lett. 2014, 55, 3905–3908. [Google Scholar] [CrossRef]
- Huang, M.; Wu, Z.; Krebs, J.; Friedrich, A.; Luo, X.; Westcott, S.A.; Radius, U.; Marder, T.B. Ni-Catalyzed Borylation of Aryl Sulfoxides. Chem.—A Eur. J. 2021, 27, 8149–8158. [Google Scholar] [CrossRef] [PubMed]
- Hampel, T.; Ruppenthal, S.; Sälinger, D.; Brückner, R. Desymmetrization of Prochiral Diaryl Sulfoxides by an Asymmetric Sulfoxide–Magnesium Exchange. Chem.—A Eur. J. 2012, 18, 3136–3140. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, B.P.; Makone, S.S. Lithium/Sodium Perchlorate Catalyzed Synthesis of Symmetrical Diaryl Sulfoxides. Synth. Commun. 2004, 34, 743–750. [Google Scholar] [CrossRef]
Entry | Ligand | Base | Yield (%) b |
---|---|---|---|
1 | Xantphos (12%) | Cs2CO3 | 48 (10) c |
2 | Xantphos (12%) | Cs2CO3 | n.r. d |
3 | SPhos (10%) | Cs2CO3 | n.r. c |
4 | XPhos (10%) | Cs2CO3 | n.r. c |
5 | DPEPhos (5%) | Cs2CO3 | n.r. c |
6 | CX21 (10%) e | Cs2CO3 | n.r. |
7 | Xantphos (5%) | Cs2CO3 | 33 (7) |
8 | Xantphos (2%) f | Cs2CO3 | 16 (3) |
9 | Xantphos (5%) | K3PO4 | 12 (4) |
10 | Xantphos (5%) | DIPEA | n.r. |
11 | Xantphos (5%) | DBU | 61 (2) |
12 | Xantphos (5%) | DBU | 62 (1) g |
Entry | Conditions | Yield (%) b |
---|---|---|
1 | Pd(dba)2 (5%), Xantphos (5%), DBU, 80 °C | n.r. |
2 | Pd(dba)2 (5%), Xantphos (5%), Cs2CO3, 80 °C | 80 (6) |
3 | XantphosPdG3 (2%), Cs2CO3, 80 °C | 95 (3) |
Compounds | λmax (nm) | Φ (%) | τ (ns/μs) |
---|---|---|---|
4b | 391 | 25.7 | 0.93/94 |
5 | 401 | 69.1 | 2.43/111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magné, V.; Cretoiu, I.; Mallet-Ladeira, S.; Maerten, E.; Madec, D. New Sulfenate Sources for Double Pallado-Catalyzed Cross-Coupling Reaction: Application in Symmetrical Biarylsulfoxide Synthesis, and Evidence of TADF Properties. Molecules 2024, 29, 4809. https://doi.org/10.3390/molecules29204809
Magné V, Cretoiu I, Mallet-Ladeira S, Maerten E, Madec D. New Sulfenate Sources for Double Pallado-Catalyzed Cross-Coupling Reaction: Application in Symmetrical Biarylsulfoxide Synthesis, and Evidence of TADF Properties. Molecules. 2024; 29(20):4809. https://doi.org/10.3390/molecules29204809
Chicago/Turabian StyleMagné, Valentin, Iulia Cretoiu, Sonia Mallet-Ladeira, Eddy Maerten, and David Madec. 2024. "New Sulfenate Sources for Double Pallado-Catalyzed Cross-Coupling Reaction: Application in Symmetrical Biarylsulfoxide Synthesis, and Evidence of TADF Properties" Molecules 29, no. 20: 4809. https://doi.org/10.3390/molecules29204809
APA StyleMagné, V., Cretoiu, I., Mallet-Ladeira, S., Maerten, E., & Madec, D. (2024). New Sulfenate Sources for Double Pallado-Catalyzed Cross-Coupling Reaction: Application in Symmetrical Biarylsulfoxide Synthesis, and Evidence of TADF Properties. Molecules, 29(20), 4809. https://doi.org/10.3390/molecules29204809