Heterocycles in Medicinal Chemistry II
Funding
Acknowledgments
Conflicts of Interest
References
- LibreTexts™ Chemsitry—Carbon-Why It Is Unique. Available online: https://chem.libretexts.org/Courses/Prince_Georges_Community_College/CHM_1020%3A_General_Chemistry_II_(Miller)/09%3A_Organic_Chemistry/9.02%3A_Carbon-_Why_It_Is_Unique (accessed on 27 September 2024).
- Katritzky, A.R.; Denisko, O.V. Heterocyclic Compound. Encyclopædia Britannica. Available online: https://www.britannica.com/science/heterocyclic-compound (accessed on 27 September 2024).
- Ram, V.J.; Sethi, A.; Nath, M.; Pratap, R. The Chemistry of Heterocycles; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Res. Chem. 2022, 4, 100606. [Google Scholar] [CrossRef]
- Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open J. Med. Chem. 2022, 16, e187410452202280. [Google Scholar] [CrossRef]
- Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Der Pharma Chem. 2017, 9, 141–147. [Google Scholar]
- Li, M.M.; Chen, X.; Deng, Y.; Lu, J. Recent advances of N-heterocyclic carbenes in the applications of constructing carbo- and heterocyclic frameworks with potential biological activity. RSC Adv. 2021, 11, 38060–38078. [Google Scholar] [CrossRef]
- Li, X.; Liu, G.; Zheng, H.; Sun, K.; Wan, L.; Cao, J.; Asif, S.; Cao, Y.; Si, W.; Wang, F.; et al. Recent advances on heteroatom-doped porous carbon—Based electrocatalysts for oxygen reduction reaction. Energies 2023, 16, 128. [Google Scholar] [CrossRef]
- Imramovsky, A.; Pejchal, V.; Stepankova, S.; Vorcakova, K.; Jampilek, J.; Vanco, J.; Simunek, P.; Kralovec, K.; Bruckova, L.; Mandikova, J.; et al. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013, 21, 1735–1748. [Google Scholar] [CrossRef] [PubMed]
- Musiol, R.; Jampilek, J.; Nycz, J.E.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Mrozek, A.; et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules 2010, 15, 288–304. [Google Scholar] [CrossRef]
- Waldman, A.J.; Ng, T.L.; Wang, P.; Balskus, E.P. Heteroatom-heteroatom bond formation in natural product biosynthesis. Chem. Rev. 2017, 117, 5784–5863. [Google Scholar] [CrossRef]
- DrugBank—Indenes. Available online: https://go.drugbank.com/categories/DBCAT000931 (accessed on 27 September 2024).
- DrugBank—Benzimidazoles. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzimidazoles&button=&_gl=1*j3tvvg*_up*MQ..*_ga*MTU1NzE3MTk0NC4xNzI3NzAyMTA4*_ga_DDLJ7EEV9M*MTcyNzcwMjEwNy4xLjAuMTcyNzcwMjEwNy4wLjAuMA (accessed on 27 September 2024).
- DrugBank—Benzoxazoles. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzoxazoles&button=&_gl=1*okm6e9*_up*MQ..*_ga*MTU1NzE3MTk0NC4xNzI3NzAyMTA4*_ga_DDLJ7EEV9M*MTcyNzcwMjEwNy4xLjEuMTcyNzcwMjExNy4wLjAuMA (accessed on 27 September 2024).
- DrugBank—Benzothiazoles. Available online: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzothiazoles&button=&_gl=1*1hfxtqb*_up*MQ..*_ga*MTU1NzE3MTk0NC4xNzI3NzAyMTA4*_ga_DDLJ7EEV9M*MTcyNzcwMjEwNy4xLjEuMTcyNzcwMjIyMS4wLjAuMA (accessed on 27 September 2024).
- Mahajan, N.D.; Jain, N. Heterocyclic compounds and their applications in the field of biology: A detailed study. Nat. Vol. Essent. Oil 2021, 8, 13223–13229. [Google Scholar]
- Nehra, B.; Mathew, B.; Chawla, P.A. A medicinal chemist’s perspective towards structure activity relationship of heterocycle based anticancer agents. Curr. Top Med. Chem. 2022, 22, 493–528. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Grishina, M.; Kandasamy, S.; Mangaiyarkarasi, R.; Ramamoorthi, A.; Chinnathambi, S.; Pandian, G.N.; Kennedy, L.J. A review on medicinally important heterocyclic compounds and importance of biophysical approach of underlying the insight mechanism in biological environment. J. Biomol. Struct. Dyn. 2023, 41, 14599–14619. [Google Scholar] [CrossRef] [PubMed]
- Meanwell, N.A.; Lolli, M.L. Applications of Heterocycles in the Design of Drugs and Agricultural Products; Academic Press & Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Pozharskii, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry, Biochemistry and Applications, 2nd ed.; J. Wiley & Sons: Chichster, UK, 2011. [Google Scholar]
- Li Petri, G.; Holl, R.; Spanò, V.; Barreca, M.; Sardo, I.; Raimondi, M.V. Emerging heterocycles as bioactive compounds. Front. Chem. 2023, 11, 1202192. [Google Scholar] [CrossRef]
- Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in Natural Product Synthesis; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Gao, B.; Yang, B.; Feng, X.; Li, C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat. Prod. Rep. 2022, 39, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Zadsirjana, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef]
- Rusu, A.; Moga, I.-M.; Uncu, L.; Hancu, G. The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy. Pharmaceutics 2023, 15, 2554. [Google Scholar] [CrossRef]
- Rotella, D.P. Heterocycles in drug discovery: Properties and preparation. In Advances in Heterocyclic Chemistry; Meanwell, N.A., Lolli, M.L., Eds.; Academic Press & Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–183. [Google Scholar]
- Pibiri, I. Recent advances: Heterocycles in drugs and drug discovery. Int. J. Mol. Sci. 2024, 25, 9503. [Google Scholar] [CrossRef] [PubMed]
- Lamberth, C. Heterocyclic chemistry in crop protection. Pest Manag. Sci. 2013, 69, 1106–11014. [Google Scholar] [CrossRef] [PubMed]
- Lamberth, C.; Dinges, J. Bioactive Heterocyclic Compound Classes: Agrochemicals; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Al-Harb, E.A.; Wafaa, A.G. Nitrogen-containing heterocycles in agrochemicals. Agri. Res. Tech. Open Access J. 2018, 16, 555986. [Google Scholar] [CrossRef]
- Roche, V.F.; Zito, W.S.; Lemke, T.L.; Williams, D.A. Foye’s Principles of Medicinal Chemistry, 8th ed.; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2019. [Google Scholar]
- Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000, 287, 1964–1969. [Google Scholar] [CrossRef]
- Burke, M.D.; Lalic, G. Teaching target-oriented and diversity-oriented organic synthesis at Harvard University. Chem. Biol. 2002, 9, 535–541. [Google Scholar] [CrossRef]
- Quin, L.D.; Tyrell, J.A. Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals; J. Wiley and Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Majee, S.; Shilpa; Sarav, M.; Banik, B.K.; Ray, D. Recent advances in the green synthesis of active N-heterocycles and their biological activities. Pharmaceuticals 2023, 16, 873. [Google Scholar] [CrossRef] [PubMed]
- Zeleke, D.; Damena, T. Advance in green synthesis of pharmacological important heterocycles using multicomponent reactions and magnetic nanocatalysts (MNCs). Res. Chem. 2024, 7, 101283. [Google Scholar] [CrossRef]
- Hashmi, S.Z.; Bareth, D.; Dwivedi, J.; Kishorea, D.; Alvi, P.A. Green advancements towards the electrochemical synthesis of heterocycles. RSC Adv. 2024, 14, 18192–18246. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, S.; Tyagi, R.; Sagar, R. Recent progress in the synthesis of natural product inspired bioactive glycohybrids. Carbohydr. Res. 2023, 534, 108975. [Google Scholar] [CrossRef] [PubMed]
- Wardecki, D.; Dolowy, M.; Bober-Majnusz, K.; Jampilek, J. Comparative study of the lipophilicity of selected anti-androgenic and blood uric acid lowering compounds. Molecules 2023, 28, 166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Sun, Y.; Meng, Y.; Liu, L.; Dai, J.; Yan, G.; Pan, X.; Guan, X.; Song, L.; Lin, R. Design, synthesis and antifungal activities of novel pyrazole analogues containing the aryl trifluoromethoxy group. Molecules 2023, 28, 6279. [Google Scholar] [CrossRef]
- Rodriguez-Villar, K.; Yepez-Mulia, L.; Cortes-Gines, M.; Aguilera-Perdomo, J.D.; Quintana-Salazar, E.A.; Olascoaga Del Angel, K.S.; Cortes-Benitez, F.; Palacios-Espinosa, J.F.; Soria-Arteche, O.; Perez-Villanueva, J. Synthesis, antiprotozoal activity, and cheminformatic analysis of 2-phenyl-2H-indazole derivatives. Molecules 2021, 26, 2145. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Khalid, A.; Qamar, M.U.; Rasool, N.; Saadullah, M.; Bilal, M.; Bajaber, M.A.; Obaidullah, A.J.; Alotaibi, H.F.; Alotaibi, J.M. Antibacterial efficacy of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogues against extended-spectrum-β-lactamase producing clinical strain of Escherichia coli ST 131. Molecules 2023, 28, 3118. [Google Scholar] [CrossRef]
- Bec, A.; Zlatic, K.; Banjanac, M.; Radovanovic, V.; Starcevic, K.; Kralj, M.; Hranjec, M. Design, synthesis and biological activity of novel methoxy- and hydroxy-substituted N-benzimidazole-derived carboxamides. Molecules 2024, 29, 2138. [Google Scholar] [CrossRef]
- Liew, L.P.; Shome, A.; Wong, W.W.; Hong, C.R.; Hicks, K.O.; Jamieson, S.M.F.; Hay, M.P. Design, synthesis and anticancer evaluation of nitroimidazole radiosensitisers. Molecules 2023, 28, 4457. [Google Scholar] [CrossRef]
- Ramirez, D.; Mejia-Gutierrez, M.; Insuasty, B.; Rinne, S.; Kiper, A.K.; Platzk, M.; Muller, T.; Decher, N.; Quiroga, J.; De-la-Torre, P.; et al. 5-(Indol-2-yl)pyrazolo [3,4-b]pyridines as a new family of TASK-3 Channel blockers: A pharmacophore-based regioselective synthesis. Molecules 2021, 26, 3897. [Google Scholar] [CrossRef] [PubMed]
- Heise, N.V.; Heisig, J.; Meier, K.; Csuk, R.; Mueller, T. F16 Hybrids derived from steviol or isosteviol are accumulated in the mitochondria of tumor cells and overcome drug resistance. Molecules 2024, 29, 381. [Google Scholar] [CrossRef] [PubMed]
- Zolotareva, D.; Zazybin, A.; Dauletbakov, A.; Belyankova, Y.; Giner Parache, B.; Tursynbek, S.; Seilkhanov, T.; Kairullinova, A. Morpholine, piperazine, and piperidine derivatives as antidiabetic agents. Molecules 2024, 29, 3043. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jung, H.J.; Kim, Y.E.; Jeong, D.; Park, H.S.; Park, H.S.; Kang, D.; Park, Y.; Chun, P.; Chung, H.Y.; et al. Investigation of the efficacy of benzylidene-3-methyl-2-thioxothiazolidin-4-one analogs with antioxidant activities on the inhibition of mushroom and mammal tyrosinases. Molecules 2024, 29, 2887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jampilek, J. Heterocycles in Medicinal Chemistry II. Molecules 2024, 29, 4810. https://doi.org/10.3390/molecules29204810
Jampilek J. Heterocycles in Medicinal Chemistry II. Molecules. 2024; 29(20):4810. https://doi.org/10.3390/molecules29204810
Chicago/Turabian StyleJampilek, Josef. 2024. "Heterocycles in Medicinal Chemistry II" Molecules 29, no. 20: 4810. https://doi.org/10.3390/molecules29204810
APA StyleJampilek, J. (2024). Heterocycles in Medicinal Chemistry II. Molecules, 29(20), 4810. https://doi.org/10.3390/molecules29204810