Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases
Abstract
:1. Introduction
1.1. Antiparasitic Agents
1.2. Antibacterial Agents
1.3. Anti-Viral Agents
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bloom, D.E.; Black, S.; Rappuoli, R. Emerging infectious diseases: A proactive approach. Proc. Natl. Acad. Sci. USA 2017, 114, 4055–4059. [Google Scholar] [CrossRef]
- Bloom, D.E.; Cadarette, D. Infectious disease threats in the twenty-first century: Strengthening the global response. Front. Immunol. 2019, 10, 549. [Google Scholar] [CrossRef]
- Morens, D.M.; Folkers, G.K.; Fauci, A.S. The challenge of emerging and re-emerging infectious diseases. Nature 2004, 430, 242–249. [Google Scholar] [CrossRef]
- Sperk, M.; Van Domselaar, R.; Rodriguez, J.E.; Mikaeloff, F.; Sá Vinhas, B.; Saccon, E.; Sonnerborg, A.; Singh, K.; Gupta, S.; Végvári, Á.; et al. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J. Proteome Res. 2020, 19, 4259–4274. [Google Scholar] [CrossRef]
- WHO. The True Death Toll of COVID-19: Estimating Global Excess Mortality; World Health Organisation: Geneva, Switzerland, 2021; Available online: https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-excess-mortality (accessed on 30 August 2021).
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef]
- Gil-Moles, M.; Basu, U.; Büssing, R.; Hoffmeister, H.; Türck, S.; Varchmin, A.; Ott, I. Gold Metallodrugs to Target Coronavirus Proteins: Inhibitory Effects on the Spike-ACE2 Interaction and on PLpro Protease Activity by Auranofin and Gold Organometallics. Chemistry 2020, 26, 15140–15144. [Google Scholar] [CrossRef]
- Kennedy, P.G.; Rodgers, J. Clinical and neuropathogenetic aspects of human African trypanosomiasis. Front. Immunol. 2019, 10, 39. [Google Scholar] [CrossRef]
- Cavalli, A.; Bolognesi, M.L. Neglected tropical diseases: Multi-target-directed ligands in the search for novel lead candidates against Trypanosoma and Leishmania. J. Med. Chem. 2009, 52, 7339–7359. [Google Scholar] [CrossRef]
- Mosquillo, M.F.; Bilbao, L.; Hernández, F.; Tissot, F.; Gambino, D.; Garat, B.; Pérez-Díaz, L. Trypanosoma cruzi biochemical changes and cell death induced by an organometallic platinum-based compound. Chem. Biol. Drug Des. 2018, 92, 1657–1669. [Google Scholar] [CrossRef]
- Zhou, Q.; Hu, H.; Li, Z. New insights into the molecular mechanisms of mitosis and cytokinesis in trypanosomes. Int. Rev. Cell Mol. Biol. 2014, 308, 127–166. [Google Scholar] [CrossRef]
- Herwaldt, B.L.; Dougherty, C.P.; Allen, C.K.; Jolly, J.P.; Brown, M.N.; Yu, P.; Yu, Y. Characteristics of patients for whom benznidazole was released through the CDC-sponsored investigational New Drug Program for Treatment of Chagas Disease—United States, 2011–2018. Morb. Mortal. Wkly. Rep. 2018, 67, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Harding, E. WHO global progress report on tuberculosis elimination. Lancet Respir. Med. 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Ye, Z.; Liu, H.; Guo, H.; Lin, J.; Zheng, L.; Chu, N.; Liu, X. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J. Pharm. Biomed. Anal. 2020, 180, 113076. [Google Scholar] [CrossRef] [PubMed]
- Khawbung, J.L.; Nath, D.; Chakraborty, S. Drug resistant Tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis. 2020, 74, 101574. [Google Scholar] [CrossRef] [PubMed]
- Miyata, M.; Pavan, F.R.; Sato, D.N.; Marino, L.B.; Hirata, M.H.; Cardoso, R.F.; de Melo, F.A.F.; Zanelli, C.F.; Leite, C.Q.F. Drug resistance in Mycobacterium tuberculosis clinical isolates from Brazil: Phenotypic and genotypic methods. Biomed. Pharmacother. 2011, 65, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.; Marino, L.B.; Demoro, B.; Echeverría, G.A.; Piro, O.E.; Leite, C.Q.; Pavan, F.R.; Gambino, D. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi (III), Fe (III) and Ga (III) complexes as potent anti-Mycobacterium tuberculosis prospective agents. Eur. J. Med. Chem. 2014, 87, 267–273. [Google Scholar] [CrossRef]
- Orme, I. Tuberculosis Drug Screening Program. Search for new drugs for treatment of tuberculosis. Antimicrob. Agents Chemother. 2001, 45, 1943–1946. [Google Scholar] [CrossRef]
- Fernández, M.; Varela, J.; Correia, I.; Birriel, E.; Castiglioni, J.; Moreno, V.; Pessoa, J.C.; Cerecetto, H.; González, M.; Gambino, D. A new series of heterolepticoxidovanadium (IV) compounds with phenanthroline-derived co-ligands: Selective Trypanosoma cruzi growth inhibitors. Dalton Trans. 2013, 42, 11900–11911. [Google Scholar] [CrossRef]
- Patra, M.; Wenzel, M.; Prochnow, P.; Pierroz, V.; Gasser, G.; Bandow, J.E.; Metzler-Nolte, N. An organometallic structure-activity relationship study reveals the essential role of a Re (CO)3 moiety in the activity against gram-positive pathogens including MRSA. Chem. Sci. 2015, 6, 214–224. [Google Scholar] [CrossRef]
- Patra, M.; Gasser, G.; Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans. 2012, 41, 6350–6358. [Google Scholar] [CrossRef]
- Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry—From teaching paradigms to medicinal applications. Chem. Soc. Rev. 2009, 38, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Arce, E.; Sarniguet, C.; Moraes, T.S.; Vieites, M.; Tomaz, A.I.; Medeiros, A.; Comini, M.A.; Varela, J.; Cerecetto, H.; González, M.; et al. A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. J. Coord. Chem. 2015, 68, 2923–2937. [Google Scholar] [CrossRef]
- Álvarez, G.; Varela, J.; Márquez, P.; Gabay, M.; Rivas, C.E.A.; Cuchilla, K.; Echeverría, G.A.; Piro, O.E.; Chorilli, M.; Leal, S.M.; et al. Optimization of Antitrypanosomatid Agents: Identification of Nonmutagenic Drug Candidates with in Vivo Activity. J. Med. Chem. 2014, 57, 3984–3999. [Google Scholar] [CrossRef]
- Rodríguez Arce, E.; Mosquillo, M.F.; Pérez-Díaz, L.; Echeverría, G.A.; Piro, O.E.; Merlino, A.; Coitiño, E.L.; Ribeiro, C.M.; Leite, C.Q.; Pavan, F.R.; et al. Aromatic amine N-oxide organometallic compounds: Searching for prospective agents against infectious diseases. Dalton Trans. 2015, 44, 14453–14464. [Google Scholar] [CrossRef] [PubMed]
- Biot, C.; Dive, D. Bioorganometallic chemistry and malaria. In Medicinal Organometallic Chemistry; Springer: Berlin/Heidelberg, Germany, 2010; Volume 32, pp. 155–193. [Google Scholar]
- Gambino, D.; Fernández, M.; Santos, D.; Etcheverría, G.A.; Piro, O.E.; Pavan, F.R.; Leite, C.Q.; Tomaz, I.; Marques, F. Searching for gallium bioactive compounds: Gallium (III) complexes of tridentate salicylaldehyde semicarbazone derivatives. Polyhedron 2011, 30, 1360–1366. [Google Scholar] [CrossRef]
- Mosquillo, M.F.; Bilbao, L.; Hernández, F.; Machado, I.; Gambino, D.; Garat, B.; Pérez-Díaz, L. Effect of a new anti-T. cruzi metallic compound based on palladium. Biometals 2018, 31, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Corte-Rodríguez, M.; Espina, M.; Sierra, L.M.; Blanco, E.; Ames, T.; Montes-Bayón, M.; Sanz-Medel, A. Quantitative evaluation of cellular uptake, DNA incorporation and adduct formation in cisplatin sensitive and resistant cell lines: Comparison of different Pt-containing drugs. Biochem. Pharmacol. 2015, 98, 69–77. [Google Scholar] [CrossRef]
- Mosquillo, M.F.; Smircich, P.; Ciganda, M.; Lima, A.; Gambino, D.; Garat, B.; Pérez-Díaz, L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020, 12, 813–828. [Google Scholar] [CrossRef]
- Rodríguez Arce, E.; Putzu, E.; Lapier, M.; Maya, J.D.; Azar, C.O.; Echeverría, G.A.; Piro, O.E.; Medeiros, A.; Sardi, F.; Comini, M.; et al. New heterobimetallic ferrocenyl derivatives are promising antitrypanosomal agents. Dalton Trans. 2019, 48, 7644–7658. [Google Scholar] [CrossRef]
- Simpson, P.V.; Nagel, C.; Bruhn, H.; Schatzschneider, U. Antibacterial and Antiparasitic Activity of Manganese(I) Tricarbonyl Complexes with Ketoconazole, Miconazole, and Clotrimazole Ligands. Organometallics 2015, 34, 3809–3815. [Google Scholar] [CrossRef]
- Lopes, C.D.; Possato, B.; Gaspari, A.P.S.; Oliveira, R.J.; Abram, U.; Almeida, J.P.; Rocho, F.D.R.; Leitao, A.; Montanari, C.A.; Maia, P.I.; et al. Organometallic gold (III) complex [Au (Hdamp)(L14)]+(L1 = SNS-donating thiosemicarbazone) as a candidate to new formulations against Chagas disease. ACS Infect. Dis. 2019, 5, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E. Chagas Disease Drug Discovery: Toward a New Era. J. Biomol. Screen. 2015, 20, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; de Kock, C.; Smith, P.J.; Chibale, K.; Smith, G.S. Synthesis, characterization and antiplasmodial evaluation of cyclopalladated thiosemicarbazone complexes. J. Organomet. Chem. 2013, 736, 19–26. [Google Scholar] [CrossRef]
- Chellan, P.; Land, K.M.; Shokar, A.; Au, A.; An, S.H.; Clavel, C.M.; Dyson, P.J.; Kock, C.D.; Smith, P.J.; Chibale, K.; et al. Exploring the versatility of cycloplatinated thiosemicarbazones as antitumor and antiparasitic agents. Organometallics 2012, 31, 5791–5799. [Google Scholar] [CrossRef]
- Baartzes, N.; Stringer, T.; Smith, G.S. Targeting sensitive-strain and resistant-strain malaria parasites through a metal-based approach. In Advances in Bioorganometallic Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 193–213. ISBN 978-0-12-814197-7. [Google Scholar] [CrossRef]
- Wenzel, M.; Patra, M.; Senges, C.H.R.; Ott, I.; Stepanek, J.J.; Pinto, A.; Prochnow, P.; Vuong, C.; Langklotz, S.; Metzler-Nolte, N.; et al. Analysis of the mechanism of action of potent antibacterial hetero-tri-organometallic compounds: A structurally new class of antibiotics. ACS Chem. Biol. 2013, 8, 1442–1450. [Google Scholar] [CrossRef]
- Frei, A.; Rubbiani, R.; Tubafard, S.; Blacque, O.; Anstaett, P.; Felgenträger, A.; Maisch, T.; Spiccia, L.; Gasser, G. Synthesis, characterization, and biological evaluation of new Ru (II) polypyridyl photosensitizers for photodynamic therapy. J. Med. Chem. 2014, 57, 7280–7292. [Google Scholar] [CrossRef]
- Frei, A.; Amado, M.; Cooper, M.A.; Blaskovich, M.A.T. Light-activated rhenium complexes with dual mode of action against bacteria. Eur. J. Chem. 2020, 26, 2852–2858. [Google Scholar] [CrossRef]
- Brennan, P.J.; Young, D.B.; Robertson, B.D.; Andersen, P.; Barry III, C.E.; Britton, W. Introduction: Handbook of Anti-Tuberculosis Agents. Tuberculosis 2008, 88, 85–170. [Google Scholar] [CrossRef]
- Mukherjee, T.; Mukherjee, M.; Sen, B.; Banerjee, S.; Hundal, G.; Chattopadhyay, P. Synthesis, characterization, interactions with DNA and bovine serum albumin (BSA), and antibacterial activity of cyclometalated iridium (III) complexes containing dithiocarbamate derivatives. J. Coord. Chem. 2014, 67, 2643–2660. [Google Scholar] [CrossRef]
- Lu, L.; Liu, L.J.; Chao, W.C.; Zhong, H.J.; Wang, M.; Chen, X.P.; Lu, J.J.; Li, R.N.; Ma, D.L.; Leung, C.H. Identification of an iridium (III) complex with anti-bacterial and anti-cancer activity. Sci. Rep. 2015, 5, 14544. [Google Scholar] [CrossRef]
- Lo, K.K.W.; Chung, C.K.; Lee, T.K.M.; Lui, L.H.; Tsang, K.H.K.; Zhu, N. New luminescent cyclometalated iridium (III) diimine complexes as biological labeling reagents. Inorg. Chem. 2003, 42, 6886–6897. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, J.I.; Hudson, W.R.; Lowry, M.S.; Anderson, T.H.; Bernhard, S. Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production. J. Am. Chem. Soc. 2005, 127, 7502–7510. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Chan, D.S.H.; Kwong, D.W.; He, H.Z.; Leung, C.H.; Ma, D.L. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem. Sci. 2014, 5, 4561–4568. [Google Scholar] [CrossRef]
- Rivas, F.; Medeiros, A.; Arce, E.R.; Comini, M.; Ribeiro, C.M.; Pavan, F.R.; Gambino, D. New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium tuberculosis. J. Inorg. Biochem. 2018, 187, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Benítez, D.; Medeiros, A.; Fiestas, L.; Panozzo-Zenere, E.A.; Maiwald, F.; Prousis, K.C.; Roussaki, M.; Calogeropoulou, T.; Detsi, A.; Jaeger, T.; et al. Identification of novel chemical scaffolds inhibiting trypanothione synthetase from pathogenic trypanosomatids. PLoS Neglected Trop. Dis. 2016, 10, e0004617. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Deghadi, R.G.; Mohamed, G.G. Metal complexes of novel Schiff base derived from iron sandwiched organometallic and 4-nitro-1,2-phenylenediamine: Synthesis, characterization, DFT studies, antimicrobial activities and molecular docking. Appl. Organomet. Chem. 2018, 32, e4289. [Google Scholar] [CrossRef]
- Bernier, C.M.; DuChane, C.M.; Martinez, J.S.; Falkinham, J.O., III; Merola, J.S. Synthesis, Characterization, and Antimicrobial Activity of RhIII and IrIII N-Heterocyclic Carbene Piano-Stool Complexes. Organometallics 2021, 40, 1670–1681. [Google Scholar] [CrossRef]
- Lapasam, A.; Dkhar, L.; Joshi, N.; Poluri, K.M.; Kollipara, M.R. Antimicrobial selectivity of ruthenium, rhodium, and iridium half sandwich complexes containing phenyl hydrazone Schiff base ligands towards B. thuringiensis and P. aeruginosa bacteria. Inorganica Chim. Acta 2019, 484, 255–263. [Google Scholar] [CrossRef]
- Rubbiani, R.; Kitanovic, I.; Alborzinia, H.; Can, S.; Kitanovic, A.; Onambele, L.A.; Stefanopoulou, M.; Geldmacher, Y.; Sheldrick, W.S.; Wolber, G.; et al. Benzimidazol-2-ylidene gold (I) complexes are thioredoxin reductase inhibitors with multiple antitumor properties. J. Med. Chem. 2010, 53, 8608–8618. [Google Scholar] [CrossRef]
- Rubbiani, R.; Can, S.; Kitanovic, I.; Alborzinia, H.; Stefanopoulou, M.; Kokoschka, M.; Ott, I. Comparative in Vitro Evaluation of N-Heterocyclic Carbene Gold(I) Complexes of the Benzimidazolylidene Type. J. Med. Chem. 2011, 54, 8646–8657. [Google Scholar] [CrossRef]
- Andermark, V.; Göke, K.; Kokoschka, M.; El Maaty, M.A.A.; Lum, C.T.; Zou, T.; Sun, R.W.Y.; Aguilo, E.; Oehninger, L.; Rodríguez, L.; et al. Alkynyl gold (I) phosphane complexes: Evaluation of structure–activity-relationships for the phosphane ligands, effects on key signaling proteins and preliminary in-vivo studies with a nanoformulated complex. J. Inorg. Biochem. 2016, 160, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Chuong, C.; DuChane, C.M.; Webb, E.M.; Rai, P.; Marano, J.M.; Bernier, C.M.; Merola, J.S.; Weger-Lucarelli, J. Noble Metal Organometallic Complexes Display Antiviral Activity against SARS-CoV-2. Viruses 2021, 13, 980. [Google Scholar] [CrossRef] [PubMed]
- Karpin, G.W.; Merola, J.S.; Falkinham, J.O., III. Transition metal–α-amino acid complexes with antibiotic activity against Mycobacterium spp. Agents Chemother. 2013, 57, 3434–3436. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Ressegue, E.; Merola, J.S. Rapid access to derivatized, dimeric, ring-substituted dichloro (cyclopentadienyl) rhodium (III) and iridium (III) complexes. Organometallics 2016, 35, 4014–4022. [Google Scholar] [CrossRef]
- DuChane, C.M.; Brown, L.C.; Dozier, V.S.; Merola, J.S. Synthesis, Characterization, and Antimicrobial Activity of RhIII and IrIII β-Diketonato Piano-Stool Compounds. Organometallics 2017, 37, 530–538. [Google Scholar] [CrossRef]
- Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008, 8, 473–480. [Google Scholar] [CrossRef]
Compound | Tested Micro-Organism | IC50 Value (μM) | Reference |
---|---|---|---|
1 | Trypanosoma cruzi | 0.25 ± 0.08 | [23] |
T. bruceibrucei (strain 427) | 0.6 ± 0.1 | [23] | |
2 | Mycobacterium tuberculosis (Mtb) | 2.8 ± 0.7 | [25] |
T. cruzi, Dm28c strain | 0.64 ± 0.03 | [25] | |
3 | Mycobacterium tuberculosis (Mtb) | 1.6 ± 0.3 | [25] |
T. cruzi, Dm28c strain | 0.28 ± 0.01 | [25] | |
4a | T. cruzi | 7.58 ± 0.10 | [31] |
T. brucei | 0.90 ± 0.05 | [31] | |
4b | T. cruzi | 1.42 ± 0.02 | [31] |
T. brucei | 0.93 ± 0.03 | [31] | |
4c | T. cruzi | 3.6 ± 0.05 | [31] |
T. brucei | 0.98 ± 0.06 | [31] | |
4d | T. cruzi | 29.4 ± 2.03 | [31] |
T. brucei | 1.56 ± 0.04 | [31] | |
5a | T. cruzi | 3.11 ± 0.05 | [31] |
T. brucei | 0.77 ± 0.02 | [31] | |
5b | T. cruzi | 0.79 ± 0.06 | [31] |
T. brucei | 0.60 ± 0.03 | [31] | |
5c | T. cruzi | 0.76 ± 0.03 | [31] |
T. brucei | 0.52 ± 0.03 | [31] | |
5d | T. cruzi | 1.32 ± 0.21 | [31] |
T. brucei | 1.01 ± 0.04 | [31] | |
6 | Leishmania major | 2.0 ± 0.3 | [32] |
T. brucei | 0.7 ± 0.1 | [32] | |
7 | Leishmania major | 3.6 ± 2.0 | [32] |
T. brucei | 13.2 ± 1.2 | [32] | |
8 | Leishmania major | 1.8 ± 0.2 | [32] |
T. brucei | 0.4 ± 0.4 | [32] | |
9 | Leishmania major | 4.7 ± 0.1 | [32] |
T. brucei | 2.1 ± 1.9 | [32] | |
10 | Leishmania major | 2.2 ± 0.2 | [32] |
T. brucei | 0.5 ± 0.4 | [32] | |
KTZ | Leishmania major | 66.0 ± 3.9 | [32] |
T. brucei | 20.5 ± 0.4 | [32] | |
MCZ | Leishmania major | 42.6 ± 7.4 | [32] |
T. brucei | 17.5 ± 0.6 | [32] | |
CTZ | Leishmania major | 64.6 ± 2.1 | [32] |
T. brucei | 17.4 ± 0.6 | [32] | |
11–15 | T. cruzi trypomastigotes | 0.3 ± 0.06 | [33] |
T. cruzi Y strain | 0.64 ± 0.1 | [33] | |
16 | P. falciparum strains NF54 (CQS) | 1.93 ± 0.04 | [35] |
P. falciparum strains Dd2 (CQR) | 2.69 ± 0.22 | [35] | |
17 | P. falciparum strains NF54 (CQS) | 1.81 ± 0.11 | [35] |
P. falciparum strains Dd2 (CQR) | 1.73 ± 0.16 | [35] | |
18 | P. falciparum strains NF54 (CQS) | 1.76 ± 0.074 | [35] |
P. falciparum strains Dd2 (CQR) | 1.59 ± 0.053 | [35] |
Compound | MIC | |||||
---|---|---|---|---|---|---|
B. subtilis | S. aureus DSM 20231 | S. aureus ATCC43300 (MRSA) | ||||
µg mL−1 | µM | µg mL−1 | µM | µg mL−1 | µM | |
19 | 2 | 1.4 | 2 | 1.4 | 2 | 1.4 |
20 | 32 | 21 | 4 | 2.7 | 6 | 4 |
21 | 4 | 3 | 2 | 1.5 | 2 | 1.5 |
22 | 4 | 2.9 | 4 | 2.9 | 2 | 1.5 |
23 | 4 | 3.3 | 2 | 1.6 | 2 | 1.6 |
Compound | MIC Value against M. tuberculosis H37Rv (µM) | Reference |
---|---|---|
29 | 1.06 | [17] |
30 | 3.29 | [17] |
31 | 1.53 | [17] |
Isoniazid | 0.18 | [41] |
Rifampicin | 0.49 | [41] |
Pyrazinamide | 48.74–406.14 a | [41] |
Ethambutol | 2.45 | [41] |
Compound for Treatment | Inhibition Zone in mm | |||
---|---|---|---|---|
B. cereus | E. coli | S. pneumoniae | V. cholerae | |
L1H | 4 | 3 | 2 | 3 |
L1H | 7 | 4 | 3 | 3 |
L1H | 5 | 4 | 3 | 6 |
32 | 5 | 7 | 5 | 6 |
33 | 14 | 13 | 13 | 15 |
34 | 9 | 8 | 7 | 9 |
Chloramphenicol | 30 | 19 | 20 | 28 |
DMF | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dube, N.P.; Thatyana, M.; Mokgalaka-Fleischmann, N.S.; Mansour, A.M.; Tembu, V.J.; Manicum, A.-L.E. Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases. Molecules 2024, 29, 406. https://doi.org/10.3390/molecules29020406
Dube NP, Thatyana M, Mokgalaka-Fleischmann NS, Mansour AM, Tembu VJ, Manicum A-LE. Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases. Molecules. 2024; 29(2):406. https://doi.org/10.3390/molecules29020406
Chicago/Turabian StyleDube, Nondumiso P., Maxwell Thatyana, Ntebogeng S. Mokgalaka-Fleischmann, Ahmed M. Mansour, Vuyelwa J. Tembu, and Amanda-Lee E. Manicum. 2024. "Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases" Molecules 29, no. 2: 406. https://doi.org/10.3390/molecules29020406
APA StyleDube, N. P., Thatyana, M., Mokgalaka-Fleischmann, N. S., Mansour, A. M., Tembu, V. J., & Manicum, A. -L. E. (2024). Review on the Applications of Selected Metal-Based Complexes on Infectious Diseases. Molecules, 29(2), 406. https://doi.org/10.3390/molecules29020406