Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Solid-State Photophysical Properties of 1,4-Diphenylanthracene Derivatives
- (1)
- Relation between solid-state luminous color, crystal packing, Hirshfeld surface analysis, and fluorescence lifetimes: As already mentioned, the luminous colors of the pristine samples of the 1,4-diphenylanthracene derivatives show light-blue (1a–1c, LB), green (1e, 4, G), and yellow-green (1d, 1f, 2, 3, YG) colors. In the case of the light-blue luminous derivatives 1a–1c, the emission is probably derived from the monomer of the 1,4-diphenylanthracene rings since the crystal packing of 1a–1c showed only partial overlapping of the anthracene ring, as indicated by the purple and green colors in Figure 2a,c. On the other hand, in the case of the yellow-green luminous derivatives 1f (R = CN) and 2 (3-CN), the emission is probably derived from the excimer state of the 1,4-diphenylanthracene rings, and a greater overlapping of the anthracene rings compared to 1a–1c is observed, as shown in Figure 2e,f. In the case of the yellow-green luminous MeO-group substituted derivative 1d, the crystal packing is very similar (overlapping only one benzene ring) to the light-blue luminous derivatives 1a–1c, as shown in Figure 2a–d, suggesting that an intermolecular charge transfer may be operating (see Figures S39 and S40, DFT calculation) and showing a yellow-green luminous color. To further understand the contribution of the π–π stacking for the crystal packing, the Hirshfeld surface analysis according to the crystal data was performed (Figure 3). The contribution of π–π stacking for 1f (R = CN, contribution of the C–C interactions: 13.8%) and 2 (3-CN, contribution of the C–C interactions: 13.5%) is greater than that for 1a–1c (contribution of the C–C interactions: 6.4–9.8%), indicating that the yellow-green emission of 1f and 2 is due to the formation of the π–π stacking (excimer emission). The fluorescence lifetimes of the 1,4-diphenylanthracene derivatives for the pristine state also show the difference in the contribution of the π–π stacking interactions as follows. Short fluorescence lifetimes between 2.27–3.96 ns were observed for the light-blue luminous samples 1a–1c; however, slightly longer fluorescence lifetimes were observed for the green luminous samples 1e (4. 69 ns, R = CF3) and 4 (5.22 ns, R′ = F, 3,5-F2) and for the yellow-green luminous samples 1f (R = CN), 2 (3-CN) and 3 (R ′= CN, 3,5-CN2), longer fluorescence lifetimes were observed between 7.39 and 109 ns (Table 1, Figure S20). These observed fluorescence lifetimes are increasing in the order of light-blue < green < yellow-green luminous color (the fluorescence wavelengths also increased in the same order). These results indicated that the contribution of the π–π stacking interactions is also increasing in the same order, which is in good agreement with the crystal data only except for 1d.
- (2)
- Relation between fluorescence quantum yield, fluorescence lifetime, and crystal packing of 1f (R=CN) and 2 (3-CN): The pristine sample of 2 (3-CN) exhibited a relatively high fluorescence quantum yield (ϕf = 0.71) compared to the other 1,4-diphenylanthracene derivatives (ϕf = 0.15–0.44, Table 1), as already described. To consider the reason for the higher fluorescence quantum yield of 2 (3-CN), we calculated the rate constant kf for the fluorescence and the rate constant knr for non-radiative decay (Table S1) and compared kf and knr to that of 1f (R = CN) and 2 (3-CN). The rate constants kf for the fluorescence of 1f (kf = 0.008 ns−1) and 2 (kf = 0.006 ns−1) were almost the same, but the rate constant knr for the non-radiative decay of 2 (knr = 0.003 ns−1) was about seven times lower than that of 1f (knr = 0.022 ns−1), and the difference in knr caused the fluorescence quantum yield of 2 (ϕf = 0.71) to be higher than that of 1f (ϕf = 0.26) in the pristine solid state. The difference in knr between 1f and 2 may be due to the difference in the crystal packing structure. Due to the substitution of a CN group at the 3-position (meta-position) of the phenyl group in the derivative 2 and the intermolecular hydrogen bond (Ar–CN⋯H–Ar) formed by the CN group, the crystal packing structure of 2 forms a tight, lock-and-key type packing compared to the loose packing structure of 1f (Figure 2e,f and Figure S37). The tight packing structure of 2 is considered to suppress the molecular vibration in the solid state compared to the packing structure of 1f and exhibits a very low knr (0.003 ns−1 for 2) and a high fluorescence quantum yield (ϕf = 0.71).
2.2. Photophysical Properties of 1,4-Diphenylanthracene Derivatives in Solution and in PMMA Films
2.3. Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives
2.4. Vapochromic and Thermochromic Properties of 1,4-Diphenylanthracene Derivatives
3. Materials, Equipment and Methods
3.1. General Methods
3.2. Synthesis of 1,4-Diphenylanthracene Derivatives 1–4
- 1a (R = H): yield 87%, pale-yellow needles, mp: 157.8–158.8 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.52 (s, 2H), 7.87 (dd, J = 6.4, 3.3 Hz, 2H), 7.63 (d, J = 8.2 Hz, 4H), 7.56 (t, J = 7.5 Hz, 4H), 7.49 (t, J = 7.3 Hz, 2H), 7.44 (s, 2H), 7.40 (dd, J = 6.6, 3.2 Hz, 2H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 141.2 (Cq), 140.0 (Cq), 131.5 (Cq), 130.8 (Cq), 130.4 (CH), 128.6 (CH), 128.5 (CH), 127.6 (CH), 125.9 (CH), 125.7 (CH), 125.5 (CH), HRMS (FAB, NBA) m/z = 330.1417 (calculated for M+·: 330.1409), Anal. Calcd. for C26H18: C: 94.51, H: 5.49, Found: C: 94.41, H: 5.58.
- 1b (R = Me): yield 76%, pale-yellow prisms, mp: 192.3–193.3 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.54 (s, 2H), 7.87 (dd, J = 6.4, 3.3 Hz, 2H), 7.52 (d, J = 8.0 Hz, 4H), 7.42 (s, 2H), 7.39 (dd, J = 6.6, 3.2 Hz, 2H), 7.37 (d, J = 7.7 Hz, 4H), 2.50 (s, 6H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 139.6 (Cq), 138.1 (Cq), 137.1 (Cq), 131.3 (Cq), 130.7 (Cq), 130.1 (CH), 129.1 (CH), 128.3 (CH), 125.8 (CH), 125.4 (CH), 125.3 (CH), 21.3 (CH3), HRMS (FAB, NBA) m/z = 358.1723 (calculated for M+·: 358.1722), Anal. Calcd. for C28H22·0.4H2O: C: 91.97, H: 6.28, Found: C: 92.02, H: 6.17.
- 1c (R = F): yield 94%, pale-yellow prisms, mp: 160.0–161.0 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.43 (s, 2H), 7.87 (dd, J = 6.4, 3.3 Hz, 2H), 7.55 (m, 4H), 7.42 (dd, J = 6.6, 3.2 Hz, 2H), 7.38 (s, 2H), 7.24 (m, 4H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 162.6 (Cq, d, 1JC-F = 246.7 Hz), 139.1 (Cq), 136.9 (Cq, d, 4JC-F = 3.0 Hz), 131.9 (CH), 131.8 (CH), 131.6 (Cq), 130.8 (Cq), 128.4 (CH), 126.0 (CH), 125.3 (CH), 115.6 (CH, d, 2JC-F = 21.4 Hz), 19F NMR (470 MHz, CDCl3): δ (ppm) = −116.1, HRMS (FAB, NBA) m/z = 366.1230 (calculated for M+·: 366.1220), Anal. Calcd. for C26H16F2: C: 85.23, H: 4.40, Found: C: 85.15, H: 4.46.
- 1d (R = OMe): yield 80%, yellow solids, mp: 246.9–247.9 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.53 (s, 2H), 7.88 (dd, J = 6.4, 3.3 Hz, 2H), 7.54 (d, J = 8.7 Hz, 4H), 7.404 (s, 2H), 7.401 (dd, J = 6.4, 3.3 Hz, 2H), 7.10 (d, J = 8.7 Hz, 4H), 3.93 (s, 6H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 159.2 (Cq), 139.4 (Cq), 133.6 (Cq), 131.5 (Cq), 131.4 (CH), 131.1 (Cq), 128.5 (CH), 125.9 (CH), 125.6 (CH), 125.5 (CH), 114.0 (CH), 55.5 (CH3), HRMS (FAB, NBA) m/z = 390.1619 (calculated for M+·: 390.1620), Anal. Calcd. for C28H24O3·H2O: C: 82.33, H: 5.92, Found: C: 82.30, H: 5.57.
- 1e (R = CF3): yield 88%, yellow solids, mp: 207.5–208.5 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.42 (s, 2H), 7.89 (dd, J = 6.4, 3.2 Hz, 2H), 7.83 (d, J = 8.0 Hz, 4H), 7.73 (d, J = 8.0 Hz, 4H), 7.45 (dd, J = 6.6, 3.1 Hz, 2H), 7.43 (s, 2H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 144.5 (Cq), 139.1 (Cq), 131.6 (Cq), 130.5 (CH), 130.1 (Cq), 129.83 (q, 2JC-F = 32.5 Hz), 128.3 (CH), 126.1 (CH), 125.8 (CH), 125.5 (CH, q, 3JC-F = 3.6 Hz), 125.1 (CH), 124.3 (CF3, q, 1JC-F = 272.1 Hz), 19F NMR (470 MHz, CDCl3): δ (ppm) = −63.5, HRMS (FAB, NBA) m/z = 466.1154 (calculated for M+·: 466.1156), Anal. Calcd. for C28H16F6·0.2H2O: C: 71.55, H: 3.52, Found: C: 71.41, H: 3.50.
- 1f (R = CN): yield 88%, yellow solids, mp: 278.5–279.5 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.39 (s, 2H), 7.90 (dd, 2H), 7.89 (d, J = 8.2 Hz, 4H), 7.75 (d, J = 8.2 Hz, 4H), 7.49 (dd, J = 6.6, 3.2 Hz, 2H), 7.45 (s, 2H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 145.5 (Cq), 139.0 (Cq), 132.4 (CH), 131.7 (Cq), 130.8 (CH), 129.7 (Cq), 128.2 (CH), 126.4 (CH), 125.8 (CH), 125.0 (CH), 118.8 (Cq), 111.6 (Cq), HRMS (FAB, NBA) m/z = 380.1324 (calculated for M+·: 380.1313), Anal. Calcd. for C28H16N2·0.2H2O: C: 87.57, H: 4.30, N: 7.29, Found: C: 87.51, H: 4.37, N: 7.17.
- 2 (3-CN): yield 88%, yellow solids, mp: 208.1–209.1 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.35 (s, 2H), 7.92 (t, J = 1.6 Hz, 2H), 7.92 (dd, 2H), 7.87 (dt, J = 7.7, 1.5 Hz, 2H), 7.83 (dt, J = 7.8, 1.4 Hz, 2H), 7.50 (dd, J = 6.6, 3.2 Hz, 2H), 7.43 (s, 2H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 141.9 (Cq), 138.4 (Cq), 134.5 (CH), 133.5 (CH), 131.7 (Cq), 131.3 (CH), 129.9 (Cq), 129.4 (CH), 128.2 (CH), 126.4 (CH), 125.9 (CH), 124.9 (CH), 118.7 (Cq), 112.9 (Cq), HRMS (FAB, NBA) m/z = 380.1306 (calculated for M+·: 380.1313), Anal. Calcd. for C28H16N2·0.4H2O: C: 86.75, H: 4.37, N: 7.23, Found: C: 86.65, H: 4.29, N: 7.12.
- 3 (3,5-CN2, R′=CN): yield 45%, yellow solids, mp: >300 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.24 (s, 2H), 8.13 (d, J = 1.5 Hz, 4H), 8.11 (t, J = 1.5 Hz, 2H), 7.95 (dd, J = 6.5, 3.3 Hz, 2H), 7.58 (dd, J = 6.6, 3.1 Hz, 2H), 7.44 (s, 2H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 143.3 (Cq), 137.2 (CH), 137.0 (Cq), 134.5 (CH), 132.1 (Cq), 129.2 (Cq), 128.2 (CH), 127.2 (CH), 126.2 (CH), 124.6 (CH), 116.5 (Cq), 114.7 (Cq), HRMS (FAB, NBA) m/z = 430.1214 (calculated for M+·: 430.1218).
- 4 (3,5-F2, R′ = F): yield 99%, yellow solids, mp: 196.8–197.8 °C; 1H NMR (500 MHz, CDCl3): δ (ppm) = 8.45 (s, 2H), 7.92 (dd, J = 6.4, 3.3 Hz, 2H), 7.47 (dd, J = 6.6, 3.1 Hz, 2H), 7.40 (s, 2H), 7.13 (dd, 3JF-H = 7.8 Hz, 4JH-H = 2.0 Hz, 4H), 6.96 (tt, 3JF-H = 9.0 Hz, 4JH-H = 2.3 Hz, 2H), 13C NMR (125 MHz, CDCl3): δ (ppm) = 163.2 (Cq, dd, 1JC-F = 249.1, 3JC-F = 12.9 Hz), 144.1 (Cq, t, 3JC-F = 9.5 Hz), 138.6 (Cq), 131.9 (Cq), 130.0 (Cq), 128.5 (CH), 126.4 (CH), 125.7 (CH), 125.1 (CH), 113.3 (CH, dd, 2JC-F = 19.3, 4JC-F = 6.1 Hz), 103.3 (CH, t, 2JC-F = 25.3 Hz), 19F NMR (470 MHz, CDCl3): δ (ppm) = −110.8, HRMS (FAB, NBA) m/z = 402.1045 (calculated for M+·: 402.1032), Anal. Calcd. for C26H14F4·0.5H2O: C: 75.91, H: 3.68, Found: C:76.01, H: 3.75.
3.3. Computational Methods
3.4. Crystallographic Analysis
3.5. PXRD Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, H.; Popovic, Z.D.; Hu, N.-X.; Hor, A.-M.; Xu, G. Degradation Mechanism of Small Molecule–Based Organic Light-Emitting Devices. Science 1999, 283, 1900. [Google Scholar] [CrossRef] [PubMed]
- Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.D.C.; Santos, D.A.D.; Brédas, J.L.; Lögdlung, M.; et al. Electroluminescence in Conjugated Polymers. Nature 1999, 397, 121. [Google Scholar] [CrossRef]
- Yanagi, H.; Morikawa, T.; Hotta, S. Electroluminescence from Low-Dimensionally Confined Crystals of Thiophene/p-Phenylene Co-Oligomers. Appl. Phys. Lett. 2002, 81, 1512. [Google Scholar] [CrossRef]
- Lee, J.; Yuan, Y.-Y.; Kang, Y.; Jia, W.-L.; Lu, Z.-H.; Wang, S. 2,5-Functionalized Spiro-Bisiloles as Highly Efficient Yellow-Light Emitters in Electroluminescent Devices. Adv. Funct. Mater. 2006, 16, 681. [Google Scholar] [CrossRef]
- Yuan, W.Z.; Lu, P.; Chen, S.; Lam, J.W.Y.; Wang, Z.; Liu, Y.; Kwok, H.S.; Ma, Y.; Tang, B.Z. Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Adv. Mater. 2010, 22, 2159. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.L.; Bao, Z. Halogenated Materials as Organic Semiconductors. Chem. Mater. 2011, 23, 446. [Google Scholar] [CrossRef]
- Yee, K.W.; Yokoyama, M.; Hiramoto, M. Very-Thin-Perylene-Crystal-Based Electroluminescent Devices. Appl. Phys. Lett. 2006, 88, 083511. [Google Scholar] [CrossRef]
- Figueira-Duarte, T.M.; Müllen, K. Pyrene-Based Materials for Organic Electronics. Chem. Rev. 2011, 111, 7260. [Google Scholar] [CrossRef]
- Gao, F.; Liano, Q.; Xu, Z.-Z.; Yue, Y.-H.; Wang, Q.; Zhang, H.-L.; Fu, H.-B. Strong Two-Photon Excited Fluorescence and Stimulated Emission from an Organic Single Crystal of an Oligo(Phenylene Vinylene). Angew. Chem. Int. Ed. 2010, 49, 732. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Peng, A.; Fu, H.; Ma, Y.; Yao, J. Nanowire Waveguides and Ultraviolet Lasers Based on Small Organic Molecules. Adv. Mater. 2008, 20, 1661. [Google Scholar] [CrossRef]
- Bulovic, V.; Kozlov, V.G.; Khalfin, V.B.; Forrest, S.R. Transform-Limited, Narrow-Linewidth Lasing Action in Organic Semiconductor Microcavities. Science 1998, 279, 553. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C.M. Single-Nanowire Electrically Driven Lasers. Nature 2003, 421, 241. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, J.; Stille, W.; Finkelmann, H.; Kim, S.T. Laser Emission in a Dye Doped Cholesteric Polymer Network. Adv. Mater. 2002, 14, 746–749. [Google Scholar] [CrossRef]
- Samuel, I.D.W.; Turnbull, G.A. Organic Semiconductor Lasers. Chem. Rev. 2007, 107, 1272. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Fu, H.; Yao, J. Waveguide Modulator by Energy Remote Relay from Binary Organic Crystalline Microtubes. Adv. Mater. 2009, 21, 4153. [Google Scholar] [CrossRef]
- Tong, L.; Gattass, R.R.; Ashcom, J.B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E. Subwavelength-Diameter Silica Wires for Low-Loss Optical Wave Guiding. Nature 2003, 426, 816. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Lei, T.; Hu, N.; Chen, E.-Q.; Pei, J. Structural-Property Relationship in Pyrazino[2,3-g]quinoxaline Derivatives: Morphology, Photophysical, and Waveguide Properties. Chem. Mater. 2010, 22, 3735. [Google Scholar] [CrossRef]
- Takazawa, K.; Kitahama, Y.; Kimura, Y.; Kido, G. Optical Waveguide Self-Assembled from Organic Dye Molecules in Solution. Nano. Lett. 2005, 5, 1293. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y.S.; Yao, J. Optical Waveguides at Micro/Nanoscale Based on Functional Small Organic Molecules. Phys. Chem. Chem. Phys. 2011, 13, 9060. [Google Scholar] [CrossRef]
- Goyal, H.; Kumar, P.; Gupta, R. Polycyclic Aromatic Hydrocarbon-based Soft Materials: Applications in Fluorescent Detection, Gelation, AIEE and Mechanochromism. Chem. Asian J. 2023, e202300355. [Google Scholar] [CrossRef]
- Ito, S. Mechanochromic Luminescence of Soft Crystals: Recent Systematic Studies in Controlling the Molecular Packing and Mechanoresponsive Properties. J. Photochem. Photobiol. C 2022, 51, 100481. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, Z.; Ma, H. Twisted Aggregation-Induced Emission Luminogens (AIEgens) Contribute to Mechanochromism Materials: A Review. J. Mater. Chem. C 2022, 10, 14834. [Google Scholar] [CrossRef]
- Mutai, T.; Takamizawa, S. Organic Soft Crystals Exhibiting Spontaneously Reversible Mechano-Responsive Luminescence. J. Photochem. Photobiol. C 2022, 51, 100479. [Google Scholar] [CrossRef]
- Sagara, Y.; Kato, T. Mechanically Induced Luminescence Changes in Molecular Assemblies. Nature Chem. 2009, 1, 605. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chi, Z.; Mao, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Aldred, M.P.; Chi, Z. Recent Advances in Mechano-Responsive Luminescence of Tetraphenylethylene Derivatives with Aggregation-Induced Emission Properties. Mater. Chem. Front. 2018, 2, 861. [Google Scholar] [CrossRef]
- Luo, X.; Li, J.; Li, C.; Heng, L.; Dong, Y.Q.; Liu, Z.; Bo, Z.; Tang, B.Z. Reversible Switching of the Emission of Diphenyldibenzofulvenes by Thermal and Mechanical Stimuli. Adv. Mater. 2011, 23, 3261. [Google Scholar] [CrossRef] [PubMed]
- Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials. Adv. Mater. 2016, 28, 1073. [Google Scholar] [CrossRef]
- Huang, X.; Qian, L.; Zhou, Y.; Liu, M.; Cheng, Y.; Wu, H. Effective Structural Modification of Traditional Fluorophores to Obtain Organic Mechanofluorochromic Molecules. J. Mater. Chem. C 2018, 6, 5075. [Google Scholar] [CrossRef]
- Xue, S.; Qiu, X.; Sun, Q.; Yang, W. Alkyl Length Effects on Solid-State Fluorescence and Mechanochromic Behavior of Small Organic Luminophores. J. Mater. Chem. C 2016, 4, 1568. [Google Scholar] [CrossRef]
- Ito, H.; Saito, T.; Oshima, N.; Kitamura, N.; Ishizaka, S.; Hinatsu, Y.; Wakeshima, M.; Kato, M.; Tsuge, K.; Sawamura, M. Reversible Mechanochromic Luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J. Am. Chem. Soc. 2008, 130, 10044. [Google Scholar] [CrossRef]
- Seki, T.; Kobayashi, K.; Ito, H. Low-Temperature-Selective Luminescent Mechanochromism of a Thienyl Gold Isocyanide Complex. Chem. Commun. 2017, 53, 6700. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xu, Z. Reversible Mechanochromic Studies on AIE-Inspired Smart Materials and Their Applications in HCHO Sensing. Dalton Trans. 2022, 51, 6332. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; He, L.-H.; Ju, P.; Chen, J.-L.; Ye, H.-Y.; Wang, J.-Y.; Liu, S.-J.; Wen, H.-R. Reversible Mechanochromic Luminescence of Tetranuclear Cuprous Complexes. Inorg. Chem. 2020, 59, 17213. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wen, T.; Fu, W.-Q.; Liu, M.; Chen, S.; Zhang, J. Structure-Dependent Mechanochromism of Two Ag(I) Imidazolate Chains. CrystEngComm 2016, 18, 218. [Google Scholar] [CrossRef]
- Geng, H.; Luo, K.; Zou, G.; Wang, H.; Ni, H.; Yu, W.; Li, Q.; Wang, Y. New Phosphorescent Platinum(II) Complexes: Lamellar Mesophase and Mechanochromism. New J. Chem. 2016, 40, 10371. [Google Scholar] [CrossRef]
- Seki, T.; Takamatsu, Y.; Ito, H. A Screening Approach for the Discovery of Mechanochromic Gold(I) Isocyanide Complexes with Crystal-To-Crystal Phase Transitions. J. Am. Chem. Soc. 2016, 138, 6252. [Google Scholar] [CrossRef]
- Ai, Y.; Li, Y.; Chan, M.H.-Y.; Xiao, G.; Zou, B.; Yam, V.W.-W. Realization of Distinct Mechano- and Piezochromic Behaviors Via Alkoxy Chain Length-Modulated Phosphorescent Properties and Multidimensional Self-Assembly Structures of Dinuclear Platinum(II) Complexes. J. Am. Chem. Soc. 2021, 143, 10659. [Google Scholar] [CrossRef]
- Seki, T.; Ida, K.; Ito, H. A Meta-Diisocyanide Benzene-Based Aryl Gold Isocyanide Complex Exhibiting Multiple Solid-State Molecular Arrangements and Luminescent Mechanochromism. Mater. Chem. Front. 2018, 2, 1195. [Google Scholar] [CrossRef]
- Zhao, K.-Y.; Shan, G.-G.; Fu, Q.; Su, Z.-M. Tuning Emission of AIE-Active Organometallic Ir(III) Complexes by Simple Modulation of Strength of Donor/Acceptor on Ancillary Ligands. Organometallics 2016, 35, 3996. [Google Scholar] [CrossRef]
- Yagai, S.; Seki, T.; Aonuma, H.; Kawaguchi, K.; Karatsu, T.; Okura, T.; Sakon, A.; Uekusa, H.; Ito, H. Mechanochromic Luminescence Based on Crystal-To-Crystal Transformation Mediated by a Transient Amorphous State. Chem. Mater. 2016, 28, 234. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, G.; Wang, R.; Pu, S. Highly Emissive Carbazole-Based Gold(I) Complex with a Long Room-Temperature Phosphorescence Lifetime and Self-Reversible Mechanochromism Characteristics. RSC Adv. 2017, 7, 15112. [Google Scholar] [CrossRef]
- Huitorel, B.; Benito, Q.; Fargues, A.; Garcia, A.; Gacoin, T.; Boilot, J.-P.; Perruchas, S.; Camerel, F. Mechanochromic Luminescence and Liquid Crystallinity of Molecular Copper Clusters. Chem. Mater. 2016, 28, 8190. [Google Scholar] [CrossRef]
- Jin, M.; Seki, T.; Ito, H. Luminescent Mechanochromism of a Chiral Complex: Distinct Crystal Structures and Color Changes of Racemic and Homochiral Gold(I) Isocyanide Complexes with a Binaphthyl Moiety. Chem. Commun. 2016, 52, 8083. [Google Scholar] [CrossRef] [PubMed]
- Seki, T.; Tokodai, N.; Omagari, S.; Nakanishi, T.; Hasegawa, Y.; Iwasa, T.; Taketsugu, T.; Ito, H. Luminescent Mechanochromic 9-Anthryl Gold(I) Isocyanide Complex with an Emission Maximum at 900 nm After Mechanical Stimulation. J. Am. Chem. Soc. 2017, 139, 6514. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Xu, B.; Zhang, J.; Tan, X.; Wang, L.; Chen, J.; Lv, H.; Wen, S.; Li, B.; Ye, L.; et al. Piezochromic Luminescence Based on the Molecular Aggregation of 9,10-Bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem. Int. Ed. 2012, 51, 10782. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Leong, P.; Li, Z.; Hu, R.; Shi, C.; Zhang, K.Y.; Yan, H.; Zhao, Q. A Carborane-Triggered Metastable Charge Transfer State Leading to Spontaneous Recovery of Mechanochromic Luminescence. Chem. Commun. 2016, 52, 12494. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Chi, Z.; Xu, B.; Zhou, W.; Liu, S.; Zhang, Y.; Xu, J. New Thermally Stable Piezofluorochromic Aggregation-Induced Emission Compounds. Org. Lett. 2011, 13, 556. [Google Scholar] [CrossRef]
- Wu, X.; Guo, J.; Cao, Y.; Zhao, J.; Jia, W.; Chen, Y.; Jia, D. Mechanically Triggered Reversible Stepwise Tricolor Switching and Thermochromism of Anthracene-o-Carborane Dyad. Chem. Sci. 2018, 9, 5270. [Google Scholar] [CrossRef]
- Li, R.; Xiao, S.; Li, Y.; Lin, Q.; Zhang, R.; Zhao, J.; Yang, C.; Zou, K.; Li, D.; Yi, T. Polymorphism-Dependent and Piezochromic Luminescence Based on Molecular Packing of a Conjugated Molecule. Chem. Sci. 2014, 5, 3922. [Google Scholar] [CrossRef]
- Fedorenko, E.; Tretyakova, G.; Mirochnik, A.; Gerasimenko, A.; Beloliptsev, A. Anthracene-Containing Complexes of Boron Difluoride. Dual Luminescence, Formation of Excimers, and Mechanochromism. Spectrochim. Acta A 2021, 262, 120114. [Google Scholar] [CrossRef]
- Suresh, S.K.; Raju, P.D.; Krishnan, A.; Ramachandran, L.M.; Suneesh, C.V. Supramolecular Interactions-Assisted Polymorphism and Unique Mechanofluorochromism in 9,10-Bis((E)-4-(trifluoromethyl)styryl)anthracene. Chem. Eur. J. 2023, 29, e202204030. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Zhang, J.; Tan, R.; Wang, S.; Li, Y.; Li, Q.; Xiao, S. High-Contrast Reversible Mechanochromic Luminescence of a Conjugated Anthracene-Based Molecule. Mater. Lett. 2016, 164, 239. [Google Scholar] [CrossRef]
- Xiong, Y.; Yan, X.; Ma, Y.; Li, Y.; Yin, G.; Chen, L. Regulating the Piezofluorochromism of 9,10-Bis(butoxystyryl)anthracenes by Isomerization of Butyl Groups. Chem. Commun. 2015, 51, 3403. [Google Scholar] [CrossRef]
- Tanikubo, H.; Matsuo, T.; Hayashi, S. Alkyl-Chain Bridged Acrylonitrile-Appended Anthracene Chromophore Toward Mechanically-Induced Bathochromic Shift. Bull. Chem. Soc. Jpn. 2023, 96, 178. [Google Scholar] [CrossRef]
- Naeem, K.C.; Subhakumari, A.; Varughese, S.; Nair, V.C. Heteroatom Induced Contrasting Effects on the Stimuli Responsive Properties of Anthracene Based Donor–π–Acceptor Fluorophores. J. Mater. Chem. C 2015, 3, 10225. [Google Scholar] [CrossRef]
- Naito, H.; Morisaki, Y.; Chujo, Y. o-Carborane-Based Anthracene: A Variety of Emission Behaviors. Angew. Chem. Int. Ed. 2015, 54, 5084. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, D.; Zhou, T.; Zhang, H.; Wang, Y. Reversible Piezo- and Photochromic Behaviors Accompanied by Emission Color Switching of Two Anthracene-Containing Organic Molecules. Chem. Commun. 2011, 47, 7782. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhang, D.T.; Sun, M.X.; Li, Y.P.; Liu, T.L.; Xue, S.F.; Yang, W.J. Cruciform 9,10-Distyryl-2,6-Bis(p-dialkylamino-styryl)anthracene Homologues Exhibiting Alkyl Length-Tunable Piezochromic Luminescence and Heat-Recovery Temperature of Ground States. J. Mater. Chem. C 2014, 2, 1913. [Google Scholar] [CrossRef]
- Bu, L.; Sun, M.; Zhang, D.; Liu, W.; Wang, Y.; Zheng, M.; Xue, S.; Yang, W. Solid-State Fluorescence Properties and Reversible Piezochromic Luminescence of Aggregation-Induced Emission-Active 9,10-Bis[(9,9-dialkylfluorene-2-yl)vinyl]anthracenes. J. Mater. Chem. C 2013, 1, 2028. [Google Scholar] [CrossRef]
- Kohmoto, S.; Chuko, T.; Hisamatsu, S.; Okuda, Y.; Masu, H.; Takahashi, M.; Kishikawa, K. Piezoluminescence and Liquid Crystallinity of 4,4′-(9,10-Anthracenediyl)bispyridinium Salts. Cryst. Growth Des. 2015, 15, 2723. [Google Scholar] [CrossRef]
- Gogoi, G.; Kashyap, D.; Sarma, R.J. Mechano-Luminescent Behavior of a Pyridine-Containing Anthracene Derivative: Role of Aromatic Stacking Interactions. Cryst. Growth Des. 2018, 18, 4963. [Google Scholar] [CrossRef]
- Kusukawa, T.; Kojima, Y.; Kannen, F. Mechanofluorochromic Properties of 1,8-Diphenylanthracene Derivatives. Chem. Lett. 2019, 48, 1213. [Google Scholar] [CrossRef]
- Kusukawa, T.; Kannen, F.; Kojima, Y.; Yoza, K. Crystal Polymorphism-Dependent Fluorescence of Fluoroarene-Substituted Anthracene Derivatives. Chem. Lett. 2021, 50, 31. [Google Scholar] [CrossRef]
- Kusukawa, T.; Shibata, S.; Kannen, F.; Yoza, K. Mechnofluorochromic Properties of N-Alkyl Amide Anthracene Derivatives. Tetrahedron 2022, 111, 132735. [Google Scholar] [CrossRef]
- Kannen, F.; Nishimura, M.; Yoza, K.; Kusukawa, T. Mechanofluorochromic Properties of 1-Phenylanthracene Derivatives with Extremely Simple Structures. Tetrahedron 2023, 149, 133710. [Google Scholar] [CrossRef]
- Zhu, G.; Yu, T.; Chen, J.; Hu, R.; Yang, G.; Zeng, Y.; Li, Y. Dipyrene-Terminated Oligosilanes Enable Ratiometric Fluorescence Response in Polymers Toward Mechano- and Thermo-Stimuli. ACS Appl. Mater. Interfaces. 2023, 15, 11033. [Google Scholar] [CrossRef]
- Sagara, Y.; Kato, T. Stimuli-Responsive Luminescent Liquid Crystals: Change of Photoluminescent Colors Triggered by a Shear-Induced Phase Transition. Angew. Chem. Int. Ed. 2008, 47, 5175. [Google Scholar] [CrossRef]
- Ma, Z.; Teng, M.; Wang, Z.; Yang, S.; Jia, X. Mechanically Induced Multicolor Switching Based on a Single Organic Molecule. Angew. Chem. Int. Ed. 2013, 52, 12268. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, X.; Ma, C.; Huang, G.; Li, B.S.; Tang, B.Z. Two Cholesterol-Containing Pyrene Derivatives: Subtle Spacer Difference, Diverse Stimuli-Responsive Luminescence, Chirality, and Self-Assembly Behaviors. ACS Appl. Mater. Interfaces 2022, 14, 43926. [Google Scholar] [CrossRef]
- Hirai, Y.; Laize-Générat, L.; Wrona-Piotrowicz, A.; Zakrzewski, J.; Makal, A.; Brosseau, A.; Michely, L.; Versace, D.-L.; Allain, C.; Métivier, R. Multi-Directional Mechanofluorochromism of Acetyl Pyrenes and Pyrenyl Ynones. ChemPhysChem 2021, 22, 1638. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Zhang, J.-P.; Wang, H. Bis-Pyrene-Based Supramolecular Aggregates with Reversibly Mechanochromic and Vapochromic Responsiveness. J. Mater. Chem. C 2014, 2, 1887. [Google Scholar] [CrossRef]
- Teng, M.-J.; Jia, X.-R.; Yang, S.; Chen, X.-F.; Wei, Y. Reversible Tuning Luminescent Color and Emission Intensity: A Dipeptide-Based Light-Emitting Material. Adv. Mater. 2012, 24, 1255. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, Y.; Zhuang, W.; Wang, Y. Preparation of Organic Mechanochromic Fluorophores with Simple Structures and Promising Mechanochromic Luminescence Properties. RSC Adv. 2016, 6, 84787. [Google Scholar] [CrossRef]
- Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. Material Design for Piezochromic Luminescence: Hydrogen-Bond-Directed Assemblies of a Pyrene Derivative. J. Am. Chem. Soc. 2007, 129, 1520. [Google Scholar] [CrossRef]
- Sagara, Y.; Komatsu, T.; Ueno, T.; Hanaoka, K.; Kato, T.; Nagano, T. Covalent Attachment of Mechanoresponsive Luminescent Micelles to Glasses and Polymers in Aqueous Conditions. J. Am. Chem. Soc. 2014, 136, 4273. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-D.; Dong, X.-X.; Cao, J.-Y.; Zhao, W.-X.; Bi, G.-H.; Wang, C.-Z.; Zhang, T.; Rahman, S.; Georghiou, P.E.; Lin, J.-B.; et al. Substituent Effects on the Intermolecular Interactions and Emission Behaviors in Pyrene-Based Mechanochromic Luminogens. J. Mater. Chem. C 2022, 10, 9310. [Google Scholar] [CrossRef]
- Tong, J.; Wang, Y.; Mei, J.; Wang, J.; Qin, A.; Sun, J.Z.; Tang, B.Z. A 1,3-Indandione-Functionalized Tetraphenylethene: Aggregation-Induced Emission, Solvatochromism, Mechanochromism, and Potential Application as a Multiresponsive Fluorescent Probe. Chem. Eur. J. 2014, 20, 4661. [Google Scholar] [CrossRef]
- Khan, F.; Ekbote, A.; Misra, R. Reversible Mechanochromism and Aggregation Induced Enhanced Emission in Phenothiazine Substituted Tetraphenylethylene. New J. Chem. 2019, 43, 16156. [Google Scholar] [CrossRef]
- Zhang, G.-F.; Wang, H.; Aldred, M.P.; Chen, T.; Chen, Z.-Q.; Meng, X.; Zhu, M.-Q. General Synthetic Approach Toward Geminal-Substituted Tetraarylethene Fluorophores with Tunable Emission Properties: X-Ray Crystallography, Aggregation-Induced Emission and Piezofluorochromism. Chem. Mater. 2014, 26, 4433. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, H. Remarkable Isomeric Effects on the Mechanofluorochromism of Tetraphenylethylene-Based D–π–A Derivatives. New J. Chem. 2019, 43, 2231. [Google Scholar] [CrossRef]
- Wang, X.; Qian, M.; Jiang, J.; Gao, Q.; Zhang, C.; Qi, H. Mechano-Chromic and Mechano-Enhanced Electrogenerated Chemiluminescence of Tetra[4-(4-cyanophenyl)phenyl]ethene. Chem. Commun. 2022, 58, 12847. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Cai, Z.; Zou, H.; Li, J.; Zhang, S.; Ying, L.; Deng, W. Achieving Halogen Bonding Enhanced Ultra-Highly Efficient AIE and Reversible Mechanochromism Properties of TPE-Based Luminogens: Position of Bromine Substituents. J. Mater. Chem. C 2022, 10, 8390. [Google Scholar] [CrossRef]
- Wang, J.; Mei, J.; Hu, R.; Sun, J.Z.; Qin, A.; Tang, B.Z. Click Synthesis, Aggregation-Induced Emission, E/Z Isomerization, Self-Organization, and Multiple Chromisms of Pure Stereoisomers of a Tetraphenylethene-Cored Luminogen. J. Am. Chem. Soc. 2012, 134, 9956. [Google Scholar] [CrossRef] [PubMed]
- Suenaga, K.; Tanaka, K.; Chujo, Y. Design and Luminescence Chromism of Fused Boron Complexes Having Constant Emission Efficiencies in Solution and in the Amorphous and Crystalline States. Eur. J. Org. Chem. 2017, 5191. [Google Scholar] [CrossRef]
- Taguchi, J.; Matsuura, S.; Seki, T.; Ito, H. Synthesis and Tunable Optical Properties of C,N-Chelated Borate Luminophores Derived from Potassium Acyltrifluoroborates. Chem. Eur. J. 2020, 26, 2450. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.; Morris, W.A.; Samonina-Kosicka, J.; Fraser, C.L. Mechanochromic Luminescence and Aggregation Induced Emission of Dinaphthoylmethane β-Diketones and Their Boronated Counterparts. ACS Appl. Mater. Interfaces 2016, 8, 1242. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Ge, G.; Liu, Z.; Yu, Y.; Xue, M. Multi-State Emission Properties and the Inherent Mechanism of D–A–D Type Asymmetric Organic Boron Complexes. J. Mater. Chem. C 2017, 5, 11030. [Google Scholar] [CrossRef]
- Potopnyk, M.A.; Kravets, M.; Luboradzki, R.; Volyniuk, D.; Sashuk, V.; Grazulevicius, J.V. Carbazole-Modified Thiazolo[3,2-c][1,3,5,2]oxadiazaborinines Exhibiting Aggregation-Induced Emission and Mechanofluorochromism. Org. Biomol. Chem. 2021, 19, 406. [Google Scholar] [CrossRef]
- Morris, W.A.; Liu, T.; Fraser, C.L. Mechanochromic Luminescence of Halide-Substituted Difluoroboron β-Diketonate Dyes. J. Mater. Chem. C 2015, 3, 352. [Google Scholar] [CrossRef]
- Liao, C.-W.; Rao, M.R.; Sun, S.-S. Structural Diversity of New Solid-State Luminophores Based on Quinoxaline-β-Ketoiminate Boron Difluoride Complexes with Remarkable Fluorescence Switching Properties. Chem. Commun. 2015, 51, 2656. [Google Scholar] [CrossRef]
- Guo, C.; Li, M.; Yuan, W.; Wang, K.; Zou, B.; Chen, Y. Tuning the Mechanochromic Luminescence of BOPIM Complexes by Rational Introduction of Aromatic Substituents. J. Phys. Chem. C 2017, 121, 27009. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, J.; Sabat, M.; Fraser, C.L. Polymorphism and Reversible Mechanochromic Luminescence for Solid-State Difluoroboron Avobenzone. J. Am. Chem. Soc. 2010, 132, 2160. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, W.; Wang, Y.; Ma, L.; Yu, Y.; Zhang, Y.; Ren, L. The Inherent Mechanism of Mechanochromism Under Different Stress: Electron Cloud Density Distribution, J-Type Stacking, Pore Structure and Collapse of J-Type Stacking. New J. Chem. 2018, 42, 11373. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Zhang, G.; Lu, J.; Sherman, A.E.; Fraser, C.L. Alkyl Chain Length Effects on Solid-State Difluoroboron β-Diketonate Mechanochromic Luminescence. J. Mater. Chem. 2011, 21, 8409. [Google Scholar] [CrossRef]
- Yoshii, R.; Suenaga, K.; Tanaka, K.; Chujo, Y. Mechanofluorochromic Materials Based on Aggregation-Induced Emission-Active Boron Ketoiminates: Regulation of the Direction of the Emission Color Changes. Chem. Eur. J. 2015, 21, 7231. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, Y.; Lan, J.; Wu, D.; Qian, S.; Yan, L.; He, Z.; Li, X.; Wang, K.; Zou, B.; et al. Molecular Engineering of Mechanochromic Materials by Programmed C−H Arylation: Making a Counterpoint in the Chromism Trend. J. Am. Chem. Soc. 2016, 138, 12803. [Google Scholar] [CrossRef]
- Adak, A.; Panda, T.; Raveendran, A.; Bejoymohandas, K.S.; Asha, K.S.; Prakasham, A.P.; Mukhopadhyay, B.; Panda, M.K. Distinct Mechanoresponsive Luminescence, Thermochromism, Vapochromism, and Chlorine Gas Sensing by a Solid-State Organic Emitter. ACS Omega 2018, 3, 5291. [Google Scholar] [CrossRef]
- Li, B.; Seth, K.; Niu, B.; Pan, L.; Yang, H.; Ge, H. Transient-Ligand-Enabled ortho-Arylation of Five-Membered Heterocycles: Facile Access to Mechanochromic Materials. Angew. Chem. Int. Ed. 2018, 57, 3401. [Google Scholar] [CrossRef]
- Sagara, Y.; Kubo, K.; Nakamura, T.; Tamaoki, N.; Weder, C. Temperature-Dependent Mechanochromic Behavior of Mechanoresponsive Luminescent Compounds. Chem. Mater. 2017, 29, 1273. [Google Scholar] [CrossRef]
- Panda, M.K.; Ravi, N.; Asha, P.; Prakasham, A.P. High Contrast Mechanochromic and Thermochromic Luminescence Switching by a Deep Red Emitting Organic Crystal. CrystEngComm 2018, 20, 6046. [Google Scholar] [CrossRef]
- Yoshida, R.; Tachikawa, T.; Ito, S. Mechano- and Thermo-Responsive Luminescence of Crystalline Thienylbenzothiadiazole Derivatives: Stepwise Hypsochromic Switching of Near-Infrared Emission. Cryst. Growth Des. 2022, 22, 547. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Zhang, W.; Ge, Z.; Wang, K.-P.; Gan, L.-H.; Hu, Z.-Q. Dimethylamine Substituted Bisbenzocoumarin Amides with Solvatochromic and Mechanochromic Properties. Tetrahedron 2019, 75, 3504. [Google Scholar] [CrossRef]
- Nagura, K.; Saito, S.; Yusa, H.; Yamawaki, H.; Fujihisa, H.; Sato, H.; Shimoikeda, Y.; Yamaguchi, S. Distinct Responses to Mechanical Grinding and Hydrostatic Pressure in Luminescent Chromism of Tetrathiazolylthiophene. J. Am. Chem. Soc. 2013, 135, 10322. [Google Scholar] [CrossRef] [PubMed]
- Seki, T.; Kobayashi, K.; Mashimo, T.; Ito, H. A Gold Isocyanide Complex with a Pendant Carboxy Group: Orthogonal Molecular Arrangements and Hypsochromically Shifted Luminescent Mechanochromism. Chem. Commun. 2018, 54, 11136. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Z.; Wang, J.-X.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Q.-Z. Carbazole-Containing Difluoroboron β-Diketonate Dyes: Two-Photon Excited Fluorescence in Solution and Grinding-Induced Blue-Shifted Emission in the Solid State. J. Mater. Chem. C 2017, 5, 12538. [Google Scholar] [CrossRef]
- Ying, S.; Chen, M.; Liu, Z.; Zheng, M.; Zhang, H.; Xue, S.; Yang, W. Unusual Mechanohypsochromic Luminescence and Unique Bidirectional Thermofluorochromism of Long-Alkylated Simple DPP Dyes. J. Mater. Chem. C 2017, 5, 5994. [Google Scholar] [CrossRef]
- Khan, F.; Ekbote, A.; Singh, G.; Misra, R. Mechanochromic Luminogens with Hypsochromically Shifted Emission Switching Property: Recent Advances and Perspectives. J. Mater. Chem. C 2022, 10, 5024. [Google Scholar] [CrossRef]
- Khan, F.; Urbonas, E.; Volyniuk, D.; Grazulevicius, J.V.; Mobin, S.M.; Misra, R. White Hyperelectrofluorescence from Solution-Processable OLEDs Based on Phenothiazine Substituted Tetraphenylethylene Derivatives. J. Mater. Chem. C 2020, 8, 13375. [Google Scholar] [CrossRef]
- Nagai, S.; Yamashita, M.; Tachikawa, T.; Ubukata, T.; Asami, M.; Ito, S. Efficient and Versatile Mechanochromic Luminescence of Phenanthroimidazolylbenzothiadiazoles: Tricolor Switching and Directional Control over the Chromism. J. Mater. Chem. C 2019, 7, 4988. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Z.; Fang, B.; Yin, M. Blue-Shifted Mechanochromism of a Dimethoxynaphthalene-Based Crystal with Aggregation-Induced Emission. Dyes Pigm. 2020, 182, 108618. [Google Scholar] [CrossRef]
- Kumar, G.J.; Bogoslavsky, B.; Debnath, S.; Bedi, A. Effect of Chalcogenophenes on Chiroptical Activity of Twisted Tetracenes: Computational Analysis, Synthesis and Crystal Structure Thereof. Molecules 2023, 28, 5074. [Google Scholar] [CrossRef]
- Feofanov, M.; Akhmetov, V.; Sharapa, D.I.; Amsharov, K. Modular Approach to the Synthesis of Two-Dimensional Angular Fused Acenes. Org. Lett. 2020, 22, 1698. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.E.; McNeil, A.J.; Müller, P.; Swager, T.M.; Houk, K.N. Probing Substituent Effects in Aryl-Aryl Interactions Using Stereoselective Diels-Alder Cycloadditions. J. Am. Chem. Soc. 2010, 132, 3304. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, N.P.; Gonzalez-Rodriguez, E.; Hughes, A.; Gomes, G.D.P.; White, F.D.; Kuriakose, F.; Alabugin, I.V. Radical Alkyne Peri-Annulation Reactions for the Synthesis of Functionalized Phenalenes, Benzanthrenes, and Olympicene. Angew. Chem. Int. Ed. 2018, 57, 3651. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Olex2, Crystallographic Software Package, version 1.3.0; OlexSys Ltd.: Durham, UK, 2024.
- Sheldrick, G.M. SHELXT: Integrating Space Group Determination and Structure Solution. Acta Crystallogr. Sect. A 2014, 70, C1437. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- APEX3, Bruker AXS Inc.: Madison, WI, USA, 2019.
Compounds | λmax/nm a, Luminous Color b | Φf c | τd/ns | ||||
---|---|---|---|---|---|---|---|
Pristine | Ground | Solution e | Pristine (Ground) | Solution f | Pristine (Ground) | Solution f | |
1a (R = H) | 455, 480, LB | 448, 481, LB | 422, 438, B | 0.20 (0.23) | 0.47 | 2.27 (6.48) | 3.02 |
1b (R = Me) | 455, 480, LB | 450, 483, LB | 432, 443, B | 0.31 (0.21) | 0.49 | 3.96 (13.4) | 3.08 |
1c (R = F) | 452, 480, LB | 448, 482, LB | 421, 437, B | 0.24 (0.25) | 0.49 | 3.05 (13.7) | 3.36 |
1d (R = OMe) | 515, YG | 486, BG | 454, LB | 0.15 (0.18) | 0.40 | 12.4 (10.4) | 2.69 |
1e (R = CF3) | 497, 530, G | 488, BG | 438, 440, B | 0.37 (0.33) | 0.51 | 4.69 (7.63) | 2.76 |
1f (R = CN) | 514, YG | 497, G | 458, LB | 0.26 (0.33) | 0.55 | 32.8 (18.4) | 2.57 |
2 (3-CN) | 522, YG | 493, BG | 428, 439, B | 0.71 (0.37) | 0.46 | 109 (91.5) | 2.85 |
3 (R′ = CN) | 518, YG | 497, G | 455, LB | 0.15 (0.05) | 0.41 | 7.39 (4.09) | 2.57 |
4 (R′ = F) | 489, 536, G | 489, BG | 426, 438, B | 0.44 (0.22) | 0.50 | 5.22 (5.36) | 2.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannen, F.; Adachi, T.; Nishimura, M.; Yoza, K.; Kusukawa, T. Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift. Molecules 2024, 29, 407. https://doi.org/10.3390/molecules29020407
Kannen F, Adachi T, Nishimura M, Yoza K, Kusukawa T. Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift. Molecules. 2024; 29(2):407. https://doi.org/10.3390/molecules29020407
Chicago/Turabian StyleKannen, Fumihiro, Tadatoshi Adachi, Manato Nishimura, Kenji Yoza, and Takahiro Kusukawa. 2024. "Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift" Molecules 29, no. 2: 407. https://doi.org/10.3390/molecules29020407
APA StyleKannen, F., Adachi, T., Nishimura, M., Yoza, K., & Kusukawa, T. (2024). Mechanofluorochromic Properties of 1,4-Diphenylanthracene Derivatives with Hypsochromic Shift. Molecules, 29(2), 407. https://doi.org/10.3390/molecules29020407