Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers
Abstract
:1. Introduction
2. Bio-Based Elastomers from Natural and Industrial Rubbers
Bio-Based Elastomers with Essential Oils
3. Bio-Based Polyurethane Elastomers
4. Bio-Based and Biodegradable Polyester and Polyether Elastomers
4.1. Generalities from Polyester and Polyether Elastomers
4.2. Bio-Based and Biodegradable Polyester/Polyether
4.3. Advances in the Use of Bio-Based and Biodegradable Polyester and Polyether Elastomers
5. Elastomers: The Circular Economy and Sustainability
5.1. The Circular Economy
5.2. Adding Sustainability to the Mix: Eco-Concept
5.3. Elastomers and Circularity
5.4. R-Strategies in the Lifecycle of Elastomers
6. Conclusions and Perspectives
- We need standard norms that demand the use of bio-based elastomeric materials or the incorporation of recycled elastomer to produce new materials.
- Studies and techniques are needed to evaluate the formation and pollution of nano and microplastics released from elastomeric materials.
- Further research is required to explore R-strategies pathways, their classification, and the potential application of bio-based elastomers, such as “reuse–reduce–recycle”, to promote sustainable elastomer materials practices.
- Finally, for many elastomeric materials, sustainability in terms of environmental decomposition needs to be studied or reported; therefore, degradation and biodegradation studies are required. In addition to the fact that if a bio-based elastomer, this does not make it biodegradable or compostable, requiring studies for its classification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe AISBL Plastics-the Facts 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 17 November 2023).
- Plastics Europe AISBL Plastics-the Fast Facts 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 28 November 2023).
- Aiswarya, S.; Awasthi, P.; Banerjee, S.S. Self-Healing Thermoplastic Elastomeric Materials: Challenges, Opportunities and New Approaches. Eur. Polym. J. 2022, 181, 111658. [Google Scholar] [CrossRef]
- Tang, S.; Li, J.; Wang, R.; Zhang, J.; Lu, Y.; Hu, G.; Wang, Z.; Zhang, L. Current Trends in Bio-based Elastomer Materials. SusMat 2022, 2, 2–33. [Google Scholar] [CrossRef]
- Chen, S.; Wu, Z.; Chu, C.; Ni, Y.; Neisiany, R.E.; You, Z. Biodegradable Elastomers and Gels for Elastic Electronics. Adv. Sci. 2022, 9, 2105146. [Google Scholar] [CrossRef] [PubMed]
- Vert, M.; Doi, Y.; Hellwich, K.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Chem. Int.-Newsmag. IUPAC 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Vanderreydt, I.; Rommens, T.; Tenhunen, A.; Mortensen, L.F. European Topic Centre Waste and Materials in a Green Economy; European Environment Agency: Copenhagen, Denmark, 2021; pp. 1–68. [Google Scholar]
- Burelo, M.; Hernández-Varela, J.D.; Medina, D.I.; Treviño-Quintanilla, C.D. Recent Developments in Bio-Based Polyethylene: Degradation Studies, Waste Management and Recycling. Heliyon 2023, 9, e21374. [Google Scholar] [CrossRef] [PubMed]
- Rosenboom, J.G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Zhou, X.; Russell, T.P.; Hua, K.C.; Yang, X.; Qiao, H.; Wang, W.; Li, F.; Wang, R.; Zhang, L. High Performance Bio-Based Elastomers: Energy Efficient and Sustainable Materials for Tires. J. Mater. Chem. A Mater. 2016, 4, 13058–13062. [Google Scholar] [CrossRef]
- Mülhaupt, R. Green Polymer Chemistry and Bio-Based Plastics: Dreams and Reality. Macromol. Chem. Phys. 2013, 214, 159–174. [Google Scholar] [CrossRef]
- Morschbacker, A. Bio-Ethanol Based Ethylene. Polym. Rev. 2009, 49, 79–84. [Google Scholar] [CrossRef]
- McAloon, A.; Taylor, F.; Yee, W.; Regional, E.; Ibsen, K.; Wooley, R.; Biotechnology, N. Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks; National Renewable Energy Laboratory: Golden, CO, USA, 2000; Volume 44. [Google Scholar]
- Ferreira-Leitao, V.; Gottschalk, L.M.F.; Ferrara, M.A.; Nepomuceno, A.L.; Molinari, H.B.C.; Bon, E.P.S. Biomass Residues in Brazil: Availability and Potential Uses. Waste Biomass Valorization 2010, 1, 65–76. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, K.; Song, W.; Yan, S.; Zhao, X.; Lu, Y.; Zhang, L. The Effect of Epoxidation on Strain-Induced Crystallization of Epoxidized Natural Rubber. Macromol. Rapid Commun. 2019, 40, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Heng, T.S.; Joo, G.K. Rubber. Encycl. Appl. Plant Sci. 2016, 3, 402–409. [Google Scholar] [CrossRef]
- Barlow, F.W. Rubber, Gutta, and Chicle. In Natural Products of Woody Plants: Chemicals Extraneous to the Lignocellulosic Cell Wall; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1028–1050. [Google Scholar] [CrossRef]
- Cruz-Morales, J.A.; Gutiérrez-Flores, C.; Zárate-Saldaña, D.; Burelo, M.; García-Ortega, H.; Gutiérrez, S. Synthetic Polyisoprene Rubber as a Mimic of Natural Rubber: Recent Advances on Synthesis, Nanocomposites, and Applications. Polymers 2023, 15, 4074. [Google Scholar] [CrossRef] [PubMed]
- Darvell, B.W. More Polymers. In Materials Science for Dentistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 699–718. [Google Scholar] [CrossRef]
- Reyes-Gómez, S.; Montiel, R.; Tlenkopatchev, M.A. Chicle Gum from Sapodilla (Manilkara zapota) as a Renewable Resource for Metathesis Transformation. J. Mex. Chem. Soc. 2018, 61, 1–15. [Google Scholar] [CrossRef]
- Srirachya, N.; Kobayashi, T.; Boonkerd, K. An Alternative Crosslinking of Epoxidized Natural Rubber with Maleic Anhydride. Key Eng. Mater. 2017, 748, 84–90. [Google Scholar] [CrossRef]
- Riyajan, S.A.; Khiatdet, W.; Leejarkpai, T.; Riyapan, D. Crosslinking of Epoxidized Natural Rubber with Terephthalic Acid: Effect of Terephthalic Acid and Cassava Starch. J. Polym. Mater. 2014, 31, 145–158. [Google Scholar]
- Pire, M.; Lorthioir, C.; Oikonomou, E.K.; Norvez, S.; Iliopoulos, I.; Le Rossignol, B.; Leibler, L. Imidazole-Accelerated Crosslinking of Epoxidized Natural Rubber by Dicarboxylic Acids: A Mechanistic Investigation Using NMR Spectroscopy. Polym. Chem. 2012, 3, 946–953. [Google Scholar] [CrossRef]
- Pire, M.; Oikonomou, E.K.; Imbernon, L.; Lorthioir, C.; Iliopoulos, I.; Norvez, S. Crosslinking of Epoxidized Natural Rubber by Dicarboxylic Acids: An Alternative to Standard Vulcanization. Macromol. Symp. 2013, 331–332, 89–96. [Google Scholar] [CrossRef]
- Pire, M.; Norvez, S.; Iliopoulos, I.; Le Rossignol, B.; Leibler, L. Epoxidized Natural Rubber/Dicarboxylic Acid Self-Vulcanized Blends. Polymer 2010, 51, 5903–5909. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Erasmus, A.; Palou, L. Citrus Fruits. Fresh and Processed; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting Citrus Wastes into Value-Added Products: Economic and Environmently Friendly Approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- Anticona, M.; Blesa, J.; Frigola, A.; Esteve, M.J. High Biological Value Compounds Extraction from Citruswaste with Non-Conventional Methods. Foods 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Suri, S.; Singh, A.; Nema, P.K. Current Applications of Citrus Fruit Processing Waste: A Scientific Outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Koidis, A. Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Elsevier Inc.: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2016; pp. 31–38. ISBN 9780124166417. [Google Scholar]
- León, C.; Jordán, E.P.; Salazar, K.; Castellanos, E.X.; Salazar, F.W. Extraction System for the Industrial Use of Essential Oil of the Subtle Lemon (Citrus aurantifolia). J. Phys. Conf. Ser. 2020, 1432, 012044. [Google Scholar] [CrossRef]
- Behr, A.; Toepell, S. Comparison of Reactivity in the Cross Metathesis of Allyl Acetate-Derivatives with Oleochemical Compounds. J. Am. Oil Chem. Soc. 2015, 92, 603–611. [Google Scholar] [CrossRef]
- Marvel, C.S.; HWA, C.C.L. Polymyrcene. J. Polym. Sci. 1960, 45, 25–34. [Google Scholar] [CrossRef]
- Benjamin, K.R.; Silva, I.R.; Cherubim, J.P.; McPhee, D.; Paddon, C.J. Developing Commercial Production of Semi-Synthetic Artemisinin, and of β-Farnesene, an Isoprenoid Produced by Fermentation of Brazilian Sugar. J. Braz. Chem. Soc. 2016, 27, 1339–1345. [Google Scholar] [CrossRef]
- Naddeo, M.; Buonerba, A.; Luciano, E.; Grassi, A.; Proto, A.; Capacchione, C. Stereoselective Polymerization of Biosourced Terpenes β-Myrcene and β-Ocimene and Their Copolymerization with Styrene Promoted by Titanium Catalysts. Polymer 2017, 131, 151–159. [Google Scholar] [CrossRef]
- Lamparelli, D.H.; Kleybolte, M.M.; Winnacker, M.; Capacchione, C. Sustainable Myrcene-based Elastomers via a Convenient Anionic Polymerization. Polymers 2021, 13, 838. [Google Scholar] [CrossRef]
- Lamparelli, D.H.; Winnacker, M.; Capacchione, C. Stereoregular Polymerization of Acyclic Terpenes. Chempluschem 2022, 87, e202100366. [Google Scholar] [CrossRef]
- Pineda-Contreras, A.; Vargas, J.; Santiago, A.A.; Martínez, A.; Cruz-Morales, J.A.; Reyes-Gómez, S.; Burelo, M.; Gutiérrez, S. Metátesis de Olefinas En México: Desarrollo y Aplicaciones En Nuevos Materiales Poliméricos y En Química Sustentable. Mater. Av. 2018, 29, 65–81. [Google Scholar]
- Martínez, A.; Tlenkopatchev, M.A. Metathesis Transformations of Natural Products: Cross-Metathesis of Natural Rubber and Mandarin Oil by Ru-Alkylidene Catalysts. Molecules 2012, 17, 6001. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Clark-Tapia, R.; Tlenkopatchev, M. Synthesis and Characterization of New Ruthenium Vinylidene Complexes. Lett. Org. Chem. 2014, 11, 748–754. [Google Scholar] [CrossRef]
- Martínez, A.; Zuniga-Villarreal, N.; Tlenkopatchev, A.M. New Ru-Vinylidene Catalysts in the Cross-Metathesis of Natural Rubber and Poly(Styrene-Co-Butadiene) with Essential Oils. Curr. Org. Synth. 2016, 13, 876–882. [Google Scholar] [CrossRef]
- Burelo, M.; Martínez, A.; Cruz-Morales, J.A.; Tlenkopatchev, M.A.; Gutiérrez, S. Metathesis Reaction from Bio-Based Resources: Synthesis of Diols and Macrodiols Using Fatty Alcohols, β-Citronellol and Natural Rubber. Polym. Degrad. Stab. 2019, 166, 202–212. [Google Scholar] [CrossRef]
- Li, H.; Caire da Silva, L.; Schulz, M.D.; Rojas, G.; Wagener, K.B. A Review of How to Do an Acyclic Diene Metathesis Reaction. Polym. Int. 2017, 66, 7–12. [Google Scholar] [CrossRef]
- Tlenkopatchev, M.A.; Barcenas, A.; Fomine, S. Computational Study of Metathesis Degradation of Rubber, 1. Distribution of Cyclic Oligomers via Intramolecular Metathesis Degradation of Cis -Polybutadiene. Macromol. Theory Simul. 1999, 8, 581–585. [Google Scholar] [CrossRef]
- Gutierras, S.; Vargas, S.M.; Tlenkopatchev, M.A. Computational Study of Metathesis Degradation of Rubber. Distributions of Products for the Ethenolysis of 1,4-Polyisoprene. Polym. Degrad. Stab. 2004, 83, 149–156. [Google Scholar] [CrossRef]
- Martínez, A.; Tlenkopatchev, M.A. Citrus Oils as Chain Transfer Agents in the Cross-Metathesis Degradation of Polybutadiene in Block Copolymers Using Ru-Alkylidene Catalysts. Nat. Sci. 2013, 05, 857–864. [Google Scholar] [CrossRef]
- Korshak, Y.V.; Tlenkopatchev, M.A.; Dolgoplosk, B.A.; Avdexina, E.G.; Kutepov, D.F. Intra- and Intermolecular Metathesis Reactions in the Formation and Degradation of Unsaturated Polymers. J. Mol. Catal. 1982, 15, 207–218. [Google Scholar] [CrossRef]
- McKeen, L.W. Elastomers and Rubbers. In Film Properties of Plastics and Elastomers; Elsevier: Amsterdam, The Netherlands, 2017; Volume 13, pp. 419–448. [Google Scholar]
- Drobny, J.G. Thermoplastic Polyurethane Elastomers. In Handbook of Thermoplastic Elastomers; Elsevier: Amsterdam, The Netherlands, 2014; Volume 9, pp. 233–253. [Google Scholar]
- Agnol, L.D.; Toso, G.T.; Dias, F.T.G.; Soares, M.R.F.; Bianchi, O. Thermoplastic Polyurethane/Butylene-Styrene Triblock Copolymer Blends: An Alternative to Tune Wear Behavior. Polym. Bull. 2022, 79, 5199–5217. [Google Scholar] [CrossRef]
- Hernández-Zea, N.; Gaytán, I.; Burelo, M. Poliuretanos Sintéticos y Biobasados: Síntesis, Producción, Reciclaje y Métodos de Degradación. Bachelor’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2023; pp. 64–80. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Nohales, A.; Asensio, M.; Gómez, C.M.; Bianchi, O. Effect of Chain Extenders on the Thermal and Thermodegradation Behavior of Carbonatodiol Thermoplastic Polyurethane. Polym. Bull. 2023, 1–20. [Google Scholar] [CrossRef]
- Touchet, T.J.; Cosgriff-Hernandez, E.M. Hierarchal Structure-Property Relationships of Segmented Polyurethanes. In Advances in Polyurethane Biomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 1, pp. 3–22. ISBN 9780081006221. [Google Scholar]
- Kasprzyk, P.; Głowińska, E.; Parcheta-Szwindowska, P.; Rohde, K.; Datta, J. Green TPUs from Prepolymer Mixtures Designed by Controlling the Chemical Structure of Flexible Segments. Int. J. Mol. Sci. 2021, 22, 7438. [Google Scholar] [CrossRef] [PubMed]
- Burelo, M.; Gaytán, I.; Loza-Tavera, H.; Cruz-Morales, J.A.; Zárate-Saldaña, D.; Cruz-Gómez, M.J.; Gutiérrez, S. Synthesis, Characterization and Biodegradation Studies of Polyurethanes: Effect of Unsaturation on Biodegradability. Chemosphere 2022, 307, 136136. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Reyes, A.; Gaytán, I.; Pulido-García, J.; Burelo, M.; Vargas-Suárez, M.; Cruz-Gómez, M.J.; Loza-Tavera, H. Genetic Basis for the Biodegradation of a Polyether-Polyurethane-Acrylic Copolymer by a Landfill Microbial Community Inferred by Metagenomic Deconvolution Analysis. Sci. Total Environ. 2023, 881, 163367. [Google Scholar] [CrossRef] [PubMed]
- Scheelje, F.C.M.; Meier, M.A.R. Non-Isocyanate Polyurethanes Synthesized from Terpenes Using Thiourea Organocatalysis and Thiol-Ene-Chemistry. Commun. Chem. 2023, 6, 239. [Google Scholar] [CrossRef] [PubMed]
- Burelo, M.; Jiménez Olivares, A.; Tlenkopatchev, M.A.; Gutiérrez, S. Síntesis y Caracterización de Poliuretanos Biodegradables. Rev. Tend. Docencia Investig. Química 2018, 4, 546–552. [Google Scholar]
- Contreras, J.; Valdés, O.; Mirabal-Gallardo, Y.; de la Torre, A.F.; Navarrete, J.; Lisperguer, J.; Durán-Lara, E.F.; Santos, L.S.; Nachtigall, F.M.; Cabrera-Barjas, G.; et al. Development of Eco-Friendly Polyurethane Foams Based on Lesquerella Fendleri (A. Grey) Oil-Based Polyol. Eur. Polym. J. 2020, 128, 109606. [Google Scholar] [CrossRef]
- Cronjé, Y.; Farzad, S.; Mandegari, M.; Görgens, J.F. A Critical Review of Multiple Alternative Pathways for the Production of a High-Value Bioproduct from Sugarcane Mill Byproducts: The Case of Adipic Acid. Biofuel Res. J. 2023, 10, 1933–1947. [Google Scholar] [CrossRef]
- Beerthuis, R.; Rothenberg, G.; Shiju, N.R. Catalytic Routes towards Acrylic Acid, Adipic Acid and ε-Caprolactam Starting from Biorenewables. Green Chem. 2015, 17, 1341–1361. [Google Scholar] [CrossRef]
- Sardon, H.; Mecerreyes, D.; Basterretxea, A.; Avérous, L.; Jehanno, C. From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustain. Chem. Eng. 2021, 9, 10664–10677. [Google Scholar] [CrossRef]
- Laurichesse, S.; Huillet, C.; Avérous, L. Original Polyols Based on Organosolv Lignin and Fatty Acids: New Bio-Based Building Blocks for Segmented Polyurethane Synthesis. Green Chem. 2014, 16, 3958–3970. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J.; Chen, L.; Wang, Z.; Zhang, Y.; Fang, L. Liquefied Chitin-Derived Super Tough, Sustainable, and Anti-Bacterial Polyurethane Elastomers. Chem. Eng. J. 2023, 465, 143074. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Liu, W.; Huang, J.; Yang, D.; Qiu, X.; Zhao, L.; Hu, F.; Feng, Y. Solvent-Free Synthesis of High-Performance Polyurethane Elastomer Based on Low-Molecular-Weight Alkali Lignin. Int. J. Biol. Macromol. 2023, 225, 1505–1516. [Google Scholar] [CrossRef]
- Gang, H.; Lee, D.; Choi, K.Y.; Kim, H.N.; Ryu, H.; Lee, D.S.; Kim, B.G. Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2017, 5, 4582–4588. [Google Scholar] [CrossRef]
- Zhang, P.; Tan, W.; Zhang, X.; Chen, J.; Yuan, J.; Deng, J. Chemical Modification of Hydroxyl-Terminated Polybutadiene and Its Application in Composite Propellants. Ind. Eng. Chem. Res. 2021, 60, 3819–3829. [Google Scholar] [CrossRef]
- Zhou, Q.; Jie, S.; Li, B.G. Preparation of Hydroxyl-Terminated Polybutadiene with High Cis-1,4 Content. Ind. Eng. Chem. Res. 2014, 53, 17884–17893. [Google Scholar] [CrossRef]
- Chen, J.M.; Lu, Z.J.; Pan, G.Q.; Qi, Y.X.; Yi, J.J.; Bai, H.J. Synthesis of Hydroxyl-Terminated Polybutadiene Possessing High Content of 1,4-Units via Anionic Polymerization. Chin. J. Polym. Sci. 2010, 28, 715–720. [Google Scholar] [CrossRef]
- Zhang, Q.; Shu, Y.; Liu, N.; Lu, X.; Shu, Y.; Wang, X.; Mo, H.; Xu, M. Hydroxyl Terminated Polybutadiene: Chemical Modification and Application of These Modifiers in Propellants and Explosives. Cent. Eur. J. Energetic Mater. 2019, 16, 153–193. [Google Scholar] [CrossRef]
- Min, X.; Fan, X. A New Strategy for the Synthesis of Hydroxyl Terminated Polystyrene-b-Polybutadiene-b-Polystyrene Triblock Copolymer with High Cis-1, 4 Content. Polymers 2019, 11, 598. [Google Scholar] [CrossRef]
- Bielawski, C.W.; Scherman, O.A.; Grubbs, R.H. Highly Efficient Syntheses of Acetoxy-and Hydroxy-Terminated Telechelic Poly(Butadiene)s Using Ruthenium Catalysts Containing N-Heterocyclic Ligands. Polymer 2001, 42, 4939–4945. [Google Scholar] [CrossRef]
- Burelo, M.; Gutiérrez, S.; Treviño-Quintanilla, C.D.; Cruz-Morales, J.A.; Martínez, A.; López-Morales, S. Synthesis of Biobased Hydroxyl-Terminated Oligomers by Metathesis Degradation of Industrial Rubbers SBS and PB: Tailor-Made Unsaturated Diols and Polyols. Polymers 2022, 14, 4973. [Google Scholar] [CrossRef]
- Sukhawipat, N.; Saetung, N.; Pilard, J.F.; Bistac, S.; Saetung, A. Synthesis and Characterization of Novel Natural Rubber Based Cationic Waterborne Polyurethane: Effect of Emulsifier and Diol Class Chain Extender. J. Appl. Polym. Sci. 2018, 135, 45715. [Google Scholar] [CrossRef]
- Tsupphayakorn-aek, P.; Suwan, A.; Tulyapitak, T.; Saetung, N.; Saetung, A. A Novel UV-Curable Waterborne Polyurethane-Acrylate Coating Based on Green Polyol from Hydroxyl Telechelic Natural Rubber. Prog. Org. Coat. 2022, 163, 106585. [Google Scholar] [CrossRef]
- Qiang-Qiang, S.; Zai-Jun, L.; Lin, Z.; Kai, D.; Xuan, L. Synthesis of Hydroxyl-Terminated Polyisoprene Telechelic Polymers with High Content of 1,4-Structures. Acta Chim. Sin. 2008, 66, 117–120. [Google Scholar]
- Basterretxea, A.; Lopez De Pariza, X.; Gabirondo, E.; Marina, S.; Martin, J.; Etxeberria, A.; Mecerreyes, D.; Sardon, H. Synthesis and Characterization of Fully Biobased Copolyether Polyols. Ind. Eng. Chem. Res. 2020, 59, 10746–10753. [Google Scholar] [CrossRef]
- Kunduru, K.R.; Hogerat, R.; Ghosal, K.; Shaheen-Mualim, M.; Farah, S. Renewable Polyol-Based Biodegradable Polyesters as Greener Plastics for Industrial Applications. Chem. Eng. J. 2023, 459, 141211. [Google Scholar] [CrossRef]
- Alosime, E.M. A Review on Copoly(Ether-Ester) Elastomers: Degradation and Stabilization. J. Polym. Res. 2019, 26, 293. [Google Scholar] [CrossRef]
- Song, X.; Yu, M.; Niu, H.; Zhu, Y.; Zhao, K.; Zhou, C.; Liu, L.; Wu, G. Polyester/Polyether Polyurethane Sizing Coatings with Poly(Diaminosiloxane) Branched Dual Interpenetrating Crosslinked Networks for Enhancing Carbon Fibre Wettability and Interfacial Properties. Eur. Polym. J. 2023, 200, 112525. [Google Scholar] [CrossRef]
- Watts, A.; Hillmyer, M.A. Aliphatic Polyester Thermoplastic Elastomers Containing Hydrogen-Bonding Ureidopyrimidinone Endgroups. Biomacromolecules 2019, 20, 2598–2609. [Google Scholar] [CrossRef]
- Roslaniec, Z. Polyester Thermoplastic Elastomers: Synthesis, Properties, and Some Applications. In Handbook of Condensation Thermoplastic Elastomers; Wiley: Hoboken, NJ, USA, 2005; pp. 75–116. [Google Scholar] [CrossRef]
- Qu, Z.; Zhai, J.; Yang, R. Comparison between Properties of Polyether Polytriazole Elastomers and Polyether Polyurethane Elastomers. Polym. Adv. Technol. 2014, 25, 314–321. [Google Scholar] [CrossRef]
- Lin, D.; Cai, B.; Wang, L.; Cai, L.; Wang, Z.; Xie, J.; Lv, Q.X.; Yuan, Y.; Liu, C.; Shen, S.G. A Viscoelastic PEGylated Poly(Glycerol Sebacate)-Based Bilayer Scaffold for Cartilage Regeneration in Full-Thickness Osteochondral Defect. Biomaterials 2020, 253, 120095. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.H.; Jeong, J.E.; Kim, S.; Jeon, S.; Choung, J.W.; Kim, I. Hardness Modulated Thermoplastic Poly(Ether Ester) Elastomers for the Automobile Weather-strip Application. Polymers 2021, 13, 525. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Miao, X.; Li, J.; Li, D.; Fang, Q. Synthesis and Characterization of Biobased Thermoplastic Polyester Elastomers Containing Poly(Butylene 2,5-Furandicarboxylate). RSC Adv. 2021, 11, 14932–14940. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.F.; Guigo, N.; Pozycka, M.; Delgado, M.; Soares, J.; Mendonça, P.V.; Coelho, J.F.J.; Sbirrazzuoli, N.; Silvestre, A.J.D. Tailored Design of Renewable Copolymers Based on Poly(1,4-Butylene 2,5-Furandicarboxylate) and Poly(Ethylene Glycol) with Refined Thermal Properties. Polym. Chem. 2018, 9, 722–731. [Google Scholar] [CrossRef]
- Groeneveld, G.; Dunkle, M.N.; Rinken, M.; Gargano, A.F.G.; de Niet, A.; Pursch, M.; Mes, E.P.C.; Schoenmakers, P.J. Characterization of Complex Polyether Polyols Using Comprehensive Two-Dimensional Liquid Chromatography Hyphenated to High-Resolution Mass Spectrometry. J. Chromatogr. A 2018, 1569, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.; Tlenkopatchev, M.A.; Gutiérrez, S.; Burelo, M.; Vargas, J.; Jiménez-Regalado, E. Synthesis of Unsaturated Esters by Cross-Metathesis of Terpenes and Natural Rubber Using Ru-Alkylidene Catalysts. Curr. Org. Chem. 2019, 23, 1356–1364. [Google Scholar] [CrossRef]
- Piccini, M.; Lightfoot, J.; Dominguez, B.C.; Buchard, A. Xylose-Based Polyethers and Polyesters Via ADMET Polymerization toward Polyethylene-Like Materials. ACS Appl. Polym. Mater. 2021, 3, 5870–5881. [Google Scholar] [CrossRef]
- Linh, D.K.; Dai, D.B.; Vy, D.T.; Chinh, N.T.; Trung, V.Q. Synthesis and Properties of Some Polyethers from Chalcones. Vietnam J. Chem. 2018, 56, 606–611. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Blends of Polylactic Acid with Thermoplastic Copolyester Elastomer: Effect of Functionalized Terpolymer Type on Reactive Toughening. Polym. Eng. Sci. 2018, 58, 280–290. [Google Scholar] [CrossRef]
- Luo, Y.S.; Lee, D.K.; Zeng, W.S.; Rwei, S.P. Synthesis and Properties of Biomass Polyether Diols Based Polyurethane Dispersions by a Solvent-Free Process. J. Polym. Res. 2022, 29, 492. [Google Scholar] [CrossRef]
- Qu, X.; Zhou, G.; Wang, R.; Zhang, H.; Wang, Z.; Jiang, M.; Tang, J. Insights into High Molecular Weight Poly(Ethylene 2,5-Furandicarboxylate) with Satisfactory Appearance: Roles of in-Situ Catalysis of Metal Zinc. J. Ind. Eng. Chem. 2021, 99, 422–430. [Google Scholar] [CrossRef]
- Acosta Ortiz, R.; Yañez Macías, R.; Ku Herrera, J.d.J.; García Valdez, A.E. Fabrication of Woven Jute Fiber Epoxy Bio-Composites through the Epoxy/Thiol-Ene Photopolymerization Technique. Polymers 2023, 15, 60. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.W. Anthocyanin Food Colorant and Its Application in PH-Responsive Color Change Indicator Films. Crit. Rev. Food Sci. Nutr. 2021, 61, 2297–2325. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, H.; Zheng, B.; Gao, Y.; Zhang, H.; Jin, X.; Zhang, G.; Ma, A. Citric Acid-Based Degradable Polyester Elastomers Coated with Silver Nanowires for Sustainable Soft Sensors. Soft Sci. 2022, 2, 16. [Google Scholar] [CrossRef]
- Sandmeier, M.; Paunović, N.; Conti, R.; Hofmann, L.; Wang, J.; Luo, Z.; Masania, K.; Wu, N.; Kleger, N.; Coulter, F.B.; et al. Solvent-Free Three-Dimensional Printing of Biodegradable Elastomers Using Liquid Macrophotoinitiators. Macromolecules 2021, 54, 7830–7839. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, M.; Huang, Y.; Tan, J.; Zhang, M.; Zhu, X. Design and Manufacturing of Cost-Effective Tannin-Based Polyurethane Foam as an Efficient and Reusable Absorbent for Oil and Solvents. Ind. Crops Prod. 2022, 189, 115815. [Google Scholar] [CrossRef]
- Freire, N.F.; Feuser, P.E.; Ambel, E.M.T.; Cordani, M.; De Pieri, E.; Machado-de-Ávila, R.A.; Zielinski, A.A.F.; Sayer, C.; de Araújo, P.H.H.; Díez, G.V.; et al. Preparation and Characterization of Full-Spectrum Cannabis Extract Loaded Poly(Thioether-Ester) Nanoparticles: In Vitro Evaluation of Their Antitumoral Efficacy. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130676. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.Á.; Santana, M.H. The Final Frontier of Sustainable Materials: Current Developments in Self-Healing Elastomers. Int. J. Mol. Sci. 2022, 23, 4757. [Google Scholar] [CrossRef]
- Preferred by Nature. Why Is Sustainability Required in the Rubber Industry? Available online: https://preferredbynature.org/newsroom/why-sustainability-required-rubber-industry (accessed on 16 November 2023).
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent Advances in Biodegradable Polymers for Sustainable Applications. npj Mater. Degrad. 2022, 6, 1–28. [Google Scholar] [CrossRef]
- Hong, M.; Chen, E.Y.X. Chemically Recyclable Polymers: A Circular Economy Approach to Sustainability. Green Chem. 2017, 19, 3692–3706. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. Self-Healing Elastomers: A Sustainable Solution for Automotive Applications. Eur. Polym. J. 2023, 190, 112023. [Google Scholar] [CrossRef]
- Kumawat, P.; Chanda, J.; Kotadiya, H.; Das, S.K.; Das Gupta, S.; Mukhopadhyay, R. The Use of Recycled Elastomeric Materials for Sustainability in Circular Economy. Polym. Eng. Sci. 2021, 61, 3147–3162. [Google Scholar] [CrossRef]
- Mohajan, H.K. Circular Economy Can Provide a Sustainable Global Society. J. Econ. Dev. Environ. People 2020, 9, 38. [Google Scholar] [CrossRef]
- Stahel, W.R.; Reday, G. The Potential for Substituting Manpower for Energy: Report to the Commission of the European Communities; European Commission: Brussels, Belgium, 1976. [Google Scholar]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; Johns Hopkins University Press: Baltimore, MD, SA, 1990; ISBN 0801839866. [Google Scholar]
- Ellen MacArthur Foundation. Towards the Circular Economy Vol. 2: Opportunities for the Consumer Goods Sector; Ellen MacArthur Foundation: Cowes, UK, 2013. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Johnston, P.; Everard, M.; Santillo, D.; Robèrt, K.H. Reclaiming the Definition of Sustainability. Environ. Sci. Pollut. Res. 2007, 14, 60–66. [Google Scholar] [CrossRef]
- Moore, J.E.; Mascarenhas, A.; Bain, J.; Straus, S.E. Developing a Comprehensive Definition of Sustainability. Implement. Sci. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Giovannoni, E.; Fabietti, G. What Is Sustainability? A Review of the Concept and Its Applications. In Integrated Reporting: Concepts and Cases that Redefine Corporate Accountability; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–40. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W. The Limits to Growth. A Report for the Club of Rome’s Project on the Predicament of Mankind; Potomac Associates: Falls Church, VA, USA, 1972. [Google Scholar] [CrossRef]
- Hajian, M.; Kashani, S.J. Evolution of the Concept of Sustainability. From Brundtland Report to Sustainable Development Goals. In Sustainable Resource Management: Modern Approaches and Contexts; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–24. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a Sustainable Circular Economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Zanchin, G.; Leone, G. Polyolefin Thermoplastic Elastomers from Polymerization Catalysis: Advantages, Pitfalls and Future Challenges. Prog. Polym. Sci. 2021, 113, 101342. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Ricciardi, O.; González, S.; Verdejo, R.; López-Manchado, M.Á.; Hernández Santana, M. Development of Sustainable, Mechanically Strong, and Self-Healing Bio-Thermoplastic Elastomers Reinforced with Alginates. Polymers 2022, 14, 4607. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Bascuñan, A.; Verdejo, R.; López-Manchado, M.Á.; Aguilar-Bolados, H.; Hernández Santana, M. Sustainable Fillers for Elastomeric Compounds. In Green-Based Nanocomposite Materials and Applications; Springer: Cham, Switzerland, 2023; pp. 31–61. [Google Scholar] [CrossRef]
- Georgescu, M.; Sönmez, M.; Alexandrescu, L.; Nițuică, M.; Daniela Stelescu, M.; Gurău, D.; Drușan, D.A.; Ciobanu, A.M.; Chelaru, C. Low carbon footprint composite based on chloroprene rubber and elastomer waste. In Proceedings of the ICAMS 2022–9th International Conference on Advanced Materials and Systems, Madrid, Spain, 15–17 June 2022; pp. 421–426. [Google Scholar] [CrossRef]
- Kouhi, F.; Vahidifar, A.; Naderi, G.; Esmizadeh, E. Tire-Derived Reclaimed Rubber as a Secondary Raw Material for Rubber Foams: In the Framework of Circular Economy Strategy. J. Polym. Res. 2023, 30, 97. [Google Scholar] [CrossRef]
- Liu, S.; Peng, Z.; Zhang, Y.; Rodrigue, D.; Wang, S. Compatibilized Thermoplastic Elastomers Based on Highly Filled Polyethylene with Ground Tire Rubber. J. Appl. Polym. Sci. 2022, 139, e52999. [Google Scholar] [CrossRef]
- Gregory, G.L.; Williams, C.K. Exploiting Sodium Coordination in Alternating Monomer Sequences to Toughen Degradable Block Polyester Thermoplastic Elastomers. Macromolecules 2022, 55, 2290–2299. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Additive Manufacturing for Sustainability and Circular Economy: Needs, Challenges, and Opportunities for 3D Printing of Recycled Polymeric Waste. Mater. Today Sustain. 2023, 24, 100529. [Google Scholar] [CrossRef]
- Cherubini, V.; Lamastra, F.R.; Bragaglia, M.; Nanni, F. Waste Cooking Oils as Processing Aids for Eco-Sustainable Elastomeric Compounding. Progress. Rubber Plast. Recycl. Technol. 2022, 38, 3–20. [Google Scholar] [CrossRef]
- Doyle, L.; Weidlich, I.; Di Maio, E. Developing Insulating Polymeric Foams: Strategies and Research Needs from a Circular Economy Perspective. Materials 2022, 15, 6212. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.V.; Witjes, S. The Circular Economy: New or Refurbished as CE 3.0?—Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Uvarova, I.; Atstaja, D.; Volkova, T.; Grasis, J.; Ozolina-Ozola, I. The Typology of 60R Circular Economy Principles and Strategic Orientation of Their Application in Business. J. Clean. Prod. 2023, 409, 137189. [Google Scholar] [CrossRef]
- Cramer, J. The Raw Materials Transition in the Amsterdam Metropolitan Area: Added Value for the Economy, Well-Being, and the Environment. Environment 2017, 59, 14–21. [Google Scholar] [CrossRef]
Entry | Elastomer | CTA | Catalyst | [NR] b /[CTA] | Temp. (°C) | Yield c % | Molecular Weight | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Mn d (1H-NMR) | Mn e (GPC) | ||||||||
1 | Natural rubber a | d-limonene | Grubbs-2 | 1:1 | 50 | 80 | 722 | 779 | [39] |
2 | Mandarin oil | Grubbs-1 | 1:1 | 100 | 74 | 16,836 | 17,554 | ||
3 | Mandarin oil | Grubbs-2 | 1:1 | 50 | 80 | 836 | 811 | ||
4 | 5:1 | 50 | 95 | 3184 | 4745 | ||||
5 | 10:1 | 50 | 92 | 5675 | 7281 | ||||
6 | Mandarin oil | I | 1:1 | 80 | 95 | 9488 | 9800 | [41] | |
7 | Mandarin oil | II | 1:1 | 80 | 95 | 10,941 | 10,398 | [40] | |
8 | Mandarin oil | III | 1:1 | 80 | 96 | 10,693 | 10,700 | [41] | |
9 | Poly(styrene-co-butadiene) (SBS, 30% styrene) | d-limonene | I | 1:1 | 80 | 96 | 289 | 295 | |
10 | Orange | I | 1:1 | 80 | 92 | 297 | 307 | ||
11 | Orange | Grubbs-1 | 1:1 | 50 | 93 | 285 | 325 | [40] |
Bio-Based Source | Monomer Source | Monomer Obtained or Added | Synthesis Method | Poly Elastomer Obtained | Outcome/Application | Ref. |
---|---|---|---|---|---|---|
Castor plant | Castor oil ethoxylates | Mono-, di-, tri-, tetra-, and penta-esters consist of ricinoleate, oleate, linoleate, stearate, and combinations of such fatty acids and glycerol derivates. | Simple hydrolysis of monomers in milli-Q water and the separation was studied by two-dimensional liquid chromatography hyphenated with high-resolution mass spectrometry. | Di-, tri-, and tetra-esters | Polyether polyol initiators for the synthesis of polyurethanes with uses in coatings, adhesives, sealants, synthetic lubricants, and functional fluid | [88] |
Plant-derived | Natural rubber from Hevea brasiliensis | Bicyclic β -Pinene (Polyterpene), acyclic cis-3-methyl pent-2-ene with diethyl α,β-unsaturated carbonyl compounds | Cross-metathesis reactions using fats and/or oils and inorganic catalysts | Unsaturated polyesters elastomers | Great potential as petrochemical alternatives include in perfume, flavor, and pharmaceutical industries | [89] |
Hemicellulose from biomass | Bicyclic diol 1,2-O-isopropylidene-α-D-xylofuranose | D-xylose with ω-unsaturated fatty acids and alcohols | Acyclic diene metathesis polymerization | α,ω-unsaturated polyesters, and polyether’s | Promising bioplastic for sustainable packaging applications. | [90] |
Plant-derived | 4-hydroxy Benzaldehyde and vanillin with p-hydroxy acetophenone | Diphenol chalcone-derived monomers | Claisen–Schmidt condensation reactions with 1,6-dibromohexane | Co-polyether’s materials | Several applications in pharmaceutical compositions, microscopy, photosensitive materials, nonlinear optical materials, and crystal display liquid. | [91] |
Renewable resource | Polylactic acid Hytrel commercial TPE | Glycidyl methacrylate, maleic anhydride | Melt processed reactions using ethylene butyl acrylate and ethylene methyl acrylate copolymers. | Thermoplastic Copolyester Elastomers | Substitution of plastics (i.e., Hytrel) into sustainable copolymers for commodity and engineering applications | [92] |
Biomass | Lignocellulosic and limonene terpenes | 1,6-hexanediol and 1,4-cyclohexanedimetha-nol | Self-condensation and polycondensation | Copolyether polyols | Ideal candidates for the preparation of a great variety of polyurethanes | [77] |
Vegetal source | Biomass from corn | Various bio contents of poly propanediol and poly(tetramethylene ether) glycol as copolymer | Solvent-free process using tetramethyl xylylene diisocyanate | Biomass polyether diol-based polyurethane | Textile coatings | [93] |
Bio-based organic chemistry | 2,5-furan-dicarboxylic acid ethylene glycol | Poly(ethylene 2,5-furan dicarboxylate) and dimethyl furan-2,5-dicarboxylate | Via transesterification method with metal zinc powder as in-situ catalyst | Bio-Furan-based polyesters | Food and beverage packaging, clothing, and the car industry | [94] |
Carbohydrates sources | Ethylene glycol and 2,5-furan-dicarboxylic acid | Poly(ethylene 2,5-furan-dicarboxylate) and poly(ethylene glycol) | Polytransesterification reaction | Series of copolyester/ethers furandicarboxylated | Packaging industry | [87] |
Plant and vegetable origin. | Commercial greenpoxy 28 and woven jute fabric as reinforcement. | Allyl-functionalized ditertiary amine curing agent, a multifunctional thiol, and a radical photoinitiated | Epoxy/thiol-ene photopolymerization | Polyether–polythioether crosslinked co-network | Aerospace, nautical, automotive, packaging, and building industries | [95] |
R-Strategy | Definition | Literature that Mentions R-Strategies and Ties Circular Concepts to Elastomer Lifecycles |
---|---|---|
Refuse | Prevent raw materials usage | -- |
Reduce | Decrease raw materials use | Kumawat et al. [106], Samir et al. [103], Utrera-Barrios et al. [101,105,120,121] |
Renew | Redesign product was given circularity | Doyle et al. [128], Kumawat et al. [106], Samir et al. [103], Utrera-Barrios et al. [101,105,120], Zanchin and Leone [119] |
Reuse | Use the product again (second-hand) | Hong and Chen [104] |
Repair | Maintain and repair product | Utrera-Barrios et al. [101,105,120,121] |
Refurbish | Revive product by replacing failed components | -- |
Remanufacture | Revive the product by replacing all components | Al Rashid and Koç [126] |
Repurpose | Reuse product but with other function | -- |
Recycle | Salvage material streams with the highest possible value | Al Rashid and Koç [126], Cherubini et al. [127], Georgescu et al. [122], Gregory and Williams [125], Hong and Chen [104], Kouhi et al. [123], Kumawat et al. [106], Liu et al. [124], Zanchin and Leone [119] |
Recover | Incinerate waste with energy recovery | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burelo, M.; Martínez, A.; Hernández-Varela, J.D.; Stringer, T.; Ramírez-Melgarejo, M.; Yau, A.Y.; Luna-Bárcenas, G.; Treviño-Quintanilla, C.D. Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers. Molecules 2024, 29, 387. https://doi.org/10.3390/molecules29020387
Burelo M, Martínez A, Hernández-Varela JD, Stringer T, Ramírez-Melgarejo M, Yau AY, Luna-Bárcenas G, Treviño-Quintanilla CD. Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers. Molecules. 2024; 29(2):387. https://doi.org/10.3390/molecules29020387
Chicago/Turabian StyleBurelo, Manuel, Araceli Martínez, Josué David Hernández-Varela, Thomas Stringer, Monserrat Ramírez-Melgarejo, Alice Y. Yau, Gabriel Luna-Bárcenas, and Cecilia D. Treviño-Quintanilla. 2024. "Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers" Molecules 29, no. 2: 387. https://doi.org/10.3390/molecules29020387
APA StyleBurelo, M., Martínez, A., Hernández-Varela, J. D., Stringer, T., Ramírez-Melgarejo, M., Yau, A. Y., Luna-Bárcenas, G., & Treviño-Quintanilla, C. D. (2024). Recent Developments in Synthesis, Properties, Applications and Recycling of Bio-Based Elastomers. Molecules, 29(2), 387. https://doi.org/10.3390/molecules29020387