Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season
Abstract
:1. Introduction
2. Results
2.1. Seasonal Variability in the Levels of Polyphenolic Components
2.2. Seasonal Variability in the Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity
3. Discussion
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Plant Material and Sample Preparation
4.3. Phytochemical Profiling
4.4. Antioxidant Activity
4.5. Inhibition of Hyaluronidase and α-Glucosidase
4.6. Statistical and Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ferreira, I.C.F.R.; Martins, N.; Barros, L. Phenolic compounds and its bioavailability: In vitro bioactive compounds or health promoters? Adv. Food Nutr. Res. 2017, 82, 1–44. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros Gomes, J.; Cahino Terto, M.V.; Golzio do Santos, S.; Sobral da Silva, M.; Fechine Tavares, J. Seasonal variations of polyphenols content, sun protection factor and antioxidant activity of two Lamiaceae species. Pharmaceutics 2021, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Krzemińska, B.; Dybowski, M.P.; Klimek, K.; Typek, R.; Miazga-Karska, M.; Ginalska, G.; Dos Santos Szewczyk, K. Can extracts from the leaves and fruits of the Cotoneaster species be considered promising anti-acne agents? Molecules 2022, 27, 2907. [Google Scholar] [CrossRef] [PubMed]
- Krzemińska, B.; Dybowski, M.P.; Klimek, K.; Typek, R.; Miazga-Karska, M.; Dos Santos Szewczyk, K. The anti-acne potential and chemical composition of two cultivated Cotoneaster species. Cells 2022, 11, 367. [Google Scholar] [CrossRef]
- Kicel, A.; Michel, P.; Owczarek, A.; Marchelak, A.; Żyżelewicz, D.; Budryn, G.; Oracz, J.; Olszewska, M.A. Phenolic profile and antioxidant potential of leaves from selected Cotoneaster Medik. species. Molecules 2016, 21, 688. [Google Scholar] [CrossRef]
- Kicel, A.; Kolodziejczyk-Czepas, J.; Owczarek, A.; Rutkowska, M.; Wajs-Bonikowska, A.; Granica, S.; Nowak, P.; Olszewska, M.A. Multifunctional phytocompounds in Cotoneaster fruits: Phytochemical profiling, cellular safety, anti-inflammatory and antioxidant effects in chemical and human plasma models in vitro. Oxid. Med. Cell. Longev. 2018, 2018, 3482521. [Google Scholar] [CrossRef]
- Kicel, A. An Overview of the genus Cotoneaster (Rosaceae): Phytochemistry, biological activity, and toxicology. Antioxidants 2020, 9, 1002. [Google Scholar] [CrossRef]
- Kicel, A.; Kolodziejczyk-Czepas, J.; Owczarek, A.; Marchelak, A.; Sopinska, M.; Ciszewski, P.; Nowak, P.; Olszewska, M.A. Polyphenol-rich extracts from Cotoneaster leaves inhibit pro-inflammatory enzymes and protect human plasma components against oxidative stress In Vitro. Molecules 2018, 23, 2472. [Google Scholar] [CrossRef]
- Kicel, A.; Owczarek, A.; Kapusta, P.; Kolodziejczyk-Czepas, J.; Olszewska, M.A. Contribution of individual polyphenols to antioxidant activity of Cotoneaster bullatus and Cotoneaster zabelii leaves—structural relationships, synergy effects and application for quality control. Antioxidants 2020, 9, 69. [Google Scholar] [CrossRef]
- Kicel, A.; Magiera, A.; Skrzywanek, M.; Malczuk, M.; Olszewska, M.A. The Inhibition of α-glucosidase, α-amylase and protein glycation by phenolic extracts of Cotoneaster bullatus, Cotoneaster zabelii, and Cotoneaster integerrimus leaves and fruits: Focus on anti-hyperglycemic activity and kinetic parameters. Molecules 2022, 27, 7081. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, J.; Mitić, S.; Mitić, M.; Kocić, G.; Pavlović, A.; Tošić, S. Variation in the phenolic compounds profile and antioxidant activity in different parts of hawthorn (Crataegus pentagyna Willd.) during harvest periods. Pol. J. Food Nutr. Sci. 2019, 69, 367–378. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, M.; Chai, R.; Liang, R.; Zhang, J.; Zhao, Y.; Zheng, X.; Jin, Y.; Guo, B.; Ma, B. Quality analysis of hawthorn leaves (the leaves of Crataegus pinnatifida Bge. var major N.E.Br) in different harvest time. Phytochem. Anal. 2022, 33, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Yang, X.; Hu, J.Y.; Jiao, J.; Mu, F.S.; Song, Z.Y.; Gai, Q.Y.; Qiao, Q.; Ruan, X.; Fu, Y.J. Antioxidant properties of phenolic compounds in renewable parts of Crataegus pinnatifida inferred from seasonal variations. J. Food Sci. 2016, 81, C1102–C1109. [Google Scholar] [CrossRef]
- Gębalski, J.; Graczyk, F.; Załuski, D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure–activity relationship. J. Enzyme Inhib. Med. Chem. 2022, 37, 1120–1195. [Google Scholar] [CrossRef]
- Koga, Y.; Setoguchi, Y.; Sugamoto, K.; Goto, Y.; Hirano, T.; Kunitake, H. Seasonal variation and mean degree of polymerization of proanthocyanidin in leaves and branches of rabbiteye blueberry (Vaccinium virgatum Aiton). Plants 2024, 13, 1864. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Dias, M.I.; Fernandes, Â.; Pinela, J.; Kostic, M.; Soković, M.; Barros, L.; Santos-Buelga, C.; et al. Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus var. altilis. Food Res. Int. 2020, 134, 109281. [Google Scholar] [CrossRef]
- Wang, T.K.; Xu, S.; Li, S.; Zhang, Y. Proanthocyanidins should be a candidate in the treatment of cancer, cardiovascular diseases and lipid metabolic disorder. Molecules 2020, 25, 5971. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Yu, S.; Wang, H.; Tian, Z.; Zhu, S. Procyanidins and their therapeutic potential against oral diseases. Molecules 2022, 27, 2932. [Google Scholar] [CrossRef]
- Yu, D.; Huang, T.; Tian, B.; Zhan, J. Advances in biosynthesis and biological functions of proanthocyanidins in horticultural plants. Foods 2020, 9, 1774. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, L.; Han, Z.; Jiang, Y.; Zhao, L.; Liu, H.; Yang, L.; Luo, K. Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants. J. Exp. Bot. 2012, 63, 2513–2524. [Google Scholar] [CrossRef] [PubMed]
- Ullah, C.; Unsicker, S.B.; Fellenberg, C.; Constabel, C.P.; Schmidt, A.; Gershenzon, J.; Hammerbacher, A. Flavan-3-ols are an effective chemical defense against rust infection. Plant Physiol. 2017, 175, 1560–1578. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Mei, Y.; Sun, H.; Du, G.; Wang, X.; Lyu, D. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Sci. Hortic. 2020, 274, 109676. [Google Scholar] [CrossRef]
- Moreira, E.A.; Pilon, A.C.; Andrade, L.E.; Lopes, N.P. New perspectives on chlorogenic acid accumulation in harvested leaf tissue: Impact on traditional medicine preparations. ACS Omega 2018, 3, 18380–18386. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, M.R. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. Biomed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Khalid, M.; Saeed-ur-Rahman; Bilal, M.; Huang, D. Role of flavonoids in plant interactions with the environment and against human pathogens—A review. J. Integr. Agric. 2019, 18, 211–230. [Google Scholar] [CrossRef]
- Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjärvi, E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence—The story told by individual leaves. AoB Plants 2018, 10, ply028. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia Commission. Tannins in Herbal Drugs. In European Pharmacopoeia, 11th ed.; Council of Europe: Strasbourg, France, 2022; p. 326. [Google Scholar]
- Granica, S.; Czerwińska, M.E.; Piwowarski, J.P.; Ziaja, M.; Kiss, A.K. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J. Agric. Food Chem. 2013, 61, 801–810. [Google Scholar] [CrossRef] [PubMed]
Compound Group | CV (%) | Compound Group | CV (%) |
---|---|---|---|
TPC (mg/g) | 8.29 | TFC (mg/g) HPLC | 56.76 |
TPA (mg/g) | 7.94 | TCFA (mg/g) HPLC | 27.56 |
TTC (mg/g) | 19.40 | CPCA (mg/g) HPLC | 13.41 |
TLPA (mg/g) HPLC | 18.31 | TPHA (mg/g) HPLC | 26.87 |
Sample/Variability | DPPH Scavenging | FRAP | O2•− Scavenging | α-Glucosidase Inhibition | Hyaluronidase Inhibition |
---|---|---|---|---|---|
EC50 (µg/mL) a | mmol Fe2+/g b | EC50 (µg/mL) a | IC50 (µg/mL) c | IC50 µg/mL c | |
TX | 4.70 ± 0.09 A | 13.54 ± 0.26 D | 136.97 ± 1.84 E | - | - |
AA | 4.13 ± 0.02 A | 26.25 ± 0.10 E | 3.24 ± 0.11 A | - | - |
AR | - | - | - | 201.69 ± 2.76 D | - |
HP | - | - | - | - | 58.93 ± 1.63 A |
V | 21.59 ± 0.44 D | 2.78 ± 0.03 A,B | 39.77 ± 1.25 D | 44.19 ± 1.39 C | 135.87 ± 1.00 D |
VI | 19.04 ± 0.06 B,C | 2.97 ± 0.02 B,C | 21.23 ± 0.17 B | 36.39 ± 1.46 A,B | 120.87 ± 0.48 C |
VII | 17.97 ± 0.33 B | 3.09 ± 0.02 C | 19.78 ± 0.48 B | 32.62 ± 0.79 A | 99.82 ± 0.39 B |
VIII | 19.06 ± 0.59 B,C | 2.73 ± 0.08 A | 28.72 ± 1.91 C | 44.36 ± 1.07 C | 119.88 ± 2.22 C |
IX | 20.54 ± 0.68 C,D | 2.73 ± 0.04 A | 32.54 ± 0.21 C | 41.10 ± 0.17 B,C | 99.88 ± 1.32 B |
X | 17.27 ± 0.14 B | 3.05 ± 0.03 C | 30.96 ± 0.51 C | 39.29 ± 0.39 B | 100.29 ± 1.52 B |
CV (%) d | 8.31 | 5.69 | 25.84 | 11.56 | 13.39 |
r (p) for: | DPPH-Scavenging EC50 (µg/mL) | FRAP mmol Fe2+/g | O2•−-Scavenging EC50 (µg/mL) | α-Glucosidase Inhibition IC50 (µg/mL) | Hyaluronidase Inhibition IC50 (µg/mL) |
---|---|---|---|---|---|
TPC (mg/g) | −0.9530 (0.003) * | 0.9088 (0.012) * | −0.6819 (0.136) | −0.7701 (0.073) | −0.6840 (0.134) |
TPA (mg/g) | −0.8346 (0.039) * | 0.9553 (0.003) * | −0.7256 (0.103) | −0.9044 (0.013) * | −0.6609 (0.153) |
TTC (mg/g) | −0.89016 (0.017) * | 0.6813 (0.136) | −0.6011 (0.207) | −0.6458 (0.166) | −0.8869(0.019) * |
TLPA (mg/g) | −0.9488 (0.004) * | 0.7749 (0.070) | −0.5998 (0.208) | −0.6618 (0.152) | −0.8265 (0.043) * |
TFC (mg/g) | −0.6250 (0.185) | 0.3640 (0.478) | 0.1502 (0.776) | 0.0354 (0.947) | −0.4976 (0.315) |
TCFA (mg/g) | 0.4364 (0.387) | 0.0905 (0.865) | 0.2065 (0.695) | 0.0183 (0.973) | 0.7674 (0.045) |
CPCA (mg/g) | 0.0421 (0.697) | 0.1664 (0.753) | 0.6048 (0.203) | 0.1982 (0.707) | 0.3339 (0.518) |
TPHA (mg/g) | 0.4352 (0.389) | 0.0925 (0.862) | 0.2151 (0.682) | 0.0217 (0.967) | 0.7647 (0.047) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kicel, A.; Magiera, A.; Olszewska, M.A. Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season. Molecules 2024, 29, 4745. https://doi.org/10.3390/molecules29194745
Kicel A, Magiera A, Olszewska MA. Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season. Molecules. 2024; 29(19):4745. https://doi.org/10.3390/molecules29194745
Chicago/Turabian StyleKicel, Agnieszka, Anna Magiera, and Monika Anna Olszewska. 2024. "Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season" Molecules 29, no. 19: 4745. https://doi.org/10.3390/molecules29194745
APA StyleKicel, A., Magiera, A., & Olszewska, M. A. (2024). Variation in the Phenolic Profile and Antioxidant, Antihyperglycemic, and Anti-Inflammatory Activity in Leaves of Cotoneaster zabelii during Growing Season. Molecules, 29(19), 4745. https://doi.org/10.3390/molecules29194745