Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Mechanism of Proton Conduction and Leaching of PA of HT-PEMs
2.1. Proton Conduction Mechanisms
2.2. PA Leaching Mechanism
2.2.1. Carrying over by Water
2.2.2. Evaporation of PA
2.2.3. Other Factors
3. Strategies to Reduce PA Leaching
3.1. Designing Crosslinked Structures
3.2. Incorporation of Hygroscopic Nanoparticles
3.3. Improving the Alkalinity of Polymers
3.4. Covalently Linking Acidic Groups
3.5. Preparation of Multilayer Membranes
3.6. Constructing Microporous Structures
3.7. Formation of Micro-Phase Separation
4. Conclusions and Perspectives
- (1)
- Designing a cross-linked structure is recommended because cross-linking can substantially enhance the dimensional stability and mechanical properties of the PA-doped membranes. However, the cross-linking reaction tends to consume the basic sites on the main chain, leading to lower PA doping levels and reduced proton conductivity. One potential solution to this issue is to select crosslinkers which are rich in functional groups that promote proton conductivity (groups with basic sites, etc.).
- (2)
- The incorporation of hygroscopic or layered inorganic materials into the polymer matrix can facilitate the formation of hydrogen bonds or intermolecular interactions with PA, thereby increasing the number of “trapping sites” for PA within the composite membranes. This strategy can enhance proton conductivity, mechanical properties, and acid retention. Nanoscale and agglomeration-free dispersion is the key point to maximizing the positive effect of the inorganic fillers.
- (3)
- The introduction of more alkaline groups such as QA and Im can provide more sites for immobilizing PA within the membrane and reducing its leaching. However, improving the polymer’s alkalinity may also increase the ADL of the polymer membranes, leading to a decrease in mechanical stability and PA retention ratio, and therefore must be carefully controlled and balanced.
- (4)
- Incorporating covalently linked organic acid groups (like –PO3H2) to replace part of the free PA is an effective way to alleviate PA leaching while maintaining decent proton conductivity. Nevertheless, covalently linked organic acid groups are not as effective as PA in proton conduction, so the amount of the covalently linked organic acid groups and doped PA should be well controlled. In addition, the membrane should have good mechanical strength so as to compensate for the inferior ion conductivity by reducing its thickness.
- (5)
- Preparation of PEMs with a multilayer structure encapsulating PA in the core layer of the membrane has demonstrated the potential to mitigate PA leaching and improve durability. Further in-depth research is needed on the regulation of the composition and structure of the inner and outer layers, as well as the preparation process of the membrane, to meet the requirements of commercial applications.
- (6)
- The development of PEMs with microporous structures can take advantage of the siphon effect to reduce acid loss without sacrificing proton conductivity. However, this type of microporous membrane only achieves the mechanical strength threshold necessary to be used as HT-PEMs, and there is much room for improvement.
- (7)
- Designing and preparing a membrane with a similar microphase separation structure to Nafion is considered to be the most promising pathway for the development of high-performance and long-life low-PA-doped HT-PEMs. The mainchain should be a chemically and thermally stable structure which acts as the acid-phobic phase to provide intrinsic mechanical strength, while the side chain should be flexible and contain an alkaline functional group, which acts as the acidophilic phase to provide a continuous proton transport channel with a low PA doping level. To achieve this goal, more efforts need to be taken to explore new monomers and polymerization routes.
- (8)
- Multiple strategies should be simultaneous applied to obtain HT-PEMs with excellent comprehensive performance. For example, multilayer structure can be designed with a high PA-doped polymer as the core layer and a very thin layer of PA blocking layer as the outer layer, where the core layer can be crosslinked PBI (with a basic group containing reagents as crosslinker), providing high proton conductivity and mechanical strength, while the outer layer can be a microporous-structured polymer or polymers with covalently linked organic acid groups or alkaline polymer/layered nanosheets nanocomposites that can provide a certain ion conduction and good PA retention ability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Glossary of Abbreviation
OPBI | Poly (aryl ether benzimidazole) | ||
PA | Phosphoric acid | ||
Abbreviation Description | PAEK | Poly (arylene ether ketone) | |
ADL | Acid doping level | PAM | Polyacrylamide |
AST | Accelerated stress test | PANI | Polyaniline |
BOPBI | Branched poly (aryl ether benzimidazole) | PBI | Polybenzimidazole |
Br-HPP | Bromomethylated poly(p-xylene) | PBI-O-PhT | 3,3-bis(p-carboxyphenyl)phtalide |
Ce-TOPT | Cerium triphosphonicisocyanurate | PEM | Proton exchange membrane |
CL | Catalyst layer | PEMFCs | Proton exchange membrane fuel cells |
CMBelm | 2-Chloromethyl benzimidazole | PGO | Phosphonated graphene oxide |
CMPSf | Chloromethyl polysulfone | PICP | Phosphonic acid- and Imidazolium-containing polymer |
CSA | Camphorsulfonic acid | PIL | Poly (ionic liquids) |
GDL | Gas diffusion layer | PIMs | Polymers of intrinsic microporosity |
GO | Graphene oxide | PPF | Phosphonated phenolformaldehyde |
GTA | Glycidyl trimethyl ammonium chloride | PPO | Poly (2,6-dimethyl-1,4-Phenylene Oxide) |
HCCP | Hexachlorocyclotriphosphonitrile | PTFE | Polytetrafluoroethylene |
HT-PEMFCs | High-temperature proton exchange membrane fuel cells | PTSA | P-Toluenesulfonic acid |
Im | Imidazole | PVIm | poly(1-vinylimidazole) |
ImCCP | Imidazole—chlorocyclotriphosphonitrile | PVP | Poly (vinyl pyrrolidone) |
IPN | Interpenetrating polymer network | PWA | Phosphotungstic acid (H3PW12O40·nH2O) |
IPyPBIs | Iptycene-based ladder-like porous Pyridine-bridged oxypolybenzimidazoles | QA | Quaternary ammonium |
KH560 | 3-glycidoxypropyltrimethoxysilane | SBA | Santa barbara amorphous-15 |
LT-PEMFCs | Low-temperature proton exchange membrane fuel Cells | SiC | Silicon carbide |
MDP | Mono-n-dodecyl phosphate | SiO2 | Silica |
MEA | Membrane electrode assembly | TiO2 | Titanium dioxide |
Mus | Muscovite (KAl2(Si3Al)O10(OH)2) | TMA | Trimethy-lamine |
NbPBI | Norbornene-type polybenzimidazole | Verm | Vermiculite |
NMBA | N, N’-(methylene) bisacrylamide | ZrO2 | Zirconia |
References
- Alani, I.; Dzagli, M.M.; Mani Kongnine, D.; Narra, S.; Asiedu, Z. Biomethane and Green Hydrogen Production Potential from Municipal Solid Waste: In Cape Coast, Ghana. Sol. Energy Sustain. Dev. J. 2024, 13, 102–119. [Google Scholar] [CrossRef]
- de Bruijn, F.A.; Dam, V.A.T.; Janssen, G.J.M. Review: Durability and Degradation Issues of PEM Fuel Cell Components. Fuel Cells 2008, 8, 3–22. [Google Scholar] [CrossRef]
- Wu, H.-W. A review of recent development: Transport and performance modeling of PEM fuel cells. Appl. Energy 2016, 165, 81–106. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Spendelow, J.S.; Papageorgopoulos, D.C. Progress in PEMFC MEA Component R&D at the DOE Fuel Cell Technologies Program. Fuel Cells 2011, 11, 775–786. [Google Scholar] [CrossRef]
- Alberti, G.; Casciola, M.; Massinelli, L.; Bauer, B. Polymeric proton conducting membranes for medium temperature fuel cells (110–160 °C). J. Membr. Sci. 2001, 185, 73–81. [Google Scholar] [CrossRef]
- Kongkanand, A.; Mathias, M.F. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, C.; Yang, J.; Ni, J.; Wang, S.; Zhang, N.; Lin, H.; Wang, J.; Zhang, G.; Li, Q.; et al. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications. Energy Environ. Sci. 2012, 5, 7617–7625. [Google Scholar] [CrossRef]
- Asensio, J.A.; Sánchez, E.M.; Gómez-Romero, P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem. Soc. Rev. 2010, 39, 3210–3239. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.S.; Mishler, J.; Cho, S.C.; Adroher, X.C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 2011, 88, 981–1007. [Google Scholar] [CrossRef]
- Kallitsis, J.K.; Geormezi, M.; Neophytides, S.G. Polymer electrolyte membranes for high-temperature fuel cells based on aromatic polyethers bearing pyridine units. Polym. Int. 2009, 58, 1226–1233. [Google Scholar] [CrossRef]
- Dahe, G.J.; Singh, R.P.; Dudeck, K.W.; Yang, D.; Berchtold, K.A. Influence of non-solvent chemistry on polybenzimidazole hollow fiber membrane preparation. J. Membr. Sci. 2019, 577, 91–103. [Google Scholar] [CrossRef]
- Hergenrother, P.M. The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview. High Perform. Polym. 2003, 15, 3–45. [Google Scholar] [CrossRef]
- Du, M.; Yang, L.; Luo, X.; Wang, K.; Chang, G. Novel phosphoric acid (PA)-poly(ether ketone sulfone) with flexible benzotriazole side chains for high-temperature proton exchange membranes. Polym. J. 2019, 51, 69–75. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Xu, Y.; Yang, J.; He, R. Quaternized poly(aromatic ether sulfone) with siloxane crosslinking networks as high temperature proton exchange membranes. Appl. Surf. Sci. 2018, 452, 473–480. [Google Scholar] [CrossRef]
- Bu, F.; Zhang, Y.; Hong, L.; Zhao, W.; Li, D.; Li, J.; Na, H.; Zhao, C. 1,2,4-Triazole functionalized poly(arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability. J. Membr. Sci. 2018, 545, 167–175. [Google Scholar] [CrossRef]
- Jang, J.; Kim, D.-H.; Ahn, M.-K.; Min, C.-M.; Lee, S.-B.; Byun, J.; Pak, C.; Lee, J.-S. Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. J. Membr. Sci. 2020, 595, 117508. [Google Scholar] [CrossRef]
- Seng, L.K.; Masdar, M.S.; Shyuan, L.K. Ionic Liquid in Phosphoric Acid-Doped Polybenzimidazole (PA-PBI) as Electrolyte Membranes for PEM Fuel Cells: A Review. Membranes 2021, 11, 728. [Google Scholar] [CrossRef]
- Haque, M.A.; Sulong, A.B.; Loh, K.S.; Majlan, E.H.; Husaini, T.; Rosli, R.E. Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review. Int. J. Hydrogen Energy 2017, 42, 9156–9179. [Google Scholar] [CrossRef]
- Fontanella, J.J.; Wintersgill, M.C.; Wainright, J.S.; Savinell, R.F.; Litt, M. High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim. Acta 1998, 43, 1289–1294. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Yang, G.; Zhan, S. New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells. Int. J. Hydrogen Energy 2018, 43, 8464–8473. [Google Scholar] [CrossRef]
- Schechter, A.; Savinell, R.F. Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ion. 2002, 147, 181–187. [Google Scholar] [CrossRef]
- Staiti, P.; Minutoli, M. Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes. J. Power Sources 2001, 94, 9–13. [Google Scholar] [CrossRef]
- Litt, M.; Ameri, R.; Wang, Y.; Savinell, R.; Wainwright, J. Polybenzimidazoles/phosphoric acid solid polymer electrolytes: Mechanical and electrical properties. Solid State Ion. V. Symp. 1999, 548, 313–323. [Google Scholar] [CrossRef]
- Yu Bai, S.W.; Xiao, M.; Meng, Y.; Wang, C. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells. Prog. Chem. 2021, 33, 426–441. [Google Scholar] [CrossRef]
- Hu, Y.; Li, X.; Yan, L.; Yue, B. Improving the Overall Characteristics of Proton Exchange Membranes via Nanophase Separation Technologies: A Progress Review. Fuel Cells 2017, 17, 3–17. [Google Scholar] [CrossRef]
- Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Qu, E.; Hao, X.; Xiao, M.; Han, D.; Huang, S.; Huang, Z.; Wang, S.; Meng, Y. Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives. J. Power Sources 2022, 533, 231386. [Google Scholar] [CrossRef]
- Marx, D. Proton Transfer 200 Years after von Grotthuss: Insights from Ab Initio Simulations. ChemPhysChem 2006, 7, 1848–1870. [Google Scholar] [CrossRef]
- Haider, R.; Wen, Y.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.; Song, S.; Zhang, J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187. [Google Scholar] [CrossRef]
- Smith, D.E.; Walsh, D.A. The Nature of Proton Shuttling in Protic Ionic Liquid Fuel Cells. Adv. Energy Mater. 2019, 9, 1900744. [Google Scholar] [CrossRef]
- Korte, C.; Conti, F.; Wackerl, J.; Lehnert, W. Phosphoric Acid and its Interactions with Polybenzimidazole-Type Polymers. In High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives; Li, Q., Aili, D., Hjuler, H.A., Jensen, J.O., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 169–194. [Google Scholar] [CrossRef]
- Li, Q.; Pan, C.; Jensen, J.O.; Noyé, P.; Bjerrum, N.J. Cross-Linked Polybenzimidazole Membranes for Fuel Cells. Chem. Mater. 2007, 19, 350–352. [Google Scholar] [CrossRef]
- Ma, Y.L.; Wainright, J.S.; Litt, M.H.; Savinell, R.F. Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2004, 151, A8. [Google Scholar] [CrossRef]
- Oono, Y.; Fukuda, T.; Sounai, A.; Hori, M. Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J. Power Sources 2010, 195, 1007–1014. [Google Scholar] [CrossRef]
- Lee, H.-S.; Roy, A.; Lane, O.; McGrath, J.E. Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer 2008, 49, 5387–5396. [Google Scholar] [CrossRef]
- Bose, S.; Kuila, T.; Nguyen, T.X.H.; Kim, N.H.; Lau, K.-T.; Lee, J.H. Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog. Polym. Sci. 2011, 36, 813–843. [Google Scholar] [CrossRef]
- Lang, S.; Kazdal, T.J.; Kühl, F.; Hampe, M.J. Experimental investigation and numerical simulation of the electrolyte loss in a HT-PEM fuel cell. Int. J. Hydrogen Energy 2015, 40, 1163–1172. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Oh, K.; Ahn, S.; Kim, N.Y.; Byeon, A.; Park, H.-Y.; Lee, S.Y.; Park, H.S.; Yoo, S.J.; Jang, J.H.; et al. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells. J. Power Sources 2017, 363, 365–374. [Google Scholar] [CrossRef]
- Kannan, A.; Aili, D.; Cleemann, L.N.; Li, Q.; Jensen, J.O. Three-layered electrolyte membranes with acid reservoir for prolonged lifetime of high-temperature polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2020, 45, 1008–1017. [Google Scholar] [CrossRef]
- Mori, T.; Honji, A.; Kahara, T.; Hishinuma, Y. Acid Absorbancy of an Electrode and Its Cell Performance History. J. Electrochem. Soc. 1988, 135, 1104. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, H.; Park, H.; Oh, S.; Ahn, S.H.; Kim, H.-J.; Kim, S.-K. Performance enhancement of high-temperature polymer electrolyte membrane fuel cells using Pt pulse electrodeposition. J. Power Sources 2019, 438, 227022. [Google Scholar] [CrossRef]
- Li, Q.; He, R.; Berg, R.W.; Hjuler, H.A.; Bjerrum, N.J. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ion. 2004, 168, 177–185. [Google Scholar] [CrossRef]
- Lee, K.-S.; Spendelow, J.S.; Choe, Y.-K.; Fujimoto, C.; Kim, Y.S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs. Nat. Energy 2016, 1, 16120. [Google Scholar] [CrossRef]
- Lee, A.S.; Choe, Y.-K.; Matanovic, I.; Kim, Y.S. The energetics of phosphoric acid interactions reveals a new acid loss mechanism. J. Mater. Chem. A 2019, 7, 9867–9876. [Google Scholar] [CrossRef]
- Tang, H.; Gao, J.; Wang, Y.; Li, N.; Geng, K. Phosphoric-Acid Retention in High-Temperature Proton-Exchange Membranes. Chem.-A Eur. J. 2022, 28, e202202064. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xiao, L.; Benicewicz, B.C. Durability Studies of PBI-based High Temperature PEMFCs. Fuel Cells 2008, 8, 165–174. [Google Scholar] [CrossRef]
- Seselj, N.; Aili, D.; Celenk, S.; Cleemann, L.N.; Hjuler, H.A.; Jensen, J.O.; Azizi, K.; Li, Q. Performance degradation and mitigation of high temperature polybenzimidazole-based polymer electrolyte membrane fuel cells. Chem. Soc. Rev. 2023, 52, 4046–4070. [Google Scholar] [CrossRef]
- Søndergaard, T.; Cleemann, L.N.; Becker, H.; Steenberg, T.; Hjuler, H.A.; Seerup, L.; Li, Q.; Jensen, J.O. Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters. J. Electrochem. Soc. 2018, 165, F3053. [Google Scholar] [CrossRef]
- Guo, Z.; Perez-Page, M.; Chen, J.; Ji, Z.; Holmes, S.M. Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells. J. Energy Chem. 2021, 63, 393–429. [Google Scholar] [CrossRef]
- Lin, H.L.; Hsieh, Y.S.; Chiu, C.W.; Yu, T.L.; Chen, L.C. Durability and stability test of proton exchange membrane fuel cells prepared from polybenzimidazole/poly(tetrafluoro ethylene) composite membrane. J. Power Sources 2009, 193, 170–174. [Google Scholar] [CrossRef]
- Eberhardt, S.H.; Toulec, M.; Marone, F.; Stampanoni, M.; Büchi, F.N.; Schmidt, T.J. Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution. J. Electrochem. Soc. 2015, 162, F310. [Google Scholar] [CrossRef]
- Li, T.; Yang, J.; Chen, Q.; Zhang, H.; Wang, P.; Hu, W.; Liu, B. Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Materials 2023, 16, 1932. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y. Crosslinked Polybenzimidazoles Containing Functional Crosslinkers as High-Temperature Proton Exchange Membranes: Enhanced Strength and Conductivity. J. Electrochem. Soc. 2022, 169, 024502. [Google Scholar] [CrossRef]
- Hu, M.; Li, T.; Neelakandan, S.; Wang, L.; Chen, Y. Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity. J. Membr. Sci. 2020, 593, 117435. [Google Scholar] [CrossRef]
- Han, M.; Zhang, G.; Liu, Z.; Wang, S.; Li, M.; Zhu, J.; Li, H.; Zhang, Y.; Lew, C.M.; Na, H. Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J. Mater. Chem. 2011, 21, 2187–2193. [Google Scholar] [CrossRef]
- Kerres, J.; Atanasov, V. Cross-linked PBI-based high-temperature membranes: Stability, conductivity and fuel cell performance. Int. J. Hydrogen Energy 2015, 40, 14723–14735. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Wang, P.; Liu, Z.; Peng, J.; Hu, W.; Jiang, Z.; Liu, B.; Guiver, M.D. Highly Conductive and Mechanically Stable Imidazole-Rich Cross-Linked Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Chem. Mater. 2020, 32, 1182–1191. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Li, J.; Wang, X.; Yong, Z.; Cui, Y.; Liang, D.; Wang, Z. Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells. J. Power Sources 2021, 515, 230637. [Google Scholar] [CrossRef]
- Shen, C.-H.; Jheng, L.-C.; Hsu, S.L.-C.; Tse-Wei Wang, J. Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells. J. Mater. Chem. 2011, 21, 15660–15665. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Cleemann, L.N.; Jensen, J.O.; Pan, C.; Bjerrum, N.J.; He, R. Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications. Adv. Energy Mater. 2013, 3, 622–630. [Google Scholar] [CrossRef]
- Yue, Z.; Cai, Y.-B.; Xu, S. Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications. J. Membr. Sci. 2016, 501, 220–227. [Google Scholar] [CrossRef]
- Ngamsantivongsa, P.; Lin, H.-L.; Yu, T.L. Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells. J. Polym. Res. 2016, 23, 22. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Y.; Liu, P.; Gao, L.; Che, Q.; He, R. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochim. Acta 2015, 160, 281–287. [Google Scholar] [CrossRef]
- Tian, X.; Wang, S.; Li, J.; Liu, F.; Wang, X.; Chen, H.; Wang, D.; Ni, H.; Wang, Z. Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications. Appl. Surf. Sci. 2019, 465, 332–339. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, Q.; Shen, X.; Wang, S.; Xiang, J.; Zhang, L.; Cheng, P.; Du, X.; Yin, Z.; Tang, N. Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane. J. Power Sources 2022, 528, 231218. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Cui, Y.; Yong, Z.; Liang, D.; Wang, X.; Wang, X.; Li, C.; Pan, F.; Wang, Z. Branched polybenzimidazole/polymeric ionic liquid cross-linked membranes with high proton conductivity and mechanical properties for HT-PEM applications. Int. J. Hydrogen Energy 2023, 48, 5618–5629. [Google Scholar] [CrossRef]
- Liu, F.; Wang, S.; Chen, H.; Li, J.; Tian, X.; Wang, X.; Mao, T.; Xu, J.; Wang, Z. Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs. ACS Sustain. Chem. Eng. 2018, 6, 16352–16362. [Google Scholar] [CrossRef]
- Aili, D.; Cleemann, L.N.; Li, Q.; Jensen, J.O.; Christensen, E.; Bjerrum, N.J. Thermal curing of PBI membranes for high temperature PEM fuel cells. J. Mater. Chem. 2012, 22, 5444–5453. [Google Scholar] [CrossRef]
- Joseph, D.; Krishnan, N.N.; Henkensmeier, D.; Jang, J.H.; Choi, S.H.; Kim, H.-J.; Han, J.; Nam, S.W. Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes. J. Mater. Chem. A 2017, 5, 409–417. [Google Scholar] [CrossRef]
- Luo, H.; Pu, H.; Chang, Z.; Wan, D.; Pan, H. Crosslinked polybenzimidazole via a Diels–Alder reaction for proton conducting membranes. J. Mater. Chem. 2012, 22, 20696–20705. [Google Scholar] [CrossRef]
- Shen, C.-H.; Hsu, S.L.-C. Synthesis of novel cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 2013, 443, 138–143. [Google Scholar] [CrossRef]
- Tang, Q.; Huang, K.; Qian, G.; Benicewicz, B.C. Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane. J. Power Sources 2013, 229, 36–41. [Google Scholar] [CrossRef]
- Gillham, J.K. Polymer Structure: Cross-Linking of a Polybenzimidazole. Science 1963, 139, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Ossiander, T.; Perchthaler, M.; Heinzl, C.; Scheu, C. Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells. J. Power Sources 2014, 267, 323–328. [Google Scholar] [CrossRef]
- Søndergaard, T.; Cleemann, L.N.; Becker, H.; Aili, D.; Steenberg, T.; Hjuler, H.A.; Seerup, L.; Li, Q.; Jensen, J.O. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole. J. Power Sources 2017, 342, 570–578. [Google Scholar] [CrossRef]
- Hooshyari, K.; Javanbakht, M.; Shabanikia, A.; Enhessari, M. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J. Power Sources 2015, 276, 62–72. [Google Scholar] [CrossRef]
- Devrim, Y.; Bulanık Durmuş, G.N. Composite membrane by incorporating sulfonated graphene oxide in polybenzimidazole for high temperature proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2022, 47, 9004–9017. [Google Scholar] [CrossRef]
- Rajabi, Z.; Javanbakht, M.; Hooshyari, K.; Adibi, M.; Badiei, A. Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell. Int. J. Hydrogen Energy 2021, 46, 33241–33259. [Google Scholar] [CrossRef]
- Schonvogel, D.; Belack, J.; Vidakovic, J.; Schmies, H.; Uhlig, L.M.; Langnickel, H.; Man Tung, P.K.; Meyer, Q.; Zhao, C.; Wagner, P. Performance and durability of high temperature proton exchange membrane fuel cells with silicon carbide filled polybenzimidazole composite membranes. J. Power Sources 2024, 591, 233835. [Google Scholar] [CrossRef]
- Lobato, J.; Cañizares, P.; Rodrigo, M.A.; Úbeda, D.; Pinar, F.J. Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. J. Power Sources 2011, 196, 8265–8271. [Google Scholar] [CrossRef]
- Lee, S.; Seo, K.; Ghorpade, R.V.; Nam, K.-H.; Han, H. High temperature anhydrous proton exchange membranes based on chemically-functionalized titanium/polybenzimidazole composites for fuel cells. Mater. Lett. 2020, 263, 127167. [Google Scholar] [CrossRef]
- Zhang, J.; Aili, D.; Bradley, J.; Kuang, H.; Pan, C.; De Marco, R.; Li, Q.; Jiang, S.P. In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures. J. Electrochem. Soc. 2017, 164, F1615. [Google Scholar] [CrossRef]
- Mustarelli, P.; Quartarone, E.; Grandi, S.; Carollo, A.; Magistris, A. Polybenzimidazole-Based Membranes as a Real Alternative to Nafion for Fuel Cells Operating at Low Temperature. Adv. Mater. 2008, 20, 1339–1343. [Google Scholar] [CrossRef]
- Lu, S.-F.; Xu, X.; Zhang, J.; Xiang, Y. Progress of phosphoric acid doped high temperature proton exchange membrane for fuel cells. Sci. Sin. Chim. 2017, 47, 565–572. [Google Scholar] [CrossRef]
- Aili, D.; Zhang, J.; Dalsgaard Jakobsen, M.T.; Zhu, H.; Yang, T.; Liu, J.; Forsyth, M.; Pan, C.; Jensen, J.O.; Cleemann, L.N.; et al. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. J. Mater. Chem. A 2016, 4, 4019–4024. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Wang, P.; Liu, Z.; Peng, J.; Hu, W.; Jiang, Z.; Liu, B. Construction of High-Performance, High-Temperature Proton Exchange Membranes through Incorporating SiO2 Nanoparticles into Novel Cross-linked Polybenzimidazole Networks. ACS Appl. Mater. Interfaces 2019, 11, 30735–30746. [Google Scholar] [CrossRef]
- Lysova, A.A.; Ponomarev, I.I.; Yaroslavtsev, A.B. Composite materials based on polybenzimidazole and inorganic oxides. Solid State Ion. 2011, 188, 132–134. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Lu, S.; Xiang, Y.; Shao, Z.; Jiang, S.P. Stability and performance of in-situ formed phosphosilicate nanoparticles in phosphoric acid-doped polybenzimidazole composite membrane fuel cells at elevated temperatures. Int. J. Hydrogen Energy 2024, 57, 918–928. [Google Scholar] [CrossRef]
- Oh, H.-S.; Cho, Y.; Lee, W.H.; Kim, H. Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells. J. Mater. Chem. A 2013, 1, 2578–2581. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Perez-Page, M.; Jia, Y.; Zhao, Z.; Holmes, S.M. Synthesis of phosphonated graphene oxide by electrochemical exfoliation to enhance the performance and durability of high-temperature proton exchange membrane fuel cells. J. Energy Chem. 2023, 76, 448–458. [Google Scholar] [CrossRef]
- Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539–1641. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Mostafa, M. Effective decontamination of phosphate and ammonium utilizing novel muscovite/phillipsite composite; equilibrium investigation and realistic application. Sci. Total Environ. 2019, 667, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, J.; Byun, J.J.; Perez–Page, M.; Ji, Z.; Zhao, Z.; Holmes, S.M. Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high–temperature proton exchange membrane fuel cells. J. Membr. Sci. 2022, 641, 119868. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, J.; Byun, J.J.; Cai, R.; Perez-Page, M.; Sahoo, M.; Ji, Z.; Haigh, S.J.; Holmes, S.M. High-performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high-temperature proton exchange membrane fuel cells. J. Energy Chem. 2022, 64, 323–334. [Google Scholar] [CrossRef]
- Lv, B.; Geng, K.; Yin, H.; Yang, C.; Hao, J.; Luan, Z.; Huang, Z.; Qin, X.; Song, W.; Li, N.; et al. Polybenzimidazole/cerium dioxide/graphitic carbon nitride nanosheets for high performance and durable high temperature proton exchange membranes. J. Membr. Sci. 2021, 639, 119760. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, C.; Lin, H.; Zhang, G.; Ni, J.; Wang, J.; Wang, S.; Na, H. High-temperature water-free proton conducting membranes based on poly(arylene ether ketone) containing pendant quaternary ammonium groups with enhanced proton transport. J. Power Sources 2011, 196, 9331–9338. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.; Liu, F.; Wang, D.; Li, J.; Mao, T.; Liu, G.; Wang, X.; Xu, J.; Wang, Z. Base-acid doped polybenzimidazole with high phosphoric acid retention for HT-PEMFC applications. J. Membr. Sci. 2020, 596, 117722. [Google Scholar] [CrossRef]
- Wang, K.; Yang, L.; Wei, W.; Zhang, L.; Chang, G. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. J. Membr. Sci. 2018, 549, 23–27. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Z.; Qu, E.; Ren, S.; Han, D.; Xiao, M.; Wang, S.; Meng, Y. N-H group-rich dendrimer doped polybenzimidazole composite membrane with consecutive proton transportation channels for HT-PEMFCs. Electrochim. Acta 2022, 434, 141252. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, D.; Gao, T.; Bai, W.; Zhang, S.; Guan, X.; Wu, W.; Wang, S. Effects of different ratios of flexible links and rigid structures in side chains on membrane properties for HT-PEM applications. Int. J. Hydrogen Energy 2024, 77, 784–794. [Google Scholar] [CrossRef]
- Hibbs, M.R.; Fujimoto, C.H.; Cornelius, C.J. Synthesis and Characterization of Poly(phenylene)-Based Anion Exchange Membranes for Alkaline Fuel Cells. Macromolecules 2009, 42, 8316–8321. [Google Scholar] [CrossRef]
- Zhu, L.; Pan, J.; Wang, Y.; Han, J.; Zhuang, L.; Hickner, M.A. Multication Side Chain Anion Exchange Membranes. Macromolecules 2016, 49, 815–824. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, M.; Wang, T.; Peng, Z.; Xu, Y.; Yang, J. Synthesis of base-acid pair based poly(isatin arylene) membranes for HT-PEMFC applications. J. Membr. Sci. 2024, 712, 123202. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, J.; Wang, H.; Xiang, Y.; Lu, S. Highly conductive quaternary ammonium-containing cross-linked poly(vinyl pyrrolidone) for high-temperature PEM fuel cells with high-performance. J. Membr. Sci. 2022, 645, 120194. [Google Scholar] [CrossRef]
- Wu, W.; Yu, D.; Luo, Y.; Guan, X.; Zhang, S.; Ma, G.; Zhou, X.; Li, C.; Wang, S. Introduction of polymeric ionic liquids containing quaternary ammonium groups to construct high-temperature proton exchange membranes with high proton conductivity and stability. J. Colloid Interface Sci. 2024, 675, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, G.; Zhang, F.; Liao, J.; Tang, H.; Zhang, H. Improving the ohmic polarization of high-temperature proton exchange membrane fuel cells using crosslinked polybenzimidazole membranes containing acidophilic quaternary ammonium groups synthesized by one-step strategy. Mater. Today Energy 2024, 40, 101499. [Google Scholar] [CrossRef]
- Xiao, Y.; Shen, X.; Sun, R.; Wang, S.; Xiang, J.; Zhang, L.; Cheng, P.; Du, X.; Yin, Z.; Tang, N. Polybenzimidazole membrane crosslinked with quaternized polyaniline as high-temperature proton exchange membrane: Enhanced proton conductivity and stability. J. Membr. Sci. 2022, 660, 120795. [Google Scholar] [CrossRef]
- Peng, J.; Wang, S.; Fu, X.; Luo, J.; Wang, L.; Peng, X. Achieving over 1000 mW cm−2 Power Density Based on Locally High-Density Cross-Linked Polybenzimidazole Membrane Containing Pillar[5]arene Bearing Multiple Alkyl Bromide as a Cross-Linker. Adv. Funct. Mater. 2023, 33, 2212464. [Google Scholar] [CrossRef]
- Peng, J.; Wang, P.; Yin, B.; Fu, X.; Wang, L.; Luo, J.; Peng, X. Constructing stable continuous proton transport channels by in-situ preparation of covalent triazine-based frameworks in phosphoric acid-doped polybenzimidazole for high-temperature proton exchange membranes. J. Membr. Sci. 2021, 640, 119775. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Liu, F.; Tian, X.; Wang, X.; Chen, H.; Mao, T.; Wang, Z. HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. Int. J. Hydrogen Energy 2018, 43, 16248–16257. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, S.; Tian, G.; Xiang, J.; Zhang, L.; Cheng, P.; Zhang, J.; Tang, N. Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes. J. Membr. Sci. 2021, 620, 118858. [Google Scholar] [CrossRef]
- Jang, J.; Kim, D.-H.; Kang, B.; Lee, J.-H.; Pak, C.; Lee, J.-S. Impact of N-Substituent and pKa of Azole Rings on Fuel Cell Performance and Phosphoric Acid Loss. ACS Appl. Mater. Interfaces 2021, 13, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.; Sen, U.; Bozkurt, A.; Ata, A. Proton conducting membranes based on Poly(2,5-benzimidazole) (ABPBI)–Poly(vinylphosphonic acid) blends for fuel cells. Int. J. Hydrogen Energy 2009, 34, 2724–2730. [Google Scholar] [CrossRef]
- Bozkurt, A.; Meyer, W.H. Proton conducting blends of poly(4-vinylimidazole) with phosphoric acid. Solid State Ion. 2001, 138, 259–265. [Google Scholar] [CrossRef]
- Sana, B.; Jana, T. Polybenzimidazole composite with acidic surfactant like molecules: A unique approach to develop PEM for fuel cell. Eur. Polym. J. 2016, 84, 421–434. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Shi, C.; Liu, B.; Cao, K.; Shan, C.; Hu, W.; Liu, B. Fabrication of PBI/SPOSS hybrid high-temperature proton exchange membranes using SPAEK as compatibilizer. J. Membr. Sci. 2021, 620, 118855. [Google Scholar] [CrossRef]
- Mader, J.A.; Benicewicz, B.C. Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells. Macromolecules 2010, 43, 6706–6715. [Google Scholar] [CrossRef]
- Sevil, F.; Bozkurt, A. Proton conducting polymer electrolytes on the basis of poly(vinylphosphonic acid) and imidazole. J. Phys. Chem. Solids 2004, 65, 1659–1662. [Google Scholar] [CrossRef]
- Yamada, M.; Honma, I. Anhydrous proton conducting polymer electrolytes based on poly(vinylphosphonic acid)-heterocycle composite material. Polymer 2005, 46, 2986–2992. [Google Scholar] [CrossRef]
- Aslan, A.; Bozkurt, A. Development and characterization of polymer electrolyte membranes based on ionical cross-linked poly(1-vinyl-1,2,4 triazole) and poly(vinylphosphonic acid). J. Power Sources 2009, 191, 442–447. [Google Scholar] [CrossRef]
- Berber, M.R.; Fujigaya, T.; Sasaki, K.; Nakashima, N. Remarkably Durable High Temperature Polymer Electrolyte Fuel Cell Based on Poly(vinylphosphonic acid)-doped Polybenzimidazole. Sci. Rep. 2013, 3, 1764. [Google Scholar] [CrossRef]
- Berber, M.R.; Fujigaya, T.; Nakashima, N. High-Temperature Polymer Electrolyte Fuel Cell Using Poly(vinylphosphonic acid) as an Electrolyte Shows a Remarkable Durability. ChemCatChem 2014, 6, 567–571. [Google Scholar] [CrossRef]
- Guo, H.; Li, Z.; Sun, P.; Pei, H.; Zhang, L.; Cui, W.; Yin, X.; Hui, H. Enhancing Proton Conductivity and Durability of Crosslinked PBI-Based High-Temperature PEM: Effectively Doping a Novel Cerium Triphosphonic-isocyanurate. J. Electrochem. Soc. 2021, 168, 024510. [Google Scholar] [CrossRef]
- Wang, D.; Wang, S.; Tian, X.; Li, J.; Liu, F.; Wang, X.; Chen, H.; Mao, T.; Liu, G. Ethyl phosphoric acid grafted amino-modified polybenzimidazole with improved long-term stability for high-temperature proton exchange membrane applications. Int. J. Hydrogen Energy 2020, 45, 3176–3185. [Google Scholar] [CrossRef]
- Hao, X.; Li, Z.; Xiao, M.; Han, D.; Huang, S.; Xi, G.; Wang, S.; Meng, Y. A phosphonated phenol-formaldehyde-based high-temperature proton exchange membrane with intrinsic protonic conductors and proton transport channels. J. Mater. Chem. A 2022, 10, 10916–10925. [Google Scholar] [CrossRef]
- Hao, X.; Li, Z.; Xiao, M.; Huang, Z.; Han, D.; Huang, S.; Liu, W.; Wang, S.; Meng, Y. Intermolecular Acid–Base-Pairs Containing Poly (p-Terphenyl-co-Isatin Piperidinium) for High Temperature Proton Exchange Membrane Fuel Cells. Energy Environ. Mater. 2024, 7, e12621. [Google Scholar] [CrossRef]
- Jheng, L.-C.; Chang, W.J.-Y.; Hsu, S.L.-C.; Cheng, P.-Y. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. J. Power Sources 2016, 323, 57–66. [Google Scholar] [CrossRef]
- Lu, C.-L.; Chang, C.-P.; Guo, Y.-H.; Yeh, T.-K.; Su, Y.-C.; Wang, P.-C.; Hsueh, K.-L.; Tseng, F.-G. High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE. Renew. Energy 2019, 134, 982–988. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Che, Q. Multilayered Membrane Electrolytes Based on Aramid Nanofibers for High-Temperature Proton Exchange Membrane Fuel Cells. ACS Appl. Nano Mater. 2019, 2, 2160–2168. [Google Scholar] [CrossRef]
- Jheng, L.-C.; Hsu, S.L.-C.; Tsai, T.-Y.; Chang, W.J.-Y. A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J. Mater. Chem. A 2014, 2, 4225–4233. [Google Scholar] [CrossRef]
- Mader, J.; Xiao, L.; Schmidt, T.J.; Benicewicz, B.C. Polybenzimidazole/Acid Complexes as High-Temperature Membranes. In Fuel Cells II; Scherer, G.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–124. [Google Scholar] [CrossRef]
- Wang, P.; Peng, J.; Yin, B.; Fu, X.; Wang, L.; Luo, J.-L.; Peng, X. Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells. J. Mater. Chem. A 2021, 9, 26345–26353. [Google Scholar] [CrossRef]
- Geng, K.; Tang, H.; Ju, Q.; Qian, H.; Li, N. Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. J. Membr. Sci. 2021, 620, 118981. [Google Scholar] [CrossRef]
- Li, W.; Liu, W.; Zhang, J.; Wang, H.; Lu, S.; Xiang, Y. Porous Proton Exchange Membrane with High Stability and Low Hydrogen Permeability Realized by Dense Double Skin Layers Constructed with Amino tris (methylene phosphonic acid). Adv. Funct. Mater. 2023, 33, 2210036. [Google Scholar] [CrossRef]
- Mecerreyes, D.; Grande, H.; Miguel, O.; Ochoteco, E.; Marcilla, R.; Cantero, I. Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes. Chem. Mater. 2004, 16, 604–607. [Google Scholar] [CrossRef]
- Li, X.; Qian, G.; Chen, X.; Benicewicz, B.C. Synthesis and Characterization of a New Fluorine-Containing Polybenzimidazole (PBI) for Proton-Conducting Membranes in Fuel Cells. Fuel Cells 2013, 13, 832–842. [Google Scholar] [CrossRef]
- Zhou, S.; Guan, J.; Li, Z.; Huang, L.; Zheng, J.; Li, S.; Zhang, S. Alkaline polymers of intrinsic microporosity: High-conduction and low-loss anhydrous proton exchange membranes for energy conversion. J. Mater. Chem. A 2021, 9, 3925–3930. [Google Scholar] [CrossRef]
- Guo, Z.; Xiu, R.; Lu, S.; Xu, X.; Yang, S.; Xiang, Y. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications. J. Mater. Chem. A 2015, 3, 8847–8854. [Google Scholar] [CrossRef]
- Wang, P.; Li, X.; Liu, Z.; Peng, J.; Shi, C.; Li, T.; Yang, J.; Shan, C.; Hu, W.; Liu, B. Construction of highly conductive PBI-based alloy membranes by incorporating PIMs with optimized molecular weights for high-temperature proton exchange membrane fuel cells. J. Membr. Sci. 2022, 659, 120790. [Google Scholar] [CrossRef]
- Harilal; Bhattacharyya, R.; Shukla, A.; Chandra Ghosh, P.; Jana, T. Rational design of microporous polybenzimidazole framework for efficient proton exchange membrane fuel cells. J. Mater. Chem. A 2022, 10, 11074–11091. [Google Scholar] [CrossRef]
- Guo, T.; Wang, Y.; Ju, Q.; Kang, S.; Chao, G.; Chen, X.; Li, R.; Lv, Z.; Shen, Y.; Li, N.; et al. Crosslinked polybenzimidazole high temperature-proton exchange membranes with a polymers of intrinsic microporosity (PIM) macromolecular crosslinker. J. Membr. Sci. 2023, 675, 121528. [Google Scholar] [CrossRef]
- Tang, H.; Geng, K.; Wu, L.; Liu, J.; Chen, Z.; You, W.; Yan, F.; Guiver, M.D.; Li, N. Fuel cells with an operational range of –20 °C to 200 °C enabled by phosphoric acid-doped intrinsically ultramicroporous membranes. Nat. Energy 2022, 7, 153–162. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Z.; Xiao, M.; Wang, S.; Miyatake, K.; Meng, Y. Quaternary ammonium-biphosphate ion-pair based copolymers with continuous H+ transport channels for high-temperature proton exchange membrane. J. Membr. Sci. 2022, 660, 120878. [Google Scholar] [CrossRef]
- Lv, Z.; Zhao, N.; He, M.; Ju, Q.; Chao, G.; Wang, Y.; Geng, K.; Tang, H.; Li, N. The effect of high-temperature proton exchange membranes with microphase separation structure on phosphoric acid loss. J. Membr. Sci. 2023, 687, 122075. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Wei, H.; Zhang, J.; Wang, H.; Lu, S.; Xiang, Y. Proton Conductor Confinement Strategy for Polymer Electrolyte Membrane Assists Fuel Cell Operation in Wide-Range Temperature. Adv. Funct. Mater. 2023, 33, 2214097. [Google Scholar] [CrossRef]
- Li, J.; Yang, C.; Lin, H.; Huang, J.; Wang, S.; Sun, G. High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers. J. Energy Chem. 2024, 92, 572–578. [Google Scholar] [CrossRef]
- You, X.; Ju, Q.; Ma, Y.; Yi, G.; Jiang, Z.; Li, N.; Zhang, Q. High conductivity poly(meta-terphenyl alkylene)s proton exchange membranes for high temperature fuel cell. Chem. Eng. J. 2024, 487, 150535. [Google Scholar] [CrossRef]
- Bai, H.; Peng, H.; Xiang, Y.; Zhang, J.; Wang, H.; Lu, S.; Zhuang, L. Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. J. Power Sources 2019, 443, 227219. [Google Scholar] [CrossRef]
- Bai, H.; Wang, H.; Zhang, J.; Zhang, J.; Lu, S.; Xiang, Y. High temperature polymer electrolyte membrane achieved by grafting poly(1-vinylimidazole) on polysulfone for fuel cells application. J. Membr. Sci. 2019, 592, 117395. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, M.; Huang, S.; Han, D.; Wang, S.; Meng, Y. Phosphonic acid-imidazolium containing polymer ionomeric membranes derived from poly (phenylene oxide) towards boosting the performance of HT-PEM fuel cells. J. Membr. Sci. 2023, 686, 121982. [Google Scholar] [CrossRef]
- Bai, Y.; Xiao, M.; Wang, C.; Wang, S.; Meng, Y.; Miyatake, K. Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole-Based High-Temperature Proton Exchange Membranes. Adv. Energy Mater. 2024, 14, 2400751. [Google Scholar] [CrossRef]
- Imbayah, I.; Hasan, M.; El-Khozondare, H.; Khaleel, M.; Alsharif, A.; Ahmed, A. Review paper on Green Hydrogen Production, Storage, and Utilization Techniques in Libya. Sol. Energy Sustain. Dev. J. 2024, 13, 1–21. [Google Scholar] [CrossRef]
Membrane | Proton Conductivity (S·cm−1) | Peak Power Density (mW·cm−2) | PA/Cell Durability |
---|---|---|---|
OPBI/MDP-20% | 1.4 × 10−1 (180 °C) | - | 46% (PA retention tested after 0.5 h at 100 °C under water vapor) |
OPBI/PTSA-20% | 1.7 × 10−1 (180 °C) | - | 67% (PA retention tested after 0.5 h at 100 °C under water vapor) |
OPBI/CSA-20% | 2.8 × 10−1 (180 °C) | - | 73% (PA retention tested after 0.5 h at 100 °C under water vapor) |
PBI/SPAEK-SPOSS-1% | 1.1 × 10−1 (180 °C) | 300 mW cm−2 (160 °C) | 52% (PA retention tested after 9 h under 80 °C and 40% RH) |
s-PBI | 1~2.5× 10−1 (180 °C) | ~600 mW cm−2 (180 °C) | 30 μV h−1 (at 160 °C and 200 mA cm−2 over 3000 h) |
c-mPBI/CeTOPT (50) | 1.25 × 10−1 (180 °C, 100% RH) | - | proton conductivity retention rate of 95.4% (after 48 h of water washing) |
PBI-NH2-EPA-15 | 6.2 × 10−2 (170 °C) | - | ~65% (PA retention tested after 240 h at 70 °C and 60% RH) |
PPF/50PBI | 6.2× 10−2 (140 °C) | 607 mW cm−2 (160 °C) | proton conductivity retention rate of 95.22% (after 20 h at 120 °C) |
P/PITP-20 | 9.9 × 10−2 (140 °C) | 812 mW cm−2 (180 °C) | 0.45 mV h−1 (at 140 °C and 150 mA cm−2 over 100 h) |
Membrane | Cell Activity | Durability |
---|---|---|
Asymmetrically porous PBI | 835 mW cm−2 (160 °C) | 0.283 mV h−1 (150 °C and 200 mA cm−2) 1 |
GMF/mPTFE | 614 mW cm−2 (140 °C) | 27.2 mW cm−2 h−1 (140 °C and 0.4 V) 2 |
Three-layer membrane | - | 2.3 μV h−1 (180 °C and 200 mA cm−2) 1 |
Membrane (with a leaf- like three-layer porous structure) | 713.6 mW cm−2 (160 °C) | 0.73 mV h−1 (160 °C and 200 mA cm−2) 1 |
p-OPBI-ATMP/PA | 980 mW cm−2 (160 °C) | 5.46 µV h−1 (160 °C and 200 mA cm−2) 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Chen, N.; Huang, S.; Wang, S.; Han, D.; Xiao, M.; Meng, Y. Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells. Molecules 2024, 29, 4480. https://doi.org/10.3390/molecules29184480
Xu Z, Chen N, Huang S, Wang S, Han D, Xiao M, Meng Y. Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells. Molecules. 2024; 29(18):4480. https://doi.org/10.3390/molecules29184480
Chicago/Turabian StyleXu, Zhongming, Nanjie Chen, Sheng Huang, Shuanjin Wang, Dongmei Han, Min Xiao, and Yuezhong Meng. 2024. "Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells" Molecules 29, no. 18: 4480. https://doi.org/10.3390/molecules29184480
APA StyleXu, Z., Chen, N., Huang, S., Wang, S., Han, D., Xiao, M., & Meng, Y. (2024). Strategies for Mitigating Phosphoric Acid Leaching in High-Temperature Proton Exchange Membrane Fuel Cells. Molecules, 29(18), 4480. https://doi.org/10.3390/molecules29184480