Engineering Thermoresponsive Poly(N-isopropylacrylamide)-Based Films with Enhanced Stability and Reusability for Efficient Bone Marrow Mesenchymal Stem Cell Culture and Harvesting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of PNIPAM-Based Films
2.2. Characterization of PNIPAM-Based Films
2.2.1. Surface Wettability
2.2.2. Surface Topography
2.2.3. Film Thickness
2.2.4. Screening of PNIPAM-Based Films Suitable for BMMSCs
2.3. Reusability Evaluation of PNIPAM-Based Films
2.3.1. Stability of Film Properties
2.3.2. Surface Topography of PNIPAM-Based Films after Cell Culture and Harvest
2.3.3. Elemental Composition of PNIPAM-Based Films after Cell Culture and Harvest
3. Materials and Methods
3.1. Materials
3.2. Film Preparation
3.3. Film Performance
3.3.1. Surface Contact Angle Analysis
3.3.2. Surface Morphology Analysis
3.3.3. Film Thickness Analysis
3.3.4. Film Screening for BMMSCs
3.4. Film Reusability
3.4.1. Film Surface Topography upon Cell Attachment and Detachment
3.4.2. Film Surface Element upon Cell Attachment and Detachment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, Y.; Gao, Y. Potential role of hydrogels in stem cell culture and hepatocyte differentiation. Nano Biomed. Eng. 2024, 16, 188–202. [Google Scholar] [CrossRef]
- Phan, T.N.; Fan, C.H.; Yeh, C.K. Application of ultrasound to enhancing stem cells associated therapies. Stem Cell Rev. Rep. 2023, 19, 1709–1725. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ramirez, C.A.; Christofk, H.R. Challenges in studying stem cell metabolism. Cell Stem Cell 2021, 28, 409–423. [Google Scholar] [CrossRef]
- Romualdez-Tan, M.V. Modelling in vitro gametogenesis using induced pluripotent stem cells: A review. Cell Regener. 2023, 12, 33. [Google Scholar] [CrossRef]
- Zhuang, M.; Liu, T.; Ge, D.; Song, K.; Guan, S. Preservation of osteoblasts and BM-MSCs biological properties after consecutive passages with the thermal-liftoff method. RSC Adv. 2016, 94, 91567–91578. [Google Scholar] [CrossRef]
- Nguyen, L.T.B.; Odeleye, A.O.O.; Chui, C.Y.; Baudequin, T.; Cui, Z.; Ye, H. Development of thermo-responsive polycaprolactone macrocarriers conjugated with poly(N-isopropyl acrylamide) for cell culture. Sci. Rep. 2019, 9, 3477. [Google Scholar] [CrossRef]
- Ahmadi, S.; Nasiri, M.; Pourrajab-Miandoab, A.; Jafari, A. Temperature responsive poly(N-isopropylacrylamide-co-styrene) nanofilms for non-enzymatic cell sheet harvesting. Prog. Org. Coat. 2023, 175, 107376. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, G.; Sun, Y.; Sun, L.; Fan, X.; Han, Q.; Li, Z. Temperature-sensitive sensors modified with poly(N-isopropylacrylamide): Enhancing performance through tailored thermoresponsiveness. Molecules 2024, 29, 3327. [Google Scholar] [CrossRef]
- Nagase, K.; Matsuda, J.; Takeuchi, A.; Ikemoto, Y. Hydration and dehydration behaviors of poly(N-isopropylacrylamide)-grafted silica beads. Surf. Interfaces 2023, 40, 103058. [Google Scholar] [CrossRef]
- Akiyama, Y.; Matsuyama, M.; Yamato, M.; Takeda, N.; Okano, T. Poly(N-isopropylacrylamide) grafted PDMS substrate for controlling cell adhesion and detachment by dual stimulation of temperature and mechanical stress. Biomacromolecules 2018, 19, 4014–4022. [Google Scholar] [CrossRef]
- Kuno, G.; Imaizumi, Y.; Matsumoto, A. Application of the water-insoluble, temperature-responsive block polymer poly(butyl methacrylate-block-N-isopropylacrylamide) for pluripotent stem cell culture and cell-selective detachment. J. Biosci. Bioeng. 2022, 133, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. Cell sheet detachment affects the extracellular matrix: A surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J. Biomed. Mater. Res. Part A 2005, 75A, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sanzari, I.; Buratti, E.; Huang, R.; Tusan, C.G.; Dinelli, F.; Evans, N.D.; Prodromakis, T.; Bertoldo, M. Poly(N-isopropylacrylamide) based thin microgel films for use in cell culture applications. Sci. Rep. 2020, 10, 6126. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Meng, M.; Yang, Z.; Wu, S.; Shang, L.; Feng, Y.; Wu, J.; Hao, K.; Wang, R.; Zhou, D.; et al. Magnetic polymer microcarriers for cell engineering applications with enzyme-free cell harvesting and rapid recovery in large-scale cell culture. Adv. Funct. Mater. 2024, 34, 2311454. [Google Scholar] [CrossRef]
- Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromol. Chem. Rapid Commun. 1990, 11, 571–576. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Kohno, C.; Nishimoto, A.; Sekine, H.; Fukai, F.; Okano, T. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials 2005, 26, 6415–6422. [Google Scholar] [CrossRef]
- Tang, Z.; Akiyama, Y.; Yamato, M.; Okano, T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials 2010, 31, 7435–7443. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.J.; Nasiri, N.; Duffin, R.N.; Raghuwanshi, V.S.; Mata, J.; Simon, G.P.; Hooper, J.F.; Garnier, G. Multifunctional graft-IPN hydrogels of cellulose nanofibers and poly(N-isopropyl acrylamide) via silver-promoted decarboxylative radical polymerization. Mater. Today Chem. 2024, 37, 102014. [Google Scholar] [CrossRef]
- Dzhoyashvili, N.A.; Thompson, K.; Gorelov, A.V.; Rochev, Y.A. Film thickness determines cell growth and cell sheet detachment from spin coated poly(N-isopropylacrylamide) substrates. ACS Appl. Mater. Interfaces 2016, 8, 27564–27572. [Google Scholar] [CrossRef]
- Gilcreest, V.P.; Carroll, W.M.; Rochev, Y.A.; Blute, I.; Dawson, K.A.; Gorelov, A.V. Thermoresponsive poly(N-isopropylacrylamide) copolymers: Contact angles and surface energies of polymer films. Langmuir 2004, 20, 10138–10145. [Google Scholar] [CrossRef]
- Lee, S.B.; Ha, D.I.; Cho, S.K.; Kim, S.J.; Lee, Y.M. Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). J. Appl. Polym. Sci. 2004, 92, 2612–2620. [Google Scholar] [CrossRef]
- Alexander, A.; Ajazuddin; Khan, J.; Saraf, S.; Saraf, S. Polyethylene glycol (PEG)–poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2014, 88, 575–585. [Google Scholar] [CrossRef]
- Jahn, P.; Karger, R.K.; Khalaf, S.S.; Hamad, S.; Peinkofer, G.; Sahito, R.G.A.; Pieroth, S.; Nitsche, F.; Lu, J.; Derichsweiler, D. Engineering of cardiac microtissues by microfluidic cell encapsulation in thermoshrinking non-crosslinked PNIPAAm gels. Biofabrication 2022, 14, 035017. [Google Scholar] [CrossRef]
- Rusen, L.; Dinca, V.; Mustaciosu, C.; Icriverzi, M.; Sima, L.E.; Bonciu, A.; Brajnicov, S.; Mihailescu, N.; Dumitrescu, N.; Popovici, A.I.; et al. Smart thermoresponsive surfaces based on pNIPAm coatings and laser method for biological applications. In Modern Technologies for Creating the Thin-film Systems and Coatings; Nikitenkov, N.N., Ed.; IntechOpen Limited: London, UK, 2017; pp. 171–191. [Google Scholar] [CrossRef]
- Patel, N.G.; Cavicchia, J.P.; Zhang, G.; Newby, B.Z. Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomater. 2012, 8, 2559–2567. [Google Scholar] [CrossRef]
- Yang, L.; Fan, X.; Zhang, J.; Ju, J. Preparation and characterization of thermoresponsive poly(N-isopropylacrylamide) for cell culture applications. Polymers 2020, 12, 389. [Google Scholar] [CrossRef]
- Guo, Q.; Ma, J.; Yin, T.; Jin, H.; Zheng, J.; Gao, H. Superhydrophobic non-metallic surfaces with multiscale nano/micro-structure: Fabrication and application. Molecules 2024, 29, 2098. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Dirani, A.; Glinel, K.; Jonas, A.M. Temperature dependence of the swelling and surface wettability of dense polymer brushes. In Polymer and Biopolymer Brushes: For Materials Science and Biotechnology; Azzaroni, O., Szleifer, I., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; Volume 1, pp. 267–285. [Google Scholar] [CrossRef]
- Muthiah, P.; Hoppe, S.M.; Boyle, T.J.; Sigmund, W. Thermally tunable surface wettability of electrospun fiber mats: Polystyrene/poly(N-isopropylacrylamide) blended versus crosslinked poly[(N-isopropylacrylamide)-co-(methacrylic acid)]. Macromol. Rapid Commun. 2011, 32, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Leonardis, P.D.; Tirelli, N.; Saunders, B.R. Thermally-responsive surfaces comprising grafted poly(N-isopropylacrylamide) chains: Surface characterisation and reversible capture of dispersed polymer particles. J. Colloid Interface Sci. 2009, 340, 166–175. [Google Scholar] [CrossRef]
- Kwon, O.H.; Kikuchi, A.; Yamato, M.; Sakurai, Y.; Okano, T. Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. J. Biomed. Mater. Res., Part B 2000, 50, 82–89. [Google Scholar] [CrossRef]
- Teotia, A.K.; Sami, H.; Kumar, A. Thermo-responsive polymers: Structure and design of smart materials. In Switchable and Responsive Surfaces and Materials for Biomedical Applications; Zhang, Z., Ed.; Woodhead Publishing: Abington, UK, 2015; pp. 4–43. [Google Scholar] [CrossRef]
- Rauch, S.; Eichhorn, K.J.; Stamm, M.; Uhlmann, P. Spectroscopic ellipsometry of superparamagnetic nanoparticles in thin films of poly(N-isopropylacrylamide). J. Vac. Sci. Technol. A 2012, 30, 041514. [Google Scholar] [CrossRef]
- Patel, D.K.; Lim, K.T. Stimuli-responsive polymers and their biomedical applications. In Functionalized Polymers, Synthesis, Characterization and Applications; Chauhan, N.P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 250–264. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, L.; Zhu, B.; Xu, Y. Poly(N-isopropylacrylamide) grafted poly(vinylidene fluoride) copolymers for temperature-sensitive membranes. J. Membr. Sci. 2011, 366, 176–183. [Google Scholar] [CrossRef]
- van der Heide, P. X-ray Photoelectron Spectroscopy: An Introduction to Principles and Practices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 1–12. [Google Scholar] [CrossRef]
- Cheng, Z.; Shan, H.; Sun, Y.; Zhang, L.; Jiang, H.; Li, C. Evolution mechanism of surface hydroxyl groups of silica during heat treatment. Appl. Surf. Sci. 2020, 513, 145766. [Google Scholar] [CrossRef]
- Yi, B.; Wang, S.; Hou, C.; Huang, X.; Cui, J.; Yao, X. Dynamic siloxane materials: From molecular engineering to emerging applications. Chem. Eng. J. 2021, 405, 127023. [Google Scholar] [CrossRef]
- N’guessan, H.E.; White, R.; Leh, A.; Baksi, A.; Tadmor, R. Fundamental understanding of drops wettability behavior theoretically and experimentally. In Advances in Contact Angle, Wettability and Adhesion; Mittal, K.L., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2013; Volume 1, pp. 87–96. [Google Scholar] [CrossRef]
- Steiner, G.; Zimmerer, C. Poly(N-isopropylacrylamide) Polymer Solids and Polymer Melts# Data. In Polymer Solids and Polymer Melts–Definitions and Physical Properties I; Arndt, K.F., Lechner, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 6, pp. 564–570. [Google Scholar] [CrossRef]
- Kalová, J.; Mareš, R. Temperature dependence of the surface tension of water, including the supercooled region. Int. J. Thermophys. 2022, 43, 154. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, C. Reentrant coil-to-globule-to-coil transition of a single linear homopolymer chain in a water/methanol mixture. Phys. Rev. Lett. 2001, 86, 822–825. [Google Scholar] [CrossRef]
- Callewaert, M.; Grandfils, C.; Boulangé-Petermann, L.; Rouxhet, P.G. Adsorption of poly(N-isopropylacrylamide) on glass substrata. J. Colloid Interface Sci. 2004, 276, 299–305. [Google Scholar] [CrossRef]
- Rao, S.; Costa, K.D. Atomic force microscopy (AFM) in biomedical research. In Biomedical Imaging Applications and Advances; Morris, P., Ed.; Woodhead Publishing: Abington, UK, 2014; pp. 41–64. [Google Scholar] [CrossRef]
- Fan, X.; Gu, S.; Wu, L.; Yang, L. Preparation and characterization of thermoresponsive poly(N-isopropylacrylamide) copolymers with enhanced hydrophilicity. e-Polymers 2020, 20, 561–570. [Google Scholar] [CrossRef]
- Furchner, A.; Sun, G.; Ketelsen, H.; Rappich, J.; Hinrichs, K. Fast IR laser mapping ellipsometry for the study of functional organic thin films. Analyst 2015, 140, 1791–1797. [Google Scholar] [CrossRef]
- Li, J.; Collins, R.W.; Sestak, M.N.; Koirala, P.; Podraza, N.J.; Marsillac, S.; Rockett, A.A. Spectroscopic ellipsometry. In Advanced Characterization Techniques for Thin Film Solar Cells; Abou-Ras, D., Kirchartz, T., Rau, U., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016; Volume 1, pp. 215–256. [Google Scholar] [CrossRef]
- Deng, K.; Wang, Y.; Wang, L.; Fan, X.; Wu, Z.; Wen, X.; Xie, W.; Wang, H.; Zhou, Z.; Chen, P.; et al. Phase transition behaviors of poly(N-isopropylacrylamide) nanogels with different compositions induced by (−)-epigallocatechin-3-gallate and ethyl gallate. Molecules 2023, 28, 7823. [Google Scholar] [CrossRef]
- Fan, X.; Lei, J.; Gu, S.; Leng, X.; Liu, C.; Yang, L. Regulation of thermoresponsive PNIPAAm copolymers with enhanced hydrophilicity via NVP moieties. Mater. Rep. 2023, 37, 21100186-7. [Google Scholar] [CrossRef]
- Himawan, A.; Anjani, Q.K.; Detamornrat, U.; Vora, L.K.; Permana, A.D.; Ghanma, R.; Naser, Y.; Rahmawanty, D.; Scott, C.J.; Donnelly, R.F. Multifunctional low temperature-cured PVA/PVP/citric acid-based hydrogel forming microarray patches: Physicochemical characteristics and hydrophilic drug interaction. Eur. Polym. J. 2023, 186, 111836. [Google Scholar] [CrossRef]
- Bueno, V.B.; Bentini, R.; Catalani, L.H.; Petri, D.F.S. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr. Polym. 2013, 92, 1091–1099. [Google Scholar] [CrossRef]
- Gong, L.; Liu, D.; Fan, T.; Qin, J.; Li, J.; Zhang, Q.; Wu, Z.; Fan, Z.; Liu, Q. Surface modification of PTLG terpolymer using PNIPAAm and its cell adhesion/detachment behavior. Macromol. Chem. Phys. 2020, 221, 1900524. [Google Scholar] [CrossRef]
- Lian, J.; Xu, H.; Duan, S.; Ding, X.; Hu, Y.; Zhao, N.; Ding, X.; Xu, F.J. Tunable adhesion of different cell types modulated by thermoresponsive polymer brush thickness. Biomacromolecules 2020, 21, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Cooperstein, M.A.; Canavan, H.E. Biological cell detachment from poly(N-isopropyl acrylamide) and its applications. Langmuir 2010, 26, 7695–7707. [Google Scholar] [CrossRef]
- Nitschke, M.; Gramm, S.; Götze, T.; Valtink, M.; Drichel, J.; Voit, B.; Engelmann, K.; Werner, C. Thermo-responsive poly(NiPAAm-co-DEGMA) substrates for gentle harvest of human corneal endothelial cell sheets. J. Biomed. Mater. Res. Part A 2007, 80A, 1003–1010. [Google Scholar] [CrossRef]
- Ernst, O.; Lieske, A.; Jäger, M.; Lankenau, A.; Duschl, C. Control of cell detachment in a microfluidic device using a thermo-responsive copolymer on a gold substrate. Lab Chip 2007, 7, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Canavan, H.E.; Cheng, X.; Graham, D.J.; Ratner, B.D.; Castner, D.G. Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 2005, 21, 1949–1955. [Google Scholar] [CrossRef]
- Akiyama, Y.; Kushida, A.; Yamato, M.; Kikuchi, A.; Okano, T. Surface characterization of poly(N-isopropyl acrylamide) grafted tissue culture polystyrene by electron beam irradiation, using atomic force microscopy, and X-ray photoelectron spectroscopy. J. Nanosci. Nanotechnol. 2007, 7, 796–802. [Google Scholar] [CrossRef]
- Kanai, N.; Yamato, M.; Okano, T. Principles of cell sheet technology. In Regenerative Medicine Applications in Organ Transplantation; Orlando, G., Lerut, J., Soker, S., Stratta, R.J., Eds.; Elsevier Inc.: Amsterdam, Netherlands, 2014; pp. 57–66. [Google Scholar] [CrossRef]
- Lefebvre, J.; Galli, F.; Bianchi, C.L.; Patience, G.S.; Boffito, D.C. Experimental methods in chemical engineering: X-ray photoelectron spectroscopy-XPS. Can. J. Chem. Eng. 2019, 97, 2588–2593. [Google Scholar] [CrossRef]
- Bi, Y.; Chen, L.; Duan, C.; Zhao, Z. OER performance of Ce-CoFe-P@CC nanocomposite catalytic system. J. Petrochem. Univ. 2024, 37, 49–57. [Google Scholar] [CrossRef]
- Iucci, G.; Battocchio, C.; Dettin, M.; Ghezzo, F.; Polzonetti, G. An XPS study on the covalent immobilization of adhesion peptides on a glass surface. Solid State Sci. 2010, 12, 1861–1865. [Google Scholar] [CrossRef]
- Ahmadi, S.; Nasiri, M.; Pourrajab-Miandoab, A.; Abbasi, F.; Hassanpour, F.; Sabzi, E. Photo- and thermo-responsive extracellular matrix mimicking nano-coatings prepared from poly(N-isopropylacrylamide)-spiropyran copolymer for effective cell sheet harvesting. Prog. Org. Coat. 2022, 167, 106847. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, X.; Zhao, X.; Withers, S.B.; Holt, C.M.; Lewis, A.L.; Lu, J.R. Controlled delivery of antisense oligodeoxynucleotide from cationically modified phosphorycholine polymer films. Biomacromolecules 2006, 7, 784–791. [Google Scholar] [CrossRef] [PubMed]
Copolymer Concentration (mg·mL−1) | 0.2 | 0.5 | 1 | 2 | 3 | 4 |
Swelling ratio (20 °C) | 1.74 | 1.65 | 1.57 | 2.63 | 3.07 | 4.38 |
Swelling ratio (37 °C) | 1.20 | 1.18 | 1.10 | 1.21 | 1.25 | 1.31 |
Copolymer Concentration (mg·mL−1) | 5 | 6 | 7 | 8 | 9 | 10 |
Swelling ratio (20 °C) | 4.62 | 5.09 | 5.18 | 5.22 | 5.27 | 5.36 |
Swelling ratio (37 °C) | 1.50 | 1.53 | 1.55 | 1.51 | 1.56 | 1.57 |
Sample | C | O | N | Si | S |
---|---|---|---|---|---|
Glass slide | 9.2% | 65.1% | 1.3% | 24.4% | 0 |
Copolymer films (1 mg·mL−1, measured) | 70.6% | 17.3% | 10.4% | 1.7% | 0 |
Copolymer films (1 mg·mL−1, calculated) | 73.7% | 15.0% | 10.8% | 0.5% | 0 |
Copolymer films (1 mg·mL−1) treated by one round | 68.0% | 25.2% | 5.9% | 0.3% | 0.6% |
Copolymer films (1 mg·mL−1) treated by two rounds | 64.2% | 27.4% | 7.2% | 0.2% | 1.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Sun, L.; Sun, Y.; Qiu, G.; Fan, X.; Sun, Q.; Lu, G. Engineering Thermoresponsive Poly(N-isopropylacrylamide)-Based Films with Enhanced Stability and Reusability for Efficient Bone Marrow Mesenchymal Stem Cell Culture and Harvesting. Molecules 2024, 29, 4481. https://doi.org/10.3390/molecules29184481
Yang L, Sun L, Sun Y, Qiu G, Fan X, Sun Q, Lu G. Engineering Thermoresponsive Poly(N-isopropylacrylamide)-Based Films with Enhanced Stability and Reusability for Efficient Bone Marrow Mesenchymal Stem Cell Culture and Harvesting. Molecules. 2024; 29(18):4481. https://doi.org/10.3390/molecules29184481
Chicago/Turabian StyleYang, Lei, Luqiao Sun, Yuanyuan Sun, Guangwei Qiu, Xiaoguang Fan, Qing Sun, and Guang Lu. 2024. "Engineering Thermoresponsive Poly(N-isopropylacrylamide)-Based Films with Enhanced Stability and Reusability for Efficient Bone Marrow Mesenchymal Stem Cell Culture and Harvesting" Molecules 29, no. 18: 4481. https://doi.org/10.3390/molecules29184481
APA StyleYang, L., Sun, L., Sun, Y., Qiu, G., Fan, X., Sun, Q., & Lu, G. (2024). Engineering Thermoresponsive Poly(N-isopropylacrylamide)-Based Films with Enhanced Stability and Reusability for Efficient Bone Marrow Mesenchymal Stem Cell Culture and Harvesting. Molecules, 29(18), 4481. https://doi.org/10.3390/molecules29184481