Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening
2.1.1. Phenolic Compounds (1–12)
2.1.2. Flavonoids (13–46)
2.1.3. Catecholamines (47–52)
2.2. Antioxidant Capacity
2.3. Toxicity Assay
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Plant Material and Extraction
4.3. LC-MS Analysis
4.3.1. Sample Preparation
4.3.2. Instrumentation and Analytical Conditions
4.4. Antioxidant Capacity Assesment
4.4.1. DPPH Free Radical Scavenging Activity
4.4.2. ABTS Free Radical Scavenging Activity
4.5. Cytotoxic Assay on A. salina
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plants of the World Online. Royal Botanic Garden—Kew Atraphaxis L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:32426-1#children (accessed on 15 September 2024).
- Zhang, M.; Sanderson, S.C.; Sun, Y.; Byalt, V.V.; Hao, X. Tertiary Montane Origin of the Central Asian Flora, Evidence Inferred from CpDNA Sequences of Atraphaxis (Polygonaceae). J. Integr. Plant Biol. 2014, 56, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Abilkassymova, A.; Turgumbayeva, A.; Sarsenova, L.; Tastambek, K.; Altynbay, N.; Ziyaeva, G.; Blatov, R.; Altynbayeva, G.; Bekesheva, K.; Abdieva, G.; et al. Exploring Four Atraphaxis Species: Traditional Medicinal Uses, Phytochemistry, and Pharmacological Activities. Molecules 2024, 29, 910. [Google Scholar] [CrossRef] [PubMed]
- Khamreva, D.T. New Findings in the Ethnobotany of Uzbekistan. Eurasia Proc. Health Environ. Life Sci. 2023, 10, 55–58. [Google Scholar] [CrossRef]
- Wang, X.; Khutsishvili, M.; Fayvush, G.; Tamanyan, K.; Atha, D.; Borris, R.P. Phytochemical Investigations of Atraphaxis spinosa L. (Polygonaceae). Biochem. Syst. Ecol. 2018, 77, 44–47. [Google Scholar] [CrossRef]
- Chumbalov, T.K.; Mukhamed’yarova, M.M.; Chanysheva, I.S.; Il’yasova, M.M. Flavonoids of Atraphaxis Pyrifolia and Spinosa II. Chem. Nat. Compd. 1971, 7, 504–505. [Google Scholar] [CrossRef]
- Chumbalov, T.K.; Omurkamzinova, V.B. Flavonoids of Atraphaxis Pyrifolia. IV. Chem. Nat. Compd. 1976, 12, 593–594. [Google Scholar] [CrossRef]
- Chumbalov, T.K.; Mukhamed’yarova, M.M.; Chanysheva, I.S.; Smirnova, L.P.; Omurkamzinova, V.B. Flavonoids of Atraphaxis Pyrifolia. III. Chem. Nat. Compd. 1976, 12, 591–592. [Google Scholar] [CrossRef]
- Chumbalov, T.K.; Mukhamed’yarova, M.M.; Omurkamzinova, V.B.; Chanysheva, I.S. 7-O-Methylgossypetin 3-Rhamnoside from Atraphaxis Pyrifolia. Chem. Nat. Compd. 1975, 11, 153–156. [Google Scholar] [CrossRef]
- Abilkassymova, A.; Kozykeyeva, R.; Aldana-Mejía, J.A.; John Adams, S.; Datkhayev, U.; Turgumbayeva, A.; Orynbassarova, K.; Saroja, S.G.; Khan, I.A.; Ross, S.A. Phytochemical and Micro-Morphological Characterization of Atraphaxis Pyrifolia Bunge Growing in the Republic of Kazakhstan. Molecules 2024, 29, 833. [Google Scholar] [CrossRef]
- Shukla, V.; Singh, P.; Kumar, D.; Konwar, R.; Singh, B.; Kumar, B. Phytochemical Analysis of High Value Medicinal Plant Valeriana Jatamansi Using LC-MS and It’s in-Vitro Anti-Proliferative Screening. Phytomed. Plus 2021, 1, 100025. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Katragunta, K.; Wang, Y.H.; Ali, Z.; Khan, I.A. Simultaneous Determination and Characterization of Flavonoids, Sesquiterpene Lactone, and Other Phenolics from Centaurea Benedicta and Dietary Supplements Using UHPLC-PDA-MS and LC-DAD-QToF. J. Pharm. Biomed. Anal. 2022, 216, 114806. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Katragunta, K.; Wang, Y.H.; Ali, Z.; Srivedavyasasri, R.; Gafner, S.; Slimestad, R.; Khan, I.A. Chemical Profiling and UHPLC-QToF Analysis for the Simultaneous Determination of Anthocyanins and Flavonoids in Sambucus Berries and Authentication and Detection of Adulteration in Elderberry Dietary Supplements Using UHPLC-PDA-MS. J. Food Compos. Anal. 2022, 110, 104584. [Google Scholar] [CrossRef]
- Maia, I.R.D.O.; Trevisan, M.T.S.; Silva, M.G.D.V.; Breuer, A.; Owen, R.W. Characterization and Quantitation of Polyphenolic Compounds in Senna Macranthera Var Pudibunda From the Northeast of Brazil. Nat. Prod. Commun. 2019, 14, 1–6. [Google Scholar] [CrossRef]
- Geng, P.; Harnly, J.M.; Sun, J.; Zhang, M.; Chen, P. Feruloyl Dopamine-O-Hexosides Are Efficient Marker Compounds as Orthogonal Validation for Authentication of Black Cohosh (Actaea racemosa)—An UHPLC-HRAM-MS Chemometrics Study. Anal. Bioanal. Chem. 2017, 409, 2591–2600. [Google Scholar] [CrossRef] [PubMed]
- Chumbalov, T.K.; Mukhamed’yarova, M.M.; Omurkamzinova, V.B. 7-O-Methylherbacetin 3-Rhamnoside from Atraphaxis Pyrifolia. Chem. Nat. Compd. 1974, 10, 817. [Google Scholar] [CrossRef]
- Odonbayar, B.; Murata, T.; Batkhuu, J.; Yasunaga, K.; Goto, R.; Sasaki, K. Antioxidant Flavonols and Phenolic Compounds from Atraphaxis Frutescens and Their Inhibitory Activities against Insect Phenoloxidase and Mushroom Tyrosinase. J. Nat. Prod. 2016, 79, 3065–3071. [Google Scholar] [CrossRef]
- Nakano, H.; Kosemura, S.; Mamonov, L.K.; Cantrell, C.L. 8-o-Acetyl-7-o-Methylgossypetin from Atraphaxis Laetevirens. Chem. Nat. Compd. 2016, 52, 127–129. [Google Scholar] [CrossRef]
- Umbetova, A.K.; Beyatli, A.; Seitimova, G.A.; Yeskaliyeva, B.K.; Burasheva, G.S. Flavonoids from the Plant Atraphaxis Virgata. Chem. Nat. Compd. 2021, 57, 531–533. [Google Scholar] [CrossRef]
- Takeda, Y.; Murata, T.; Jamsransuren, D.; Suganuma, K.; Kazami, Y.; Batkhuu, J.; Badral, D.; Ogawa, H. Saxifraga Spinulosa-Derived Components Rapidly Inactivate Multiple Viruses Including SARS-CoV-2. Viruses 2020, 12, 699. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, S.; Xie, Y.; Zhang, Z.; Zhao, W. Gallic Acid as a Selective Anticancer Agent That Induces Apoptosis in SMMC-7721 Human Hepatocellular Carcinoma Cells. Oncol. Lett. 2016, 11, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Pei, J.; Zheng, Y.; Miao, Y.; Duan, B.; Huang, L. Gallic Acid: A Potential Anti-Cancer Agent. Chin. J. Integr. Med. 2022, 28, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ye, J.; Dai, J.; Wang, Y.; Chen, G.; Hu, J.; Hu, Q.; Fei, J. Gallic Acid Inhibits Osteoclastogenesis and Prevents Ovariectomy-Induced Bone Loss. Front. Endocrinol. 2022, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Huang, Q.; Zou, L.; Wei, P.; Lu, J.; Zhang, Y. Methyl Gallate: Review of Pharmacological Activity. Pharmacol. Res. 2023, 194, 106849. [Google Scholar] [CrossRef] [PubMed]
- Puppala, M.; Ponder, J.; Suryanarayana, P.; Reddy, G.B.; Petrash, J.M.; LaBarbera, D.V. The Isolation and Characterization of β-Glucogallin as a Novel Aldose Reductase Inhibitor from Emblica Officinalis. PLoS ONE 2012, 7, e31399. [Google Scholar] [CrossRef]
- Erosa-Rejón, G.; Peña-Rodríguez, L.M.; Sterner, O. Secondary Metabolites from Heliotropium Angiospermum. J. Mex. Chem. Soc. 2009, 53, 44–47. [Google Scholar] [CrossRef]
- Silva, J.; Alves, C.; Martins, A.; Susano, P.; Simões, M.; Guedes, M.; Rehfeldt, S.; Pinteus, S.; Gaspar, H.; Rodrigues, A.; et al. Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium Tomentosum. Int. J. Mol. Sci. 2021, 22, 1888. [Google Scholar] [CrossRef]
- MacHado, F.B.; Yamamoto, R.E.; Zanoli, K.; Nocchi, S.R.; Novello, C.R.; Schuquel, I.T.A.; Sakuragui, C.M.; Luftmann, H.; Ueda-Nakamura, T.; Nakamura, C.V.; et al. Evaluation of the Antiproliferative Activity of the Leaves from Arctium Lappa by a Bioassay-Guided Fractionation. Molecules 2012, 17, 1852–1859. [Google Scholar] [CrossRef]
- Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Verri, W.A. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules 2020, 25, 762. [Google Scholar] [CrossRef]
- Flora, S.J.S. Structural, Chemical and Biological Aspects of Antioxidants for Strategies against Metal and Metalloid Exposure. Oxid. Med. Cell. Longev. 2009, 2, 191–206. [Google Scholar] [CrossRef]
- Miceli, N.; Buongiorno, L.P.; Celi, M.G.; Cacciola, F.; Dugo, P.; Donato, P.; Mondello, L.; Bonaccorsi, I.; Taviano, M.F. Role of the Flavonoid-Rich Fraction in the Antioxidant and Cytotoxic Activities of Bauhinia Forficata Link. (Fabaceae) Leaves Extract. Nat. Prod. Res. 2016, 30, 1229–1239. [Google Scholar] [CrossRef] [PubMed]
- Adam, O.A.O.; Abadi, R.S.M.; Ayoub, S.M.H. Antioxidant activity, Total Phenolic and Flavonoid Contents and Cytotoxic activity of Euphorbia aegyptiaca. J. Drug Deliv. Ther. 2020, 10, 37–41. [Google Scholar] [CrossRef]
- Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Ntungwe, N.E.; Domínguez-Martín, E.M.; Roberto, A.; Tavares, J.; Isca, V.M.S.; Pereira, P.; Cebola, M.-J.; Rijo, P. Artemia Species: An Important Tool to Screen General Toxicity Samples. Curr. Pharm. Des. 2020, 26, 2892–2908. [Google Scholar] [CrossRef] [PubMed]
- Salay, G.; Lucarelli, N.; Gascón, T.M.; de Carvalho, S.S.; da Veiga, G.R.L.; Reis, B.d.C.A.A.; Fonseca, F.L.A. Acute Toxicity Assays with the Artemia Salina Model: Assessment of Variables. Altern. Lab. Anim. 2024, 52, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Işık, E.; Aybastıer, Ö.; Demir, C. Orthogonal Signal Correction-based Prediction of Total Antioxidant Activity Using Partial Least Squares Regression from Chromatograms. J. Chemom. 2012, 26, 390–399. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
# | RT (Min) | Compound Name Ref | Mol. Formula | Exact Mass [M] | [M + H]+ | Fragment Ions (+ve Mode) | [M-H]− | Fragment Ions (−ve Mode) | Parts | |
---|---|---|---|---|---|---|---|---|---|---|
Stem | Leaf | |||||||||
Phenolic Compounds | ||||||||||
1 | 4.22 | Gallic acid hexoside | C13H16O10 | 332.0743 | - | - | 331.0673 (331.0671) * | 169.0144 [M-H-C6H10O5]−, 151.0035 [M-H-C6H10O5-H2O]−, 125.0244 [M-H-C6H10O5-CO2]− | + | + |
2 | 4.55 | Gallic acid | C7H6O5 | 170.0215 | - | - | 169.0141 (169.0142) | 125.0242 [M-H-CO2]− | + | + |
3 | 7.09 | Vanillic acid hexoside | C14H18O9 | 330.0951 | 353.0842 (353.0843) * | 169.0495 [M + H-Glc]+, 151.0390 [M + H-Glc-H2O]+ | 329.0873 (329.0878) | 167.0350 [M-H-Glc]−, 153.0196 [M-H-Glc-CH2]− | + | + |
4 | 8.32 | Chlorogenic acid isomers | C16H18O9 | 354.0951 | 355.1026 (355.1024) | 163.0391 [Caffeic acid+H-H2O]+ | 353.0872 (353.0878) | 191.0552 [Quinic acid-H]−, 179.0354 [Caffeic acid-H]−, 173.0456 [Quinic acid-H-H2O]−, 135.0443 [Caffeic acid-H-CO2]− | + | + |
5 | 10.68 | |||||||||
6 | 11.22 | |||||||||
7 | 12.73 | |||||||||
8 | 8.21 | Glucosyringic acid | C15H20O10 | 360.1056 | - | - | 359.0989 (359.0984) | 197.0451 [M-H-Glc]−, 123.0086 | + | + |
9 | 8.80 | Coumaric acid hexoside | C15H18O8 | 326.1002 | 349.0987 (349.0894) [M + Na]+ | 165.0546 [M + H-Glc]+, 147.0446 [M + H-Glc-H2O]+ | 325.0932 (325.0929) | 163.0401 [M-H-Glc]−, 119.0502 [M-H-Glc-CO2]− | + | + |
10 | 11.00 | |||||||||
11 | 10.03 | Coumaroylquinic acid | C16H18O8 | 338.1002 | 339.1062 (339.1074) | 147.0428 [Coumaric acid + H-H2O]+, 119.0478 [Coumaric acid+H-H2O-CO]+ | 337.0937 (337.0929) | 191.0565 [Quinic acid-H]−, 163.0404 [Coumaric acid-H]−, 119.0506 [Coumaric acid-H-CO2]− | + | + |
12 | 10.20 | Methyl gallate | C8H8O5 | 184.0372 | 185.0434 (185.0444) | - | 183.0299 (183.0299) | 124.0167 [M-H-CH3-CO2]− | + | + |
Flavonoids | ||||||||||
13 | 9.45 | Procyanidin B1/B2/B3/B4 | C30H26O12 | 578.1424 | 579.1495 (579.1497) | 409.0915, 287.0514, 163.0390, 127.0390 | 577.1356 (577.1351) | 451.1044, 425.0886, 407.0784, 339.0884, 289.0725, 245.0826, 161.0250, 125.0251 | + | + |
14 | 9.90 | |||||||||
15 | 11.41 | |||||||||
16 | 11.85 | |||||||||
17 | 14.47 | Galloyl-procyanidin B1/B2 | C37H30O16 | 730.1534 | 731.1607 (731.1607) | 579.1498, 395.0953, 289.0703 | 729.1463 (729.1461) | 577.1341, 407.0776, 371.0987, 289.0717, 169.0140, 151.0395, 125.0245 | + | + |
18 | 6.93 | Gallocatechin/ Epigallocatechin | C15H14O7 | 306.0740 | 307.0805 (307.0812) | 289.0709, 139.0382 | 305.0664 (305.0667) | 137.0238, 125.0238 | + | + |
19 | 9.73 | |||||||||
20 | 10.40 | Catechin/Epicatechin | C15H14O6 | 290.0790 | 291.0856 (290.0863) | 147.0431, 139.0381, 123.0430 | 289.0715 (289.0718) | 159.0451, 137.0247, 123.0456, 109.0299 | + | + |
21 | 12.89 | |||||||||
22 | 12.47 | Fisetinidol hexoside | C21H24O10 | 436.1369 | - | - | 435.1303 (435.1297) | 273.0771, 149.0246, 123.0456, 109.0297 | + | + |
23 | 13.07 | Quercetin 3-glucuronide-methyl ester | C22H20O13 | 492.0904 | - | - | 491.0836 (491.0831) | 337.0933, 300.9996, 191.0563 | ND | + |
24 | 13.59 | Heptahydroxyflavone; 7-Me ether, rhamnopyranoside, hexoside | C28H32O18 | 656.1589 | 657.1665 (657.1661) | 511.1082, 495.1137, 349.0556, 209.1534, 183.0287 | 655.1534 (655.1518) | 493.0985, 346.0334, 331.0097, 191.0201 | + | + |
25 | 14.00 | Fisetinidol | C15H14O5 | 274.0841 | 275.0908 (275.0914) | 123.0434 | 273.0776 (273.0768) | 149.0247 | + | + |
26 | 15.00 | Pentahydroxy-7-methoxyflavone; rhamnopyranoside, hexoside | C28H32O17 | 640.1639 | 641.1716 (641.1712) | 495.1133, 479.1184, 155.1311, 434.2022, 333.0609 | 639.1589 (639.1567) | 477.1058, 439.1086, 331.0467, 330.0394, 315.0156, 191.0569 | + | + |
27 | 15.30 | Myricetin hexoside | C21H20O13 | 480.0904 | 481.0969 (481.0977) | 319.0436, 153.018 | 479.0838 (479.0831) | 316.0230, 271.0257 | + | + |
28 | 15.34 | Guibourtinidol-(Cat)Epicatechin-2/3/4/5/6/7 | C30H26O10 | 546.1526 | 547.1600 (547.1599) | 271.0601, 147.0437, 123.0437 | 545.1463 (545.1453) | 289.0726, 245.0824 | + | + |
29 | 16.75 | |||||||||
30 | 17.60 | |||||||||
31 | 17.90 | |||||||||
32 | 16.09 | Trihydroxy-7-methoxyflavone; [Glucofuranosyl hexoside] | C28H32O16 | 624.1690 | 625.1771 (625.1763) | 479.1186, 317.0658 | 623.1630 (623.1618) | 477.1041, 461.1060, 315.0502, 314.0430, 299.0197, 181.0136 | + | + |
33 | 16.90 | Heptahydroxyflavone; 7-Me ether, rhamnopyranoside/Pentahydroxy-methoxy-rhamnopyranosyloxy-flavone | C22H22O13 | 494.1060 | 495.1128 (495.1133) | 349.0552, 334.0303, 317.0281, 303.0484, 235.0223, 183.0277, 169.0120, 153.0170 | 493.1008 (493.0998) | 346.0341, 331.0109, 303.0157, 231.0303 | + | + |
34 | 17.32 | Quercetin 3-O-glucuronide | C21H18O13 | 478.0747 | 479.0819 (479.0820) | 303.0495, 137.0593 | 477.0684 (477.0675) | 301.0358, 151.0037 | + | + |
35 | 17.40 | Quercetin hexoside | C21H20O12 | 464.0955 | 465.1029 (465.1028) | 303.0502, 153.0181 | 463.0890 (463.0882) | 300.0282, 271.0253, 255.0302, 151.0035 | + | + |
36 | 17.00 | Cassiaflavan-(Cat) Epicatechin-1/2/3/4 | C30H26O9 | 530.1577 | 531.1648 (531.1650) | 271.0596 | 529.1518 (529.1504) | 289.0723 | + | + |
37 | 17.95 | |||||||||
38 | 18.70 | |||||||||
39 | 19.75 | |||||||||
40 | 19.00 | Pyrifolinin | C22H22O12 | 478.1111 | 479.1186 (479.1184) | 353.0263, 333.0600, 318.0363, 301.0338, 169.0124, 137.0227 | 477.1052 (477.1038) | 331.0462, 315.0154, 287.0202, 271.0254, 181.0146 | + | + |
41 | 19.30 | Kaempferol hexoside | C21H20O11 | 448.1006 | 449.1078 (449.1078) | 287.0550 | 447.0931 (447.0933) | 285.0392, 284.0324, 255.0301, 227.0353 | + | + |
42 | 20.96 | 3,4′,5,7,8-Pentahydroxyflavone; 7-Me ether, 3-O-α-L-rhamnopyranoside | C22H22O11 | 462.1162 | 463.1242 (463.1235) | 355.0132, 337.0324, 317.0658, 302.0424 | 461.1097 (461.1089) | 315.0511, 299.0204, 271.0254, 255.0308, 133.0298 | ND | + |
43 | 23.59 | 3,3′,4′,5,5′,7,8-Heptahydroxyflavone; 7-Me ether, 8-Ac, 3-O-α-L-rhamno-pyranoside/8-Acetoxy-3′,4′,5,5′-tetrahydroxy-7-methoxy-3-α-L-rhamno-pyranosyloxyflavone | C24H24O14 | 536.1166 | 537.1249 (537.1239) | 391.0704, 349.0556, 334.0328, 317.0298, 183.0292, 153.0186, 139.0394 | 535.1105 (535.1093) | 493.0995 [M-H-C2H2O]−, 388.0442 [M-H-Rha]−, 373.0204 [M-H-Rha-CH3]−, 331.0115 [M-H- C2H2O -Rha-CH3]−, 303.0145 [M-H- C2H2O -Rha-CH3-CO]−, 181.0139 [C8H6O5-H]- | + | +++ |
44 | 24.28 | Pyrifolinin | C22H22O12 | 478.1111 | 479.1181 (479.1184) | 330.0385, 315.0148, 287.0202, 165.0194, 137.0237 | 477.1043 (477.1038) | 333.0601, 259.0595, 231.0644, 167.0331, 139.0383 | ND | + |
45 | 26.26 | Pyrifolin | C24H24O13 | 520.1217 | 521.1290 (521.1291) | 397.0520, 375.0696, 333.0598, 318.0361, 301.0329, 273.0371, 183.0271, 169.0114, 137.0216 | 519.1151 (519.1144) | Ester Bond breakage: 477.1043 [M-H-C2H2O]−, 373.0563 [M-H-Rha]−, 372.0488, 357.0250 [M-H-C6H10O4-CH4]−, 315.0152 [M-H-C6H10O4-CH4-CO2]−, 287.0192 [M-H-C6H10O4-CH4-CO2-CO]−, 271.0243 [M-H-C6H10O4-CH4-2CO2]−, 181.0137 [C8H6O5-H]− | + | +++ |
46 | 28.28 | Dehydroxypyrifolin | C24H24O12 | 504.1268 | 505.1358 (505.1341) | 381.0586, 359.0771, 317.0670, 302.0441, 285.0398, 183.0299, | 503.1204 (503.1194) | 357.0611, 341.0303, 299.0214, 271.0247, 255.0297, 181.0141 | + | +++ |
Catecholamines | ||||||||||
47 | 16.36 | Feruloyl-noradrenaline | C18H19NO6 | 345.1212 | 346.1287 (346.1285) | 328.1188,177.0547, 145.0284, 117.0335 | 344.1145 (344.1140) | 326.1039, 161.0244, 149.0488 | + | + |
48 | 18.01 | Feruloyldopamine | C18H19NO5 | 329.1263 | 330.1333 (330.1336) | 312.1226, 177.0543, 145.0281, 117.0333 | 328.1194 (328.1190) | 161.0247, 133.0535 | +++ | + |
49 | 20.66 | 177.0541, 145.0280 | 328.1194 (328.1190) | - | + | + | ||||
50 | 19.60 | Coumaroyldopamine | C17H17NO4 | 299.1158 | 300.1231 (300.1230) | - | 298.1087 (298.1085) | - | + | + |
51 | 22.25 | Paprazine | C17H17NO3 | 283.1208 | 284.1264 (264.1281) | 177.0439, 147.0337, 121.0549 | 282.1146 (282.1136) | - | + | + |
52 | 23.30 | Feruloyltyramine | C18H19NO4 | 313.1314 | 314.1388 (314.1387) | 177.0546, 145.0280, 117.0335 | 312.1246 (312.1241) | - | + | + |
Monoterpenoid lactone | ||||||||||
53 | 17.80 | Loliolide | C11H16O3 | 196.1099 | 197.1172 (197.1172) | 179.1066, 105.0697 | - | - | + | + |
Extract | DPPH (mg Trolox/g) | ABTS (mg Trolox/g) |
---|---|---|
Leaves | 403.85 ± 18.49 | 124.22 ± 3.24 |
Stems | 365.69 ± 0.68 | 14.45 ± 2.98 |
Treatments | Concentrations (mg/mL) | % of Surviving Larvae | Mortality (%) |
---|---|---|---|
Negative control | - | 100 | 0 |
- | 100 | 0 | |
- | 100 | 0 | |
Actinomycin D | 10 | 0 | 96 * |
5 | 4 | 92 * | |
1 | 33 | 63 * | |
Methanolic leaves extract | 10 | 96 | 0 |
5 | 96 | 0 | |
1 | 96 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abilkassymova, A.; Aldana-Mejía, J.A.; Katragunta, K.; Kozykeyeva, R.; Omarbekova, A.; Avula, B.; Turgumbayeva, A.; Datkhayev, U.M.; Khan, I.A.; Ross, S.A. Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge. Molecules 2024, 29, 4478. https://doi.org/10.3390/molecules29184478
Abilkassymova A, Aldana-Mejía JA, Katragunta K, Kozykeyeva R, Omarbekova A, Avula B, Turgumbayeva A, Datkhayev UM, Khan IA, Ross SA. Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge. Molecules. 2024; 29(18):4478. https://doi.org/10.3390/molecules29184478
Chicago/Turabian StyleAbilkassymova, Alima, Jennyfer A. Aldana-Mejía, Kumar Katragunta, Raushan Kozykeyeva, Ardak Omarbekova, Bharathi Avula, Aknur Turgumbayeva, Ubaidilla M. Datkhayev, Ikhlas A. Khan, and Samir A. Ross. 2024. "Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge" Molecules 29, no. 18: 4478. https://doi.org/10.3390/molecules29184478
APA StyleAbilkassymova, A., Aldana-Mejía, J. A., Katragunta, K., Kozykeyeva, R., Omarbekova, A., Avula, B., Turgumbayeva, A., Datkhayev, U. M., Khan, I. A., & Ross, S. A. (2024). Phytochemical Screening Using LC-MS to Study Antioxidant and Toxicity Potential of Methanolic Extracts of Atraphaxis pyrifolia Bunge. Molecules, 29(18), 4478. https://doi.org/10.3390/molecules29184478