Organic Electro-Optic Materials with High Electro-Optic Coefficients and Strong Stability
Abstract
:1. Introduction
2. Categories of Organic Electro-Optical Materials
- (a)
- Host–guest doping type
- (b)
- Polymer type
- (c)
- Hyperbranched Dendritic Molecules
- (d)
- Self-assembling type
- (e)
- Cross-linked type
3. Chromophores with High Electro-Optic Coefficients
4. Chromophores with High Glass Transition Temperature
5. Application of Electro-Optic Materials: High-Performance EO Modulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Chen, Y.; Zhang, S.; Dong, L.; Yao, H.; Xu, H.; Chen, K.; Wu, J. Perspectives of thin-film lithium niobate and electro-optic polymers for high-performance electro-optic modulation. J. Mater. Chem. C 2023, 11, 11107–11122. [Google Scholar] [CrossRef]
- Elder, D.L.; Dalton, L.R. Organic Electro-Optics and Optical Rectification: From Mesoscale to Nanoscale Hybrid Devices and Chip-Scale Integration of Electronics and Photonics. Ind. Eng. Chem. Res. 2022, 61, 1207–1231. [Google Scholar] [CrossRef]
- Wang, H.; Morshedi, M.; Kodikara, M.S.; de Coene, Y.; Clays, K.; Zhang, C.; Humphrey, M.G. Outstanding Quadratic to Septic Optical Nonlinearity at Dipolar Alkynylmetal-Porphyrin Hybrids. Angew. Chem.-Int. Ed. 2023, 135, e202301754. [Google Scholar] [CrossRef]
- Wang, L.-D.; Tong, L.; Rong, J.-W.; Wu, J.-W. Nonlinear optical materials based on fluorinated polyurethane-imides and their application in waveguide device. High Perform. Polym. 2023, 35, 785–794. [Google Scholar] [CrossRef]
- Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B.; Saha, S.; et al. Low-loss plasmon-assisted electro-optic modulator. Nature 2018, 556, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Hoessbacher, C.; Heni, W.; Baeuerle, B.; Bitachon, B.I.; Josten, A.; Ayata, M.; et al. A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter. Nat. Electron. 2020, 3, 338–345. [Google Scholar] [CrossRef]
- Ayata, M.; Fedoryshyn, Y.; Heni, W.; Baeuerle, B.; Josten, A.; Zahner, M.; Koch, U.; Salamin, Y.; Hoessbacher, C.; Haffner, C.; et al. High-speed plasmonic modulator in a single metal layer. Science 2017, 358, 630–632. [Google Scholar] [CrossRef]
- Burla, M.; Hoessbacher, C.; Heni, W.; Haffner, C.; Fedoryshyn, Y.; Werner, D.; Watanabe, T.; Massler, H.; Elder, D.L.; Dalton, L.R.; et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics 2019, 4, 056106. [Google Scholar] [CrossRef]
- Benea-Chelmus, I.-C.; Zhu, T.; Settembrini, F.F.; Bonzon, C.; Mavrona, E.; Elder, D.L.; Heni, W.; Leuthold, J.; Dalton, L.R.; Faist, J. Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz. ACS Photonics 2018, 5, 1398–1403. [Google Scholar] [CrossRef]
- Baeuerle, B.; Heni, W.; Hoessbacher, C.; Fedoryshyn, Y.; Koch, U.; Josten, A.; Watanabe, T.; Uhl, C.; Hettrich, H.; Elder, D.L.; et al. 120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV. Opt. Express 2019, 27, 16823–16832. [Google Scholar] [CrossRef]
- Ummethala, S.; Harter, T.; Koehnle, K.; Li, Z.; Muehlbrandt, S.; Kutuvantavida, Y.; Kemal, J.; Marin-Palomo, P.; Schaefer, J.; Tessmann, A.; et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, T.; Liu, J.; Li, C.; Chen, Z.; Bo, S. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators. J. Semicond. 2022, 43, 101301. [Google Scholar] [CrossRef]
- Salamin, Y.; Baeuerle, B.; Heni, W.; Abrecht, F.C.; Josten, A.; Fedoryshyn, Y.; Haffner, C.; Bonjour, R.; Watanabe, T.; Burla, M.; et al. Microwave plasmonic mixer in a transparent fibre-wireless link. Nat. Photonics 2018, 12, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Salamin, Y.; Benea-Chelmus, I.-C.; Fedoryshyn, Y.; Heni, W.; Elder, D.L.; Dalton, L.R.; Faist, J.; Leuthold, J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-X.; Yu, Z.-P.; Shen, Z.; He, C.; Lau, T.-K.; Chen, Z.; Zhu, H.; Lu, X.; Xie, Z.; Chen, H.; et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 2021, 12, 3049. [Google Scholar] [CrossRef]
- Miura, H.; Qiu, F.; Spring, A.M.; Kashino, T.; Kikuchi, T.; Ozawa, M.; Nawata, H.; Odoi, K.; Yokoyama, S. High thermal stability 40 GHz electro-optic polymer modulators. Opt. Express 2017, 25, 28643–28649. [Google Scholar] [CrossRef]
- Liu, B.; Feng, W.; Ge, J.; Liu, Z.; Feng, S.; Chen, Z.; Bo, S. Organic nanomedicine containing nonlinear optical chromophores for ultrastable photo-to-heat converting theranostics in the near-infrared window. Dye. Pigment. 2023, 210, 110962. [Google Scholar] [CrossRef]
- Li, H.; Lin, Z.; Zhang, L.; Cao, L.; Ren, F.; Meng, W.; Wang, Y.; Zhang, C.; Chen, L.; Zhang, S.; et al. Low half-wave voltage polymeric electro-optic modulator using CLD-1/PMMA for electrocardiogram (ECG) signal acquisition. Opt. Express 2023, 31, 12072–12082. [Google Scholar] [CrossRef] [PubMed]
- Hood, B.R.R.; de Coene, Y.; Torre Do Vale Froes, A.V.V.; Jones, C.F.F.; Beaujean, P.; Liegeois, V.; MacMillan, F.; Champagne, B.; Clays, K.; Fielden, J. Electrochemically-Switched 2nd Order Non-Linear Optical Response in an Arylimido-Polyoxometalate with High Contrast and Cyclability. Angew. Chem.-Int. Ed. 2022, 62, e202215537. [Google Scholar] [CrossRef]
- Available online: https://www.semanticscholar.org/paper/GR-468-CORE%3A-Generic-Reliability-Assurance-for-Used-Gebizlioglu/8a7357f4a48995c4e5d24fd39b3c398d74bb61d5 (accessed on 20 June 2024).
- Xu, H.; Sun, Y.; Kan, Y.; Gao, K. Recent Progress in Design of Organic Electro-optic Materials with Ultrahigh Electro-optic Activities†. Chin. J. Chem. 2022, 40, 3001–3012. [Google Scholar] [CrossRef]
- Xu, H.; Elder, D.L.; Johnson, L.E.; Heni, W.; de Coene, Y.; De Leo, E.; Destraz, M.; Meier, N.; Vander Ghinst, W.; Hammond, S.R.; et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater. Horiz. 2022, 9, 261–270. [Google Scholar] [CrossRef]
- Xu, H.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Hammond, S.R.; Vander Ghinst, W.; Clays, K.; Dalton, L.R.; Robinson, B.H. Electro-Optic Activity in Excess of 1000 pm V−1 Achieved via Theory-Guided Organic Chromophore Design. Adv. Mater. 2021, 33, 2104174. [Google Scholar] [CrossRef]
- Zhang, D.; Zou, J.; Chen, W.; Yiu, S.-M.; Tse, M.-K.; Luo, J.; Jen, A.K.Y. Efficient, Stable, and Scalable Push–Pull Heptamethines for Electro-Optics. Chem. Mater. 2022, 34, 3683–3693. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, W.; Zou, J.; Luo, J. Critical Role of Non-classical Intermolecular Hydrogen Bonding in Affecting the π–π Stacking and Nonlinear Optical Properties of Tricyanofuran-Based Push–Pull Heptamethines. Chem. Mater. 2021, 33, 3702–3711. [Google Scholar] [CrossRef]
- Liu, G.; Liao, Q.; Deng, H.; Zhao, W.; Chen, P.; Tang, R.; Li, Q.; Li, Z. Janus NLO dendrimers with different peripheral functional groups: Convenient synthesis and enhanced NLO performance with the aid of the Ar–ArF self-assembly. J. Mater. Chem. C 2019, 7, 7344–7351. [Google Scholar] [CrossRef]
- Tang, R.-L.; Zhou, S.-M.; Cheng, Z.-Y.; Chen, H.; Deng, L.; Peng, Q.; Li, Z. Controllable Synthesis of Externally Functional Dendronized Polymers. CCS Chem. 2020, 2, 1040–1048. [Google Scholar] [CrossRef]
- Zang, X.; Liu, G.; Li, Q.; Li, Z.A.; Li, Z. A Correlation Study between Dendritic Structure and Macroscopic Nonlinearity for Second-Order Nonlinear Optical Materials. Macromolecules 2020, 53, 4012–4021. [Google Scholar] [CrossRef]
- Lu, G.-W.; Hong, J.; Qiu, F.; Spring, A.M.; Kashino, T.; Oshima, J.; Ozawa, M.-a.; Nawata, H.; Yokoyama, S. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 2020, 11, 4224. [Google Scholar] [CrossRef] [PubMed]
- Kieninger, C.; Kutuvantavida, Y.; Elder, D.L.; Wolf, S.; Zwickel, H.; Blaicher, M.; Kemal, J.N.; Lauermann, M.; Randel, S.; Freude, W.; et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica 2018, 5, 739–748. [Google Scholar] [CrossRef]
- Ummethala, S.; Kemal, J.N.; Alam, A.S.; Lauermann, M.; Kuzmin, A.; Kutuvantavida, Y.; Nandam, S.H.; Hahn, L.; Elder, D.L.; Dalton, L.R.; et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 2021, 8, 511–519. [Google Scholar] [CrossRef]
- Heni, W.; Fedoryshyn, Y.; Baeuerle, B.; Josten, A.; Hoessbacher, C.B.; Messner, A.; Haffner, C.; Watanabe, T.; Salamin, Y.; Koch, U.; et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun. 2019, 10, 1694. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Xiao, H.; Liu, F.; Huo, F.; Chen, L.; Chen, Z.; Bo, S.; Qiu, L.; Zhen, Z. Enhancement of electro-optic properties of bis(N,N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J. Mater. Chem. C 2017, 5, 6704–6712. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Zhao, J.; Liu, J. Using phenothiazine as electron donor for new second-order nonlinear optical chromophore. Mater. Lett. 2019, 245, 196–199. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Zhang, G.; Huang, Y.; Liu, J.; Bo, S. Greatly improved performance for NLO chromophore with 4,4′-bis(diethylamino)benzophenone as donor by introducing stronger acceptor. Mater. Lett. 2018, 226, 38–42. [Google Scholar] [CrossRef]
- Deng, G.; Xu, H.; Kuang, L.; He, C.; Li, B.; Yang, M.; Zhang, X.; Li, Z.; Liu, J. Novel nonlinear optical chromophores based on coumarin: Synthesis and properties studies. Opt. Mater. 2019, 88, 218–222. [Google Scholar] [CrossRef]
- Qiu, F.; Spring, A.M.; Hong, J.; Yokoyama, S. Plate-slot polymer waveguide modulator on silicon-on-insulator. Opt. Express 2018, 26, 11213–11221. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wang, Z.; Xiao, R.; Xu, Z.; Li, Z. Main chain dendronized hyperbranched polymers: Convenient synthesis and good second-order nonlinear optical performance. Polym. Chem. 2015, 6, 4396–4403. [Google Scholar] [CrossRef]
- Wang, K.; Deng, X.; Li, Q.; Li, Z. Promotion of the second-order nonlinear optical effect by introducing ether linkage into polymer main chains. Polym. Chem. 2023, 14, 2205–2211. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Zhan, S.; Chen, D.; Wang, S.; Zhang, M. Poled polymers and their nonlinear optics. J. Mater. Chem. C 2023, 11, 1226–1241. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, R.; Xiang, W.; Wang, Z.; Li, Z. Main Chain Dendronized Polymers: Design, Synthesis, and Application in the Second-Order Nonlinear Optical (NLO) Area. J. Phys. Chem. C 2015, 119, 14281–14287. [Google Scholar] [CrossRef]
- Liu, J.; Wu, W. Dendronized Hyperbranched Polymer: A New Architecture for Second-Order Nonlinear Optics. Symmetry 2022, 14, 882. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.; Han, M.; Cheng, Z.; Peng, Q.; Li, Q.; Li, Z. Janus molecules: Large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Mater. Chem. Front. 2018, 2, 1374–1382. [Google Scholar] [CrossRef]
- Sullivan, P.A.; Akelaitis, A.J.P.; Lee, S.K.; McGrew, G.; Lee, S.K.; Choi, D.H.; Dalton, L.R. Novel dendritic chromophores for electro-optics: Influence of binding mode and attachment flexibility on electro-optic behavior. Chem. Mater. 2006, 18, 344–351. [Google Scholar] [CrossRef]
- Sullivan, P.A.; Rommel, H.; Liao, Y.; Olbricht, B.C.; Akelaitis, A.J.P.; Firestone, K.A.; Kang, J.-W.; Luo, J.; Davies, J.A.; Choi, D.H.; et al. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J. Am. Chem. Soc. 2007, 129, 7523–7530. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Chen, H.; Zhou, S.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. Dendronized hyperbranched polymers containing isolation chromophores: Design, synthesis and further enhancement of the comprehensive NLO performance. Polym. Chem. 2015, 6, 5580–5589. [Google Scholar] [CrossRef]
- Huang, J.; Yang, Y.; He, J.; He, Z.; Wu, H. The important role of tetraphenylethene on designing bichromophores for organic nonlinear optical materials. Mater. Lett. 2021, 291, 129521. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Luo, J.; Huang, S.; Kim, T.-D.; Shi, Z.; Cheng, Y.-J.; Jang, S.-H.; Knorr, D.B., Jr.; Overney, R.M.; Jen, A.K.-Y. Supramolecular Self-Assembled Dendritic Nonlinear Optical Chromophores: Fine-Tuning of Arene–Perfluoroarene Interactions for Ultralarge Electro-Optic Activity and Enhanced Thermal Stability. Adv. Mater. 2009, 21, 1976–1981. [Google Scholar] [CrossRef]
- Knorr, D.B., Jr.; Zhou, X.-H.; Shi, Z.; Luo, J.; Jang, S.-H.; Jen, A.K.Y.; Overney, R.M. Molecular Mobility in Self-Assembled Dendritic Chromophore Glasses. J. Phys. Chem. B 2009, 113, 14180–14188. [Google Scholar] [CrossRef]
- Shi, Z.; Luo, J.; Huang, S.; Polishak, B.M.; Zhou, X.-H.; Liff, S.; Younkin, T.R.; Block, B.A.; Jen, A.K.Y. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J. Mater. Chem. 2012, 22, 951–959. [Google Scholar] [CrossRef]
- Kim, T.-D.; Luo, J.; Ka, J.-W.; Hau, S.; Tian, Y.; Shi, Z.; Tucker, N.M.; Jang, S.-H.; Kang, J.-W.; Jen, A.K.Y. Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems. Adv. Mater. 2006, 18, 3038–3042. [Google Scholar] [CrossRef]
- Shi, Z.; Cui, Y.-Z.; Huang, S.; Li, Z.A.; Luo, J.; Jen, A.K.Y. Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers. ACS Macro Lett. 2012, 1, 793–796. [Google Scholar] [CrossRef]
- Shi, Z.; Hau, S.; Luo, J.; Kim, T.-D.; Tucker, N.M.; Ka, J.-W.; Sun, H.; Pyajt, A.; Dalton, L.; Chen, A.; et al. Highly efficient diels-alder crosslinkable electro-optic dendrimers for electric-field sensors. Adv. Funct. Mater. 2007, 17, 2557–2563. [Google Scholar] [CrossRef]
- Wang, R.; Cheng, Z.; Deng, X.; Zhao, W.; Li, Q.; Li, Z. Photo-crosslinkable second order nonlinear AB(2)-type monomers: Convenient synthesis and enhanced NLO thermostability. J. Mater. Chem. C 2020, 8, 6380–6387. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, C.; Huo, F.; He, W.; Cao, A. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dye. Pigment. 2020, 181, 108509. [Google Scholar] [CrossRef]
- He, Y.; Chen, L.; Zhang, H.; Chen, Z.; Huo, F.; Li, B.; Zhen, Z.; Liu, X.; Bo, S. A novel bichromophore based on julolidine chromophores with enhanced transferring efficiency from hyperpolarizability β to electro-optic activity. J. Mater. Chem. C 2018, 6, 1031–1037. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, D.; Chen, W.; Luo, J. Optimizing the vectorial component of first hyperpolarizabilities of push–pull chromophores to boost the electro-optic activities of poled polymers over broad telecom wavelength bands. Mater. Adv. 2021, 2, 2318–2327. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.a.; Luo, J.; Jen, A.K.Y. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C 2020, 8, 15009–15026. [Google Scholar] [CrossRef]
- Zhang, H.; Bo, S.; Zhang, J.; Ao, Y.; Li, M. Synthesis of new type of nonlinear optical chromophores: The introduction of a novel aromatic amine donor 1-oxajulolidine to enhance the electro-optical activity of organic second-order nonlinear optical materials. Dye. Pigment. 2023, 209, 110891. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, H.; Fu, M.; Yang, M.; He, B.; Zhang, X.; Li, Z.; Deng, G.; Bo, S.; Liu, J. Optimizing the molecular structure of 1,1,7,7-tetramethyl julolidine fused furan based chromophores by introducing a heterocycle ring to achieve high electro-optic activity. New J. Chem. 2019, 43, 15548–15554. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Yang, Y.; Xu, H.; Zhang, M.; Zhang, A.; Bo, S.; Zhen, Z.; Liu, X.; Qiu, L. Nonlinear optical chromophores containing a novel pyrrole-based bridge: Optimization of electro-optic activity and thermal stability by modifying the bridge. J. Mater. Chem. C 2014, 2, 7785–7795. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.; Li, L.; Chang, L.; Yang, M.; Wang, Q.; Li, Z.; Deng, G. Synthesis and characterization of a julolidine-based electro-optic molecular glass. Curr. Org. Synth. 2023, 21, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, H.; Liu, F.; Wang, H.; Deng, G.; Si, P.; Huang, H.; Bo, S.; Liu, J.; Qiu, L.; et al. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J. Mater. Chem. C 2014, 2, 5124–5132. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, H.; Wang, H.; Liu, F.; Bo, S.; Liu, J.; Qiu, L.; Zhena, Z.; Liu, X. Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. J. Mater. Chem. C 2015, 3, 11423–11431. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, F.; Wang, H.; Bo, S.; Liu, J.; Qiu, L.; Zhen, Z.; Liu, X. Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. J. Mater. Chem. C 2015, 3, 5297–5306. [Google Scholar] [CrossRef]
- Liu, W.; Zeng, Z.; Luo, T.; Liao, J.; Li, Z.; Rahman, A.; Li, S.; Liu, Z.; Liu, F. Design and synthesis of various double donors for nonlinear optical chromophores with enhanced electro-optic activity. Dye. Pigment. 2022, 205, 110546. [Google Scholar] [CrossRef]
- Davies, J.A.; Elangovan, A.; Sullivan, P.A.; Olbricht, B.C.; Bale, D.H.; Ewy, T.R.; Isborn, C.M.; Eichinger, B.E.; Robinson, B.H.; Reid, P.J.; et al. Rational Enhancement of Second-Order Nonlinearity: Bis-(4-methoxyphenyl)hetero-aryl-amino Donor-Based Chromophores: Design, Synthesis, and Electrooptic Activity. J. Am. Chem. Soc. 2008, 130, 10565–10575. [Google Scholar] [CrossRef]
- Kalinin, A.A.; Sharipova, S.M.; Burganov, T.I.; Levitskaya, A.I.; Dudkina, Y.B.; Khamatgalimov, A.R.; Katsyuba, S.A.; Budnikova, Y.H.; Balakina, M.Y. High thermally stable D-π-A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties. Dye. Pigment. 2018, 156, 175–184. [Google Scholar] [CrossRef]
- Deng, G.; Xu, H.; Zhou, Z.; Zhao, Z.; Wu, J.; Zhang, X.; Sun, K.; Li, Z.; Zheng, Y. Monolithic nonlinear optical chromophores with extended conjugate bridge: Large refractive index, high thermal and electro-optic stability. Dye. Pigment. 2019, 164, 97–104. [Google Scholar] [CrossRef]
- Akelaitis, A.J.P.; Olbricht, B.C.; Sullivan, P.A.; Liao, Y.; Lee, S.K.; Bale, D.H.; Lao, D.B.; Kaminsky, W.; Eichinger, B.E.; Choi, D.H.; et al. Synthesis and electro-optic properties of amino-phenyl-thienyl donor chromophores. Opt. Mater. 2008, 30, 1504–1513. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Dudkina, Y.B.; Kalinin, A.A.; Balakina, M.Y. Considerations on electrochemical behavior of NLO chromophores: Relation of redox properties and NLO activity. Electrochim. Acta 2021, 368, 137578. [Google Scholar]
- Liu, F.; Zhang, H.; Xiao, H.; Xu, H.; Bo, S.; Qiu, L.; Zhen, Z.; Lai, L.; Chen, S.; Wang, J. Structure-function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dye. Pigment. 2018, 157, 55–63. [Google Scholar] [CrossRef]
- Bo, S.; Li, Y.; Liu, T.; Huo, F.; Xiao, H.; Zhang, H.; Chen, Z. Systematic study on the optimization of a bis(N,N-diethyl)aniline based NLO chromophore via a stronger electron acceptor, extended π-conjugation and isolation groups. J. Mater. Chem. C 2022, 10, 3343–3352. [Google Scholar] [CrossRef]
- Tonga, M. Tunable optical properties of push-pull chromophores: End group effect. Tetrahedron Lett. 2020, 61, 152205. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Fort, A.; Barzoukas, M.; Jen, A.K.Y.; Barlow, S.; Marder, S.R. Trends in optical nonlinearity and thermal stability in electrooptic chromophores based upon the 3-(dicyanomethylene)-2,3-dihydrobenzothiopene-1, 1-dioxide acceptor. J. Phys. Chem. B 2004, 108, 8626–8630. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, A.S.; Wang, F.; Zhu, J.S.; Dalton, L.R.; Woodford, J.N.; Wang, C.H. Synthesis and characterization of sterically stabilized second-order nonlinear optical chromophores. Chem. Mater. 1999, 11, 1966–1968. [Google Scholar] [CrossRef]
- Chen, A.; Chuyanov, V.; Garner, S.; Zhang, H.; Steier, W.H.; Chen, J.; Zhu, J.; Wang, F.; He, M.; Mao, S.S.; et al. Low-V(pi) electro-optic modulator with a high-microbeta chromophore and a constant-bias field. Opt. Lett. 1998, 23, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Baehr-Jones, T.; Kim, W.-J.; Spott, A.; Fournier, M.; Fedeli, J.-M.; Huang, S.; Luo, J.; Jen, A.K.Y.; Dalton, L.; et al. Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth. J. Light. Technol. 2011, 29, 1112–1117. [Google Scholar] [CrossRef]
- Sun, H.; Li, Z.a.; Wu, J.; Jiang, Z.; Luo, J.; Jen, A.K.Y. Design, synthesis, and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor. J. Mater. Chem. C 2018, 6, 2840–2847. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Z.; Wu, S.; Liu, J.; Luo, T.; Liao, J.; Yang, R.; Liu, F. Synthesis and characterization of Y-shaped optical nonlinear chromophores with strong acceptors. New J. Chem. 2023, 47, 9203–9211. [Google Scholar] [CrossRef]
- Li, Z.; Luo, T.; Feng, S.; Ye, Q.; Zheng, Z.; Liang, H.; Liu, J.; Liu, F. Design and synthesis of self-assembled nonlinear optical multichromophore dendrimers with different acceptors. New J. Chem. 2023, 47, 12874–12882. [Google Scholar] [CrossRef]
- Pereverzev, Y.V.; Gunnerson, K.N.; Prezhdo, O.V.; Sullivan, P.A.; Liao, Y.; Olbricht, B.C.; Akelaitis, A.J.P.; Jen, A.K.Y.; Dalton, L.R. Guest-host cooperativity in organic materials greatly enhances the nonlinear optical response. J. Phys. Chem. C 2008, 112, 4355–4363. [Google Scholar] [CrossRef]
- Wu, W.; Xu, Z.; Xiang, W.; Li, Z. Using an orthogonal approach and one-pot method to simplify the synthesis of nonlinear optical (NLO) dendrimers. Polym. Chem. 2014, 5, 6667–6670. [Google Scholar] [CrossRef]
- Xu, H.; Elder, D.L.; Johnson, L.E.; Robinson, B.H.; Dalton, L.R. Molecular Engineering of Structurally Diverse Dendrimers with Large Electro-Optic Activities. Acs Appl. Mater. Interfaces 2019, 11, 21058–21068. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, J.; Liu, J.; Yu, C.; Zhai, Z.; Qina, G.; Liu, F. Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability. Mater. Chem. Front. 2020, 4, 168–175. [Google Scholar] [CrossRef]
- Gu, C.; Huang, Z.; Rahman, A.; Chen, X.; Zeng, Z.; Liang, Z.; Shi, L.; Liu, F.; Wang, J. Supramolecular self-assembled nonlinear optical molecular glasses with enhanced electro-optic activity and alignment stability. Dye. Pigment. 2022, 202, 110283. [Google Scholar] [CrossRef]
- Xu, H.; Liu, F.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Clays, K.; Robinson, B.H.; Dalton, L.R. Ultrahigh Electro-Optic Coefficients, High Index of Refraction, and Long-Term Stability from Diels-Alder Cross-Linkable Binary Molecular Glasses. Chem. Mater. 2020, 32, 1408–1421. [Google Scholar] [CrossRef]
- Liu, T.; Huo, F.; Ge, C.; Li, Y.; He, J.; Zheng, H.; He, Q.; Zhao, Y.; Chen, Z.; Bo, S. Systematic Study on Nonlinear Optical Chromophores with Improved Electro-Optic Activity by Introducing 3,5-Bis(trifluoromethyl)benzene Derivative Isolation Groups into the Bridge. Molecules 2023, 28, 488. [Google Scholar] [CrossRef]
- Li, S.; Li, Q.; Li, Z. From Single Molecule to Molecular Aggregation Science. Prog. Chem. 2022, 34, 1554–1575. [Google Scholar]
- Liu, F.; Zeng, Z.; Rahman, A.; Chen, X.; Liang, Z.; Huang, X.; Zhang, S.; Xu, H.; Wang, J. Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures. Mater. Chem. Front. 2021, 5, 8341–8351. [Google Scholar] [CrossRef]
- Deng, X.; Wang, K.; Li, Q.; Li, Z. Thermally crosslinkable second-order nonlinear optical polymer networks: High stability, good transparency, and large second-order nonlinear optical effects. Mater. Chem. Front. 2022, 6, 3349–3358. [Google Scholar] [CrossRef]
- Cheng, Z.; Tang, R.; Wang, R.; Xie, Y.; Chen, P.; Liu, G.; Li, Z. Photo-crosslinkable second-order nonlinear optical polymer: Facile synthesis and enhanced NLO thermostability. Polym. Chem. 2018, 9, 3522–3527. [Google Scholar] [CrossRef]
- Shi, Z.; Luo, J.; Huang, S.; Zhou, X.-H.; Kim, T.-D.; Cheng, Y.-J.; Polishak, B.M.; Younkin, T.R.; Block, B.A.; Jen, A.K.Y. Reinforced Site Isolation Leading to Remarkable Thermal Stability and High Electrooptic Activities in Cross-Linked Nonlinear Optical Dendrimers. Chem. Mater. 2008, 20, 6372–6377. [Google Scholar] [CrossRef]
- Zhang, D.; Zou, J.; Wang, W.; Yu, Q.; Deng, G.; Wu, J.; Li, Z.-A.; Luo, J. Systematic study of the structure-property relationship of a series of near-infrared absorbing push-pull heptamethine chromophores for electro-optics. Sci. China-Chem. 2021, 64, 263–273. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Luo, T.; Li, Z.; Liao, J.; Zhang, W.; Zhang, L.; Liu, F. Electro-optic crosslinkable chromophores with ultrahigh electro-optic coefficients and long-term stability. Chem. Sci. 2022, 13, 13393–13402. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, F.; Yang, R.; Huo, F.; Zhang, W.; Zhang, Y.; Liu, C.; Hui, C.; Wang, J. Highly Efficient and Stable Binary Cross-Linkable/ Self-Assembled Organic Nonlinear Optical Molecular Glasses. Adv. Sci. 2023, 10, e2304229. [Google Scholar] [CrossRef] [PubMed]
- Spruell, J.M.; Wolffs, M.; Leibfarth, F.A.; Stahl, B.C.; Heo, J.; Connal, L.A.; Hu, J.; Hawker, C.J. Reactive, Multifunctional Polymer Films through Thermal Cross-linking of Orthogonal Click Groups. J. Am. Chem. Soc. 2011, 133, 16698–16706. [Google Scholar] [CrossRef]
- Ma, H.; Chen, B.Q.; Sassa, T.; Dalton, L.R.; Jen, A.K.Y. Highly efficient and thermally stable nonlinear optical dendrimer for electrooptics. J. Am. Chem. Soc. 2001, 123, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Spring, A.M.; Hong, J.; Miura, H.; Kashino, T.; Kikuchi, T.; Ozawa, M.; Nawata, H.; Odoi, K.; Yokoyama, S. Electro-optic Polymer Ring Resonator Modulator on a Flat Silicon-on-Insulator. Laser Photonics Rev. 2017, 11, 1700061. [Google Scholar] [CrossRef]
- Li, Z.a.; Ji, L.; Tang, R.; Huang, L.; Ye, C.; Qin, J.; Li, Z. New nonlinear optical polyurethanes with adjusted subtle structure through Sonogashira coupling reaction. Polym. Adv. Technol. 2011, 22, 675–681. [Google Scholar] [CrossRef]
- Piao, X.; Zhang, X.; Mori, Y.; Koishi, M.; Nakaya, A.; Inoue, S.; Aoki, I.; Otomo, A.; Yokoyama, S. Nonlinear Optical Side-Chain Polymers Post-Functionalized with High-β Chromophores Exhibiting Large Electro-Optic Property. J. Polym. Sci. Part A-Polym. Chem. 2011, 49, 47–54. [Google Scholar] [CrossRef]
- Koeber, S.; Palmer, R.; Lauermann, M.; Heni, W.; Elder, D.L.; Korn, D.; Woessner, M.; Alloatti, L.; Koenig, S.; Schindler, P.C.; et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci. Appl. 2015, 4, e255. [Google Scholar] [CrossRef]
- Haffner, C.; Heni, W.; Elder, D.L.; Fedoryshyn, Y.; Đorđević, N.; Chelladurai, D.; Koch, U.; Portner, K.; Burla, M.; Robinson, B.; et al. Harnessing nonlinearities near material absorption resonances for reducing losses in plasmonic modulators. Opt. Mater. Express 2017, 7, 2168–2181. [Google Scholar] [CrossRef]
EO Material | To a (°C) | Device Type | Tg (°C) | UπL | n e | n3 r33 (pm/V) | r33 in Device (pm/V) |
---|---|---|---|---|---|---|---|
HLD1/HLD2 | 140 | POH c | 174 | 120 Vµm | 1.83 | 3100 | 100 |
side chain polymers | 140 | SOH d | 172 | 1.44 V·cm | 1.66 | 1021 | 223 |
JRD1 | RT b | SOH d | 82 | 0.32 Vmm | 1.81 | 2313 | 390 |
DLD164 | RT b | SOH d | 66 | 0.5 Vmm | 1.88 | 1103 | 180 |
HD-BB-OH/YLD124 | <80 | POH c | 110 | 10 Vμm | 1.73 | 1220 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Wu, S.; Zhang, W.; Liu, F.; Wang, J. Organic Electro-Optic Materials with High Electro-Optic Coefficients and Strong Stability. Molecules 2024, 29, 3188. https://doi.org/10.3390/molecules29133188
Feng S, Wu S, Zhang W, Liu F, Wang J. Organic Electro-Optic Materials with High Electro-Optic Coefficients and Strong Stability. Molecules. 2024; 29(13):3188. https://doi.org/10.3390/molecules29133188
Chicago/Turabian StyleFeng, Shuhui, Shuangke Wu, Weijun Zhang, Fenggang Liu, and Jiahai Wang. 2024. "Organic Electro-Optic Materials with High Electro-Optic Coefficients and Strong Stability" Molecules 29, no. 13: 3188. https://doi.org/10.3390/molecules29133188
APA StyleFeng, S., Wu, S., Zhang, W., Liu, F., & Wang, J. (2024). Organic Electro-Optic Materials with High Electro-Optic Coefficients and Strong Stability. Molecules, 29(13), 3188. https://doi.org/10.3390/molecules29133188