Thermal Stabilisation of Lysozyme through Ensilication
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Buffer on the Ensilication Process
2.2. Morphology of Silica Nanoparticles
2.3. Effect of Buffer on Ensilication Efficiency and Drug Loading
2.4. Circular Dichroism (CD) of Treated Lysozyme
2.5. Enzyme Activity of Treated Lysozyme
3. Methodology
3.1. Chemical Materials
3.2. Ionic Strength Calculations
3.3. Ensilication of Lysozyme and Determination of Protein Concentration
3.4. Fourier Transform Infrared Spectroscopy (FTIR)
3.5. Field Emission Scanning Electron Microscopy (FE-SEM)
3.6. Particle Sizes
3.7. Statistical Analysis
3.8. Percentage Drug Loading
3.9. Encapsulation Efficiency
3.10. Thermal Stress
3.11. Milling
3.12. Circular Dichroism (CD)
3.13. Lysozyme Activity Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashok, A.; Brison, M.; LeTallec, Y. Improving cold chain systems: Challenges and solutions. Vaccine 2017, 35, 2217–2223. [Google Scholar] [CrossRef] [PubMed]
- Cold Chain. Available online: https://www.paho.org/en/immunization/cold-chain (accessed on 18 July 2024).
- Vaccine Cold Chain. Available online: https://www.path.org/our-impact/articles/vaccine-cold-chain-q/ (accessed on 18 July 2024).
- Yu, Y.B.; Briggs, K.T.; Taraban, M.B.; Brinson, R.G.; Marino, J.P. Grand Challenges in Pharmaceutical Research Series: Ridding the Cold Chain for Biologics. Pharm. Res. 2021, 38, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Srivastava, V.; Baindara, P.; Ahmad, A. Thermostable vaccines: An innovative concept in vaccine development. Expert Rev. Vaccines 2022, 21, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Montoya, N.A.; Roth, R.E.; Funk, E.K.; Gao, P.; Corbin, D.R.; Shiflett, M.B. Review on porous materials for the thermal stabilization of proteins. Microporous Mesoporous Mater. 2022, 333, 111750. [Google Scholar] [CrossRef]
- Dave, B.C.; Lockwood, S.B. Sol–Gel Method. In Encyclopedia of Nanotechnology; Bhushan, B., Ed.; Springer: Dordrecht, The Netherlands, 2016; pp. 3748–3761. [Google Scholar]
- Brinker, C.J.; Scherer, G.W. CHAPTER 3—Hydrolysis and Condensation II: Silicates. In Sol-Gel Science; Brinker, C.J., Scherer, G.W., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 96–233. [Google Scholar]
- Wang, G.; Li, X.; Mo, L.; Song, Z.; Chen, W.; Deng, Y.; Zhao, H.; Qin, E.; Qin, C.; Tang, R. Eggshell-inspired biomineralization generates vaccines that do not require refrigeration. Angew. Chem. Int. Ed. Engl. 2012, 51, 10576–10579. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yan, Y.; Wang, C.; Dong, Z.; Hao, Y.; Chen, M.; Liu, Z.; Feng, L. Biomineralization-inspired synthesis of autologous cancer vaccines for personalized metallo-immunotherapy. iScience 2024, 27, 110189. [Google Scholar] [CrossRef] [PubMed]
- Rahban, M.; Ahmad, F.; Piatyszek, M.A.; Haertlé, T.; Saso, L.; Saboury, A.A. Stabilization challenges and aggregation in protein-based therapeutics in the pharmaceutical industry. RSC Adv. 2023, 13, 35947–35963. [Google Scholar] [CrossRef] [PubMed]
- Frokjaer, S.; Otzen, D.E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Smith, T.; Hicks, R.H.; Doekhie, A.; Koumanov, F.; Wells, S.A.; Edler, K.J.; van den Elsen, J.; Holman, G.D.; Marchbank, K.J.; et al. Thermal stability, storage and release of proteins with tailored fit in silica. Sci. Rep. 2017, 7, 46568. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.A.; Doekhie, A.; Sartbaeva, A.; van den Elsen, J.M.H. Ensilication Improves the Thermal Stability of the Tuberculosis Antigen Ag85b and an Sbi-Ag85b Vaccine Conjugate. Sci. Rep. 2019, 9, 11409. [Google Scholar] [CrossRef] [PubMed]
- Doekhie, A.; Dattani, R.; Chen, Y.C.; Yang, Y.; Smith, A.; Silve, A.P.; Koumanov, F.; Wells, S.A.; Edler, K.J.; Marchbank, K.J.; et al. Ensilicated tetanus antigen retains immunogenicity: In vivo study and time-resolved SAXS characterization. Sci. Rep. 2020, 10, 9243. [Google Scholar] [CrossRef] [PubMed]
- Belton, D.J.; Deschaume, O.; Perry, C.C. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J. 2012, 279, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed]
- Liltorp, K.; Maréchal, Y. Hydration of lysozyme as observed by infrared spectrometry. Biopolymers 2005, 79, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.L.; Warakomski, J.M. Amorphous silica solubilities—II. Effect of aqueous salt solutions at 25 °C. Geochim. Cosmochim. Acta 1980, 44, 915–924. [Google Scholar] [CrossRef]
- Mavridis, L.; Janes, R.W. PDB2CD: A web-based application for the generation of circular dichroism spectra from protein atomic coordinates. Bioinformatics 2017, 33, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S. ImageJ, version 1.8.0_172; U. S. National Institutes of Health: Bethesda, MD, USA, 1997–2018. Available online: https://imagej.net/ij/.
- IBM SPSS Statistics, version 29.0.1.1 (240); IBM: Armonk, NY, USA. Available online: https://www.ibm.com/spss.
- Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of High-Drug-Loading Nanoparticles. Chempluschem 2020, 85, 2143–2157. [Google Scholar] [CrossRef] [PubMed]
- Helal, R.; Melzig, M.F. Determination of lysozyme activity by a fluorescence technique in comparison with the classical turbidity assay. Pharmazie 2008, 63, 415–419. [Google Scholar] [PubMed]
- Doekhie, A.; Slade, M.N.; Cliff, L.; Weaver, L.; Castaing, R.; Paulin, J.; Chen, Y.C.; Edler, K.J.; Koumanov, F.; Marchbank, K.J.; et al. Thermal resilience of ensilicated lysozyme via calorimetric and in vivo analysis. RSC Adv. 2020, 10, 29789–29796. [Google Scholar] [CrossRef] [PubMed]
Ensilication Buffer | |||
---|---|---|---|
50 mM Tris-HCl | 50 mM Phosphate | PBS | |
Buffer pH | 7.2 | 7.2 | 7.4 |
Buffer ionic strength /mM | 45 | 118 | 166 |
Positively charged electrolytes (concentration /mM) | H+, (HOCH2)3CNH3+ (45) | H+, Na+ (84) | H+, Na+, K+ (158) |
Negatively charged electrolytes (concentration /mM) | Cl− (45) | H2PO4−, HPO42− (84) | H2PO4−, HPO42−, Cl− (158) |
[Cl−] /mM | 45 | 0 | 140 |
Particle diameter /nm a | 420 ± 100 | 250 ± 30 | 460 ± 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkareem, R.A.; Doekhie, A.; Fotaki, N.; Koumanov, F.; Dodson, C.A.; Sartbaeva, A. Thermal Stabilisation of Lysozyme through Ensilication. Molecules 2024, 29, 4207. https://doi.org/10.3390/molecules29174207
Abdulkareem RA, Doekhie A, Fotaki N, Koumanov F, Dodson CA, Sartbaeva A. Thermal Stabilisation of Lysozyme through Ensilication. Molecules. 2024; 29(17):4207. https://doi.org/10.3390/molecules29174207
Chicago/Turabian StyleAbdulkareem, Reveng A., Aswin Doekhie, Nikoletta Fotaki, Francoise Koumanov, Charlotte A. Dodson, and Asel Sartbaeva. 2024. "Thermal Stabilisation of Lysozyme through Ensilication" Molecules 29, no. 17: 4207. https://doi.org/10.3390/molecules29174207