Impact of Incorporating Dried Chaga Mushroom (Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis
2.2. The Colour of the Bread
2.3. Textural Properties of Bread
2.4. Determination of Sensory Parameters of Bread
3. Materials and Methods
3.1. Raw Material
3.2. Bread Preparation Procedure
3.3. Chemical Analysis
3.3.1. Extract Preparation
3.3.2. Total Phenolic and Flavonoid Content Determination (TPC and TFC Assays)
3.3.3. Antioxidant Activity Analysis (DPPH and FRAP Assays)
3.3.4. The Physical Properties of Bread
3.4. Determination of Textural Properties of Bread
3.5. Colour Analysis
3.6. Determination of Sensory Parameters of Bread
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vlaic, R.A.; Mureșan, C.C.; Muste, S.; Mureșan, V.; Pop, A. Boletus edulis mushroom flour-based wheat bread as innovative fortified bakery product. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2019, 76, 52–62. [Google Scholar] [CrossRef]
- Saccotelli, M.A.; Spinelli, S.; Conte, A.; Nobile, M.A.D. Gluten-free bread enriched with vegetable flours. Food Nutr. Sci. 2018, 9, 356–368. [Google Scholar] [CrossRef]
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar] [CrossRef]
- Phimolsiripol, Y.; Mukprasirt, A.; Schoenlechner, R. Quality improvement of rice-based gluten-free bread using different dietary fibre fractions of rice bran. J. Cereal Sci. 2012, 56, 389–395. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, Y.; Xue, Z.; Li, N.; Liu, J.; Chen, H. Recent developments in inonotus obliquus (chaga mushroom) polysaccharides: Isolation, structural characteristics, biological activities and application. Polymers 2021, 13, 1441. [Google Scholar] [CrossRef] [PubMed]
- Golianek, A.; Mazurkiewicz-Zapałowicz, K. Mushrooms in human diet—Their nutritional and health-promoting value. Kosmos 2016, 4, 513–522. [Google Scholar]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal mushrooms: Their bioactive components, nutritional value and application in functional food production—A review. Molecules 2023, 28, 5393. [Google Scholar] [CrossRef]
- Aishah, M.S.; Wan Rosli, W.I. The effect of addition of oyster mushroom (Pleurotuss ajorcaju) on nutrient composition and sensory acceptation of selected wheat- and rice-based products. Int. Food Res. J. 2013, 20, 183. [Google Scholar]
- Saw, W.X.; Saidan, N.H.B. Effect of straw mushroom (Volvariella volvacea) flour supplemented in gluten-free bread. AIP Conf. Proc. 2022, 2454, 020014. [Google Scholar] [CrossRef]
- Dhillon, G.K.; Mahajan, M.; Kour, A.; Kaur, K. Incorporation of oyster mushroom powder and pearl millet flour improves the nutritional quality and glycemic response of Indian flatbread. Int. J. Food Eng. 2024, 20, 63–72. [Google Scholar] [CrossRef]
- La, A.; So, A.; Ao, A.; Jo, B. Quality Characteristics of Fortified Bread Produced from Cassava and Mushroom Flours. Food Process. Technol. Open Access J. 2018, 9, 9–13. [Google Scholar] [CrossRef]
- Majeed, M.; Khan, M.U.; Owaid, M.N.; Khan, M.R.; Shariati, M.A.; Igor, P.; Ntse-fong, G.N. Development of oyster mushroom powder and its effects on physico-chemical and rheological properties of bakery products. J. Microbiol. Biotechnol. Food Sci. 2017, 6, 1221–1227. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Brennan, C.S. Incorporation of mushroom powder into bread dough—Effects on dough rheology and bread properties. Cereal Chem. 2018, 95, 418–427. [Google Scholar] [CrossRef]
- Sulieman, A.A.; Zhu, K.X.; Peng, W.; Shoaib, M.; Obadi, M.; Hassanin, H.A.M.; Alahmad, K.; Zhou, H.M. Assessment of rheological, physicochemical, and staling characteristics of gluten-free dough and bread containing Agaricus bisporus polysaccharide flour and inulin. J. Food Meas. Charact. 2018, 12, 2032–2044. [Google Scholar] [CrossRef]
- Ho, L.-H.; Asyikeen Zulkifli, N.; Tan, T.-C. Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development. In An Introduction to Mushroom; BoD–Books on Demand: Online, 2020. [Google Scholar] [CrossRef]
- Zheng, W.; Miao, K.; Liu, Y.; Zhao, Y.; Zhang, M.; Pan, S.; Dai, Y. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl. Microbiol. Biotechnol. 2010, 87, 1237–1254. [Google Scholar] [CrossRef]
- Lee, M.; Hur, H.; Chang, K.C.; Lee, T.S.; Ka, K.H.; Jankovsky, L. Introduction to distribution and ecology of sterile conks of inonotus obliquus. Mycobiology 2008, 36, 199–202. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, S.; Liao, M. Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Ind. Crops Prod. 2013, 49, 837–843. [Google Scholar] [CrossRef]
- Niu, H.; Song, D.; Mu, H.; Zhang, W.; Sun, F.; Duan, J. Investigation of three lignin complexes with antioxidant and immunological capacities from Inonotus obliquus. Int. J. Biol. Macromol. 2016, 86, 587–593. [Google Scholar] [CrossRef]
- Saar, M. Fungi in khanty folk medicine. J. Ethnopharmacol. 1991, 31, 175–179. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, F.; Teng, C.; Qu, J. Optimization for the extraction of polyphenols from Inonotus obliquus and its antioxidation activity. Prep. Biochem. Biotechnol. 2021, 51, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Teplyakova, T.V.; Ilyicheva, T.N.; Kosogova, T.A.; Wasser, S.P. Medicinal mushrooms against influenza viruses. Int. J. Med. Mushrooms 2021, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Teplyakova, T.V.; Ilyicheva, T.N.; Markovich, N.A. Prospects for the development of anti-influenza drugs based on medicinal mushrooms (review). Appl. Biochem. Microbiol. 2020, 56, 489–496. [Google Scholar] [CrossRef]
- Park, Y.M.; Won, J.H.; Kim, Y.H.; Choi, J.W.; Park, H.J.; Lee, K.T. In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharmacol. 2005, 101, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zheng, W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus. J. Ethnopharmacol. 2021, 265, 113321. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xiang, H.; Xie, Q. The difference of regulatory effect of two Inonotus obliquus extracts on high-fat diet mice in relation to the fatty acid elongation function of gut microbiota. Food Sci. Nutr. 2020, 9, 449–458. [Google Scholar] [CrossRef]
- Xu, T.Y.; Lü, C.N.; Wang, X.B.; Du, X.M.; Wang, T. Optimization of extraction of polysaccharides from Inonotus obliquus by response surface methodology and antioxidant activity. Food Res. Dev. 2021, 42, 143–148. [Google Scholar] [CrossRef]
- Xu, L.; Yu, Y.; Sang, R.; Ge, B.; Wang, M.; Zhou, H.; Zhang, X. Inonotus obliquus polysaccharide protects against adverse pregnancy caused by Toxoplasma gondii infection through regulating Th17/Treg balance via TLR4/NF-B pathway. Int. J. Biol. Macromol. 2020, 146, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, Y.; Cui, Z.; Liu, J. Purification, characterization and biological activity of a novel polysaccharide from Inonotus obliquus. Int. J. Biol. Macromol. 2015, 79, 587–594. [Google Scholar] [CrossRef]
- Handa, N.; Yamada, T.; Tanaka, R. An unusual lanostane-type triterpenoid, spiroinonotsu oxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry 2010, 71, 1774–1779. [Google Scholar] [CrossRef]
- Wold, C.W.; Gerwick, W.H.; Wangensteen, H.; Inngjerdingen, K.T. Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus (Chaga) with immunomodulatory activity. J. Funct. Foods 2020, 71, 104025. [Google Scholar] [CrossRef]
- Zou, C.X.; Dong, S.H.; Hou, Z.L.; Yao, G.D.; Lin, B.; Huang, X.X.; Song, S.J. Modified lanostane-type triterpenoids with neuroprotective effects from the fungus Inonotus obliquus. Bioorganic Chem. 2020, 105, 104438. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yang, S.C.; Hwang, A.Y.; Cho, H.; Hwang, K.T. Composition of triterpenoids in inonotus obliquus and their anti- proliferative activity on cancer cell lines. Molecules 2020, 25, 4066. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Critch, A.L.; Manful, C.F.; Rajakaruna, A.; Vidal, N.P.; Pham, T.H.; Cheema, M.; Thomas, R. Effects of ph and temperature on water under pressurized conditions in the extraction of nutraceuticals from chaga (Inonotus obliquus) mushroom. Antioxidants 2021, 10, 1322. [Google Scholar] [CrossRef]
- Sulieman, A.A.; Zhu, K.X.; Peng, W.; Hassan, H.A.; Obadi, M.; Ahmed, M.I.; Zhou, H.M. Effect of Agaricus bisporus polysac- charide flour and inulin on the antioxidant and structural properties of gluten-free breads. J. Food Meas. Charact. 2019, 13, 1884–1897. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, C.; Cheng, Z.; Zhou, Y.; Liang, J. Mixolab behavior, quality attributes and antioxidant capacity of breads incorporated with Agaricus bisporus. J. Food Sci. Technol. 2019, 56, 3921–3929. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Brennan, M.A.; Guan, W.; Zhang, J.; Yuan, L.; Brennan, C.S. Enhancing the nutritional properties of bread by incorporating mushroom bioactive compounds: The manipulation of the pre-dictiveglycaemic response and the phenolic properties. Foods 2021, 10, 731. [Google Scholar] [CrossRef] [PubMed]
- Sławińska, A.; Sołowiej, B.G.; Radzki, W.; Fornal, E. Wheat bread supplemented with agaricus bisporus powder: Effect on bioactive substances content and technological quality. Foods 2022, 11, 3786. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.K.; Lee, S.C. Antioxidant activity of subcritical water extracts from chaga mushroom (Inonotus obliquus). Sep. Sci. Technol. 2010, 45, 198–203. [Google Scholar] [CrossRef]
- Sharpe, E.; Farragher-Gnadt, A.P.; Igbanugo, M.; Huber, T.; Michelotti, J.C.; Milenkowic, A.; Ludlam, S.; Walker, M.; Hanes, D.; Bradley, R.; et al. Comparison of antioxidant activity and extraction techniques for commercially and laboratory prepared extracts from six mushroom species. J. Agric. Food Res. 2021, 4, 100130. [Google Scholar] [CrossRef]
- Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.; Soković, M.; van Griensven, L.J. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol. 2015, 162, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Ulziijargal, E.; Yang, J.H.; Lin, L.Y.; Chen, C.P.; Mau, J.L. Quality of bread supplemented with mushroom mycelia. Food Chem. 2013, 138, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Eissa, H. Rheological properties and quality evaluation of Egyptian balady bread and biscuits supplemented with flours of ungerminated and germinated legume seeds or mushroom. Pol. J. Food Nutr. Sci. 2007, 57, 487–496. [Google Scholar]
- Chen, C.P. Quality Evaluation of Antrodia Mycelium Bread and Phellinus Mycelium Bread. Master’s Thesis, National Chung Hsing University, Taichung, Taiwan, 2009. [Google Scholar]
- Djordjević, M.; Šoronja-Simović, D.; Nikolić, I.; Djordjević, M.; Šereš, Z.; Milašinović-Šeremešić, M. Sugar beet and apple fibres coupled with hydroxypropylmethylcellulose as functional ingredients in gluten-free formulations: Rheological, technological and sensory aspects. Food Chem. 2019, 295, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.T.; Yang, J.H.; Tseng, Y.H.; Li, R.C.; Mau, J.L. Quality of fungal chitin bread. J. Food Process. Preserv. 2011, 35, 708–713. [Google Scholar] [CrossRef]
- Lin, L.Y.; Tseng, Y.H.; Li, R.C.; Mau, J.L. Quality of shiitake stipe bread. J. Food Process. Preserv. 2008, 32, 1002–1015. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Brennan, M.; Brennan, C.; Qin, Y.; Cheng, G.; Liu, Y. Physical, chemical, sensorial properties and in vitro digestibility of wheat bread enriched with yunnan commercial and wild edible mushrooms. LWT 2022, 169, 113923. [Google Scholar] [CrossRef]
- Wahab, N.B.A.; Darus, N.A.; Daud, S.A.M. Incorporation of Mushroom Powder in Bread. In Proceedings of the National Technology Research in Engineering, Design and Social Science Conference (nTrends’22), Kuala Lumpur, Malaysia, 5–6 October 2022; pp. 1–9. [Google Scholar]
- Losoya-Sifuentes, C.; Simões, L.S.; Cruz, M.; Rodriguez-Jasso, R.M.; Loredo-Treviño, A.; Teixeira, J.A.; Belmares, R. Development and characterization of Pleurotus ostreatus mushroom—Wheat bread. Starch-Stärke 2022, 74, 2100126. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, L.; Yang, W.; McClements, D.J.; Hu, Q. Enrichment of bread with nutraceutical-rich mushrooms: Impact of Auricularia auricula (mushroom) flour upon quality attributes of wheat dough and bread. J. Food Sci. 2017, 82, 2041–2050. [Google Scholar] [CrossRef]
- Salehi, F. Characterization of different mushrooms powder and its application in bakery products: A review. Int. J. Food Prop. 2019, 22, 1375–1385. [Google Scholar] [CrossRef]
- Ndung‘u, S.W.; Otieno, C.A.; Onyango, C.; Musieba, F. Nutritional composition, physical qualities and sensory evaluation of wheat bread supplemented with oyster mushroom. Am. J. Food Technol. 2015, 10, 279–288. [Google Scholar] [CrossRef]
- Zhang, A. Effect of wheat flour with different quality in the process of making flour products. Int. J. Metrol. Qual. Eng. 2020, 11, 6. [Google Scholar] [CrossRef]
- Pecyna, A.; Krzywicka, M.; Blicharz-Kania, A.; Buczaj, A.; Kobus, Z.; Zdybel, B.; Domin, M.; Siłuch, D. Impact of incorporating two types of dried raspberry pomace into gluten-free bread on its nutritional and antioxidant characteristics. Appl. Sci. 2024, 14, 1561. [Google Scholar] [CrossRef]
- Kobus, Z.; Krzywicka, M. Energy aspects of flavonoid extraction from rowanberry fruits using pulsed ultrasound-assisted extraction. Energies 2023, 16, 4966. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The ferric reducing ability of plasma (Frap) as a measure of “Antioxidant Power”: The Frap Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Kobus, Z.; Krzywicka, M.; Starek-Wójcicka, A.; Sagan, A. Effect of the duty cycle of the ultrasonic processor on the efficiency of extraction of phenolic compounds from Sorbus intermedia. Sci. Rep. 2022, 12, 8311. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Zarzycki, P.; Teterycz, D.; Nawrocka, A.; Blicharz-Kania, A.; Łysakowska, P. The Influence of Tomato and Pepper Processing Waste on Bread Quality. Appl. Sci. 2023, 13, 9312. [Google Scholar] [CrossRef]
Probe | TPC [mg GAE/ g d. m.] | TFC [mg QE/ g d. m.] | DPPH [μg TE/ g d. m.] | FRAP [μg TE/ g d. m.] |
---|---|---|---|---|
0 | 0.861 ± 0.025 a | 0.070 ± 0.001 a | 0.670 ± 0.070 a | 1.124 ± 0.004 a |
5 | 0.936 ± 0.020 a | 0.098 ± 0.001 b | 1.049 ± 0.026 b | 1.718 ± 0.017 b |
10 | 1.065 ± 0.052 b | 0.103 ± 0.001 c | 1.375 ± 0.022 c | 2.095 ± 0.032 c |
15 | 1.258 ± 0.033 c | 0.119 ± 0.001 d | 1.717 ± 0.037 d | 2.530 ± 0.042 d |
20 | 1.532 ± 0.066 d | 0.127 ± 0.001 e | 2.263 ± 0.055 e | 3.360 ± 0.023 e |
Probe | L*—Value | a*—Value | b*—Value | C*—Value | ΔE—Value | WI | BI |
---|---|---|---|---|---|---|---|
0 | 64.49 ± 1.46 a | 1.53 ± 0.40 a | 26.79 ± 0.95 a | 26.84 ± 0.96 a | 56.99 ± 1.47 a | 51.37 ± 3.48 a | |
5 | 34.49 ± 2.74 b | 4.97 ± 0.16 b | 15.00 ± 0.76 b | 15.80 ± 0.77 b | 33.92 | 32.60 ± 2.52 b | 65.92 ± 4.59 b |
10 | 32.76 ± 0.97 b | 4.99 ± 0.22 b | 15.47 ± 0.56 b | 16.26 ± 0.59 b | 35.30 | 30.82 ± 0.94 b | 72.70 ± 4.25 b |
15 | 23.41 ± 1.47 c | 4.55 ± 0.37 b | 10.06 ± 1.53 c | 11.05 ± 1.53 c | 45.70 | 22.60 ± 1.28 c | 68.38 ± 7.68 b |
20 | 16.68 ± 1.99 d | 5.58 ± 0.73 c | 9.00 ± 1.65 c | 10.60 ± 1.77 c | 51.98 | 15.99 ± 1.87 d | 99.64 ± 19.69 c |
Probe | Specific Volume [cm3·g−1] | Hardness [N] | Elasticity [-] | Cohesiveness [-] | Chewiness [N] |
---|---|---|---|---|---|
0 | 1.223 ± 0.003 a | 17.54 ± 1.40 a | 0.754 ± 0.071 a | 0.132 ± 0.011 a | 1.74 ± 0.20 a |
5 | 1.165 ± 0.004 b | 23.88 ± 1.63 b | 0.734 ± 0.025 a | 0.180 ± 0.016 b | 3.13 ± 0.35 b |
10 | 1.117 ± 0.010 c | 32.26 ± 3.17 c | 0.707 ± 0.035 a | 0.194 ± 0.011 b c | 4.40 ± 0.35 c |
15 | 1.053 ± 0.012 d | 49.32 ± 1.62 d | 0.706 ± 0.043 a | 0.228 ± 0.016 c | 7.93 ± 0.69 e |
20 | 0.966 ± 0.019 e | 52.44 ± 3.82 d | 0.673 ± 0.061 a | 0.190 ± 0.031 b | 6.88 ± 0.78 d |
Probe Code | Bread Composition (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Rice Flour | Corn Flour | Potato Starch | Rape Seed Oil | Dry Yeast | Salt | Sugar | Ground Flax Seeds | Chaga | |
0 | 250 | 200 | 30 | 8 | 12 | 10 | 0 | ||
5 | 225 | 25 | |||||||
10 | 200 | 50 | 15 | 50 | |||||
15 | 175 | 75 | |||||||
20 | 150 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobus, Z.; Krzywicka, M.; Blicharz-Kania, A.; Bosacka, A.; Pecyna, A.; Ivanišová, E.; Kozłowicz, K.; Kovačiková, E. Impact of Incorporating Dried Chaga Mushroom (Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics. Molecules 2024, 29, 3801. https://doi.org/10.3390/molecules29163801
Kobus Z, Krzywicka M, Blicharz-Kania A, Bosacka A, Pecyna A, Ivanišová E, Kozłowicz K, Kovačiková E. Impact of Incorporating Dried Chaga Mushroom (Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics. Molecules. 2024; 29(16):3801. https://doi.org/10.3390/molecules29163801
Chicago/Turabian StyleKobus, Zbigniew, Monika Krzywicka, Agata Blicharz-Kania, Alicja Bosacka, Anna Pecyna, Eva Ivanišová, Katarzyna Kozłowicz, and Eva Kovačiková. 2024. "Impact of Incorporating Dried Chaga Mushroom (Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics" Molecules 29, no. 16: 3801. https://doi.org/10.3390/molecules29163801
APA StyleKobus, Z., Krzywicka, M., Blicharz-Kania, A., Bosacka, A., Pecyna, A., Ivanišová, E., Kozłowicz, K., & Kovačiková, E. (2024). Impact of Incorporating Dried Chaga Mushroom (Inonotus obliquus) into Gluten-Free Bread on Its Antioxidant and Sensory Characteristics. Molecules, 29(16), 3801. https://doi.org/10.3390/molecules29163801