Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Marshmallows
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.1.1. Reagents
3.1.2. PAHs
3.1.3. SPE Columns
3.1.4. HPTLC Plates
3.2. Marshmallows
Marshmallow Grilling
3.3. Isolation of PAHs Fraction from Marshmallows
3.3.1. Liquid–Liquid Extraction
3.3.2. Solid-Phase Extraction
3.4. Preliminary Assessment of PAHs Using HPTLC Analysis
3.5. Analysis of PAHs by Gas Chromatography–Mass Spectrometry (GC-MS/MS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Korkach, H.; Kotuzaki, O.; Tolstykh, V.; Shunko, H. Research of the process of foaming of marshmallow mass with symbiotic. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Food Technol. 2020, 22, 80–86. [Google Scholar] [CrossRef]
- Piliugina, I.; Artamonova, M.; Murlykina, N.; Shidakova-Kamenyuka, O. Study of the foaming properties of gelatin with solubilized substances for the production of marshmallows. Food Sci. Technol. 2019, 13, 90–97. [Google Scholar] [CrossRef]
- Mardani, M.; Yeganehzad, S.; Ptichkina, N.; Kodatsky, Y.; Kliukina, O.; Nepovinnykh, N.; Naji-Tabasi, S. Study on foaming, rheological and thermal properties of gelatin-free marshmallow. Food Hydrocolloid 2019, 93, 335–341. [Google Scholar] [CrossRef]
- Tan, J.M.; Lim, M.H. Effects of gelatine type and concentration on the shelf-life stability and quality of marshmallows. Int. J. Food Sci. Technol. 2020, 43, 1699–1704. [Google Scholar] [CrossRef]
- How Products Are Made. Available online: https://www.madehow.com/Volume-3/Marshmallow.html (accessed on 26 February 2024).
- Bulanda, S.; Janoszka, B. Polycyclic Aromatic Hydrocarbons (PAHs) in Roasted Pork Meat and the Effect of Dried Fruits on PAH Content. Int. J. Environ. Res. Public Health 2023, 20, 4922. [Google Scholar] [CrossRef]
- Scientific Committee on Food (SCF). Polycyclic Aromatic Hydrocarbons—Occurrence in Foods, Dietary Exposure and Health Effects. Report No. SCF/CS/CNTM/PAH/29 Add1 Final. 4 December 2002. Available online: https://ec.europa.eu/food/fs/sc/scf/out154_en.pdf (accessed on 26 February 2024).
- Boerner, L.K. What’s in Marshmallows, and How Do the Ingredients Work Together to Make Ooey-Gooey Treats? Available online: https://cen.acs.org/food/food-science/s-marshmallows-ingredients-work-together/99/web/2021/04 (accessed on 29 June 2024).
- Hartel, R.W.; von Elbe, J.H.; Hofberger, R. Confectionery Science and Technology; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-61740-4. [Google Scholar]
- Becker, R. The Science behind a Perfectly-Toasted Marshmallow. Available online: https://www.theverge.com/2017/6/11/15774634/marshmallows-smores-camping-camp-fire-summer-food-science (accessed on 26 February 2024).
- How to Roast Marshmallows. Available online: https://www.wikihow.com/Roast-Marshmallows (accessed on 26 February 2024).
- Lin, Q.; Zhang, H.; Lv, X.; Xie, R.; Chen, B.H.; Lai, Y.W.; Chen, L.; Teng, H.; Cao, H. A Systematic Study on the Chemical Model of Polycyclic Aromatic Hydrocarbons Formation from Nutrients (Glucose, Amino Acids, Fatty Acids) in Food. Food Chem. 2024, 446, 138849. [Google Scholar] [CrossRef]
- Scientific Committee on Food (SCF). Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food; Scientific Committee on Food (SCF): Brussels, Belgium, 2002. [Google Scholar]
- Aquilina, N.J.; Harrison, R.M. Evaluation of the Cancer Risk from PAHs by Inhalation: Are Current Methods Fit for Purpose? Environ. Int. 2023, 177, 107991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological Impact of Environmental Polycyclic Aromatic Hydrocarbons (EPAHs) as Endocrine Disruptors. Environ. Pollut. 2016, 213, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Yebra-Pimentel, I.; Fernández-González, R.; Martínez-Carballo, E.; Simal-Gándara, J. A Critical Review about the Health Risk Assessment of PAHs and Their Metabolites in Foods. Crit. Rev. Food Sci. Nutr. 2015, 55, 1383–1405. [Google Scholar] [CrossRef]
- Hoseini, M.; Nabizadeh, R.; Delgado-Saborit, J.M.; Rafiee, A.; Yaghmaeian, K.; Parmy, S.; Faridi, S.; Hassanvand, M.S.; Yunesian, M.; Naddafi, K. Environmental and Lifestyle Factors Affecting Exposure to Polycyclic Aromatic Hydrocarbons in the General Population in a Middle Eastern Area. Environ. Pollut. 2018, 240, 781–792. [Google Scholar] [CrossRef]
- Sochacka-Tatara, E.; Majewska, R.; Perera, F.P.; Camann, D.; Spengler, J.; Wheelock, K.; Sowa, A.; Jacek, R.; Mróz, E.; Pac, A. Urinary Polycyclic Aromatic Hydrocarbon Metabolites among 3-Year-Old Children from Krakow, Poland. Environ. Res. 2018, 164, 212–220. [Google Scholar] [CrossRef]
- European Commission. European Commission Regulation (EU) No 835/2011 of 19 August (2011) amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, L215, 4–8. Available online: https://www.legislation.gov.uk/eur/2011/835/2011-08-19 (accessed on 29 June 2024).
- Williams, J.; Buoncristiano, M.; Nardone, P.; Rito, A.I.; Spinelli, A.; Hejgaard, T.; Kierkegaard, L.; Nurk, E.; Kunešová, M.; Musić Milanović, S.; et al. A Snapshot of European Children’s Eating Habits: Results from the Fourth Round of the WHO European Childhood Obesity Surveillance Initiative (COSI). Nutrients 2020, 12, 2481. [Google Scholar] [CrossRef]
- How Healthy Are Children’s Eating Habits?—WHO/Europe Surveillance Results. Available online: https://www.who.int/europe/news/item/03-03-2021-how-healthy-are-children-s-eating-habits-who-europe-surveillance-results (accessed on 26 February 2024).
- Basiak-Rasała, A.; Górna, S.; Krajewska, J.; Kolator, M.; Pazdro-Zastawny, K.; Basiak, A.; Zatoński, T. Nutritional Habits According to Age and BMI of 6–17-Year-Old Children from the Urban Municipality in Poland. J. Health Popul. Nutr. 2022, 41, 17. [Google Scholar] [CrossRef]
- Tomasetig, F.; Tebby, C.; Graillot, V.; Zeman, F.; Pery, A.; Cravedi, J.P.; Audebert, M. Comparative Genotoxic Potential of 27 Polycyclic Aromatic Hydrocarbons in Three Human Cell Lines. Toxicol. Lett. 2020, 326, 99–105. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (EU EPA). Available online: https://www.epa.gov/ (accessed on 19 October 2013).
- Zelinkova, Z.; Wenzl, T. The Occurrence of 16 EPA PAHs in Food—A Review. Polycycl. Aromat. Compd. 2015, 35, 248–284. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). Available online: https://www.iarc.fr/ (accessed on 19 October 2013).
- EFSA. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Polycyclic Aromatic Hydrocarbons in Food. EFSA J. 2008, 724, 1–114. [Google Scholar]
- Maciejczyk, M.; Tyrpień-Golder, K.; Janoszka, B.; Gierat, B.; Muzyka, R. Mutagenic and Carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) in Food—Occurrence, Human Health Effects, and Assessment Methods of Exposure. Environ. Med. 2023, 26, 8–15. [Google Scholar] [CrossRef]
- Mroczek, P.J.; Tyrpień-Golder, K.M.; Janoszka, B.M.; Szumska, M. Medical Students’ Awareness of e-Cigarette Use Addiction. Environ. Med. 2024, 26, 60–66. [Google Scholar] [CrossRef]
- Ciecierska, M.; Dasiewicz, K.; Wołosiak, R. Methods of Minimizing Polycyclic Aromatic Hydrocarbon Content in Homogenized Smoked Meat Sausages Using Different Casings and Variants of Meat-Fat Raw Material. Foods 2023, 12, 4120. [Google Scholar] [CrossRef]
- Tyrpień, K.; Dobosz, C.; Bodzek, D. Application of HPTLC with densitometry to the quantitative determination of PAHs in water. Chem. Anal. 1999, 44, 1007–1012. [Google Scholar]
- Liu, Q.; Wu, P.; Zhou, P.; Luo, P. Levels and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Vegetable Oils and Frying Oils by Using the Margin of Exposure (MOE) and the Incremental Lifetime Cancer Risk (ILCR) Approach in China. Foods 2023, 12, 811. [Google Scholar] [CrossRef] [PubMed]
- Slowianek, M.; Leszczynska, J. Polycyclic aromatic hydrocarbons in food—Legal and analytical aspects (Wielopierścieniowe węglowodory aromatyczne w żywności–aspekty prawne i analityczne). Bromatol. Chem. Toksykol. 2015, 48, 95–105. [Google Scholar]
- Britt, P.F.; Buchanan, A.C.; Owens, C.V.; Todd Skeen, J. Does Glucose Enhance the Formation of Nitrogen Containing Polycyclic Aromatic Compounds and Polycyclic Aromatic Hydrocarbons in the Pyrolysis of Proline? Fuel 2004, 83, 1417–1432. [Google Scholar] [CrossRef]
- Nie, W.; Cai, K.; Li, Y.; Zhang, S.; Wang, Y.; Guo, J.; Chen, C.; Xu, B. Small Molecular Weight Aldose (d-Glucose) and Basic Amino Acids (l-Lysine, l-Arginine) Increase the Occurrence of PAHs in Grilled Pork Sausages. Molecules 2018, 23, 3377. [Google Scholar] [CrossRef]
- Sharma, R.K.; Chan, W.G.; Hajaligol, M.R. Product Compositions from Pyrolysis of Some Aliphatic α-Amino Acids. J. Anal. Appl. Pyrolysis 2006, 75, 69–81. [Google Scholar] [CrossRef]
- Lai, Y.-W.; Lee, Y.-T.; Inbaraj, B.S.; Chen, B.-H. Formation and Inhibition of Heterocyclic Amines and Polycyclic Aromatic Hydrocarbons in Ground Pork during Marinating. Foods 2022, 11, 3080. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, C.B.B.; Horálek, J.; de Leeuw, F.; Couvidat, F. Benzo(a)Pyrene in Europe: Ambient Air Concentrations, Population Exposure and Health Effects. Environ. Pollut. 2016, 214, 657–667. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- Bull, S.; Collins, C. Promoting the Use of BaP as a Marker for PAH Exposure in UK Soils. Environ. Geochem. Health 2013, 35, 101–109. [Google Scholar] [CrossRef]
- US EPA, Pyrene. Available online: https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/pyrene.pdf (accessed on 26 February 2024).
- Kumari, R.; Chaturvedi, P.; Ansari, N.G.; Murthy, R.C.; Patel, D.K. Optimization and Validation of an Extraction Method for the Analysis of Polycyclic Aromatic Hydrocarbons in Chocolate Candies. J. Food Sci. 2012, 77, T34–T40. [Google Scholar] [CrossRef] [PubMed]
- Sonego, E.; Bhattarai, B.; Duedahl-Olesen, L. Detection of Nitrated, Oxygenated and Hydrogenated Polycyclic Aromatic Compounds in Smoked Fish and Meat Products. Foods 2022, 11, 2446. [Google Scholar] [CrossRef] [PubMed]
- Śnieżek, E.; Szumska, M.; Nowak, A.; Muzyka, R.; Janoszka, B. Application of High-Performance Liquid Chromatography with Fluorescence Detection for Non-Polar Heterocyclic Aromatic Amines and Acridine Derivatives Determination in Pork Loin Roasted in a Roasting Bag. Foods 2022, 11, 3385. [Google Scholar] [CrossRef] [PubMed]
- Bodzek, D.; Janoszka, B.; Dobosz, C.; Warzecha, L.; Bodzek, M. Determination of Polycyclic Aromatic Compounds and Heavy Metals in Sludges from Biological Sewage Treatment Plants. J. Chromatogr. A 1997, 774, 177–192. [Google Scholar] [CrossRef]
Compound | LOD ng/mL | LOQ ng/mL |
---|---|---|
Phenanthrene | 15.0 | 50.0 |
Anthracene | 3.0 | 10.0 |
Pyrene | 15.0 | 50.0 |
BaA | 15.0 | 50.0 |
Chry | 15.0 | 50.0 |
BbFl | 15.0 | 50.0 |
BkFl | 15.0 | 50.0 |
BaP | 15.0 | 50.0 |
IP | 25.0 | 80.0 |
DiBahA | 25.0 | 80.0 |
BghiP | 25.0 | 80.0 |
Sample | BaA | Chry | BbFl | BkFl | BaP | IcdP | DiBahA | BghiP |
---|---|---|---|---|---|---|---|---|
gWHI | 0.424 | 0.586 | 0.265 | 0.932 | 0.688 | 0.37 | 0.119 | 0.423 |
gWPY 1 | 0.482 | 0.589 | 0.407 | 0.159 | 1.059 | 0.721 | 0.252 | 0.789 |
gWPY 2 | 0.266 | 0.354 | 0.135 | 0.086 | 0.379 | 0.237 | 0.119 | 0.230 |
gGPY | 0.490 | 0.718 | 0.471 | 1.675 | 0.897 | 0.666 | 0.182 | 0.702 |
BWPY | 2.149 | 3.011 | 1.289 | 4.152 | 2.953 | 1.661 | 0.266 | 1.792 |
ogWHI | 0.189 | 1.783 | 0.972 | 1.947 | 2.034 | 1.240 | 0.217 | 1.989 |
WPY 2 * | 0.067 | 0.069 | 0 | 0.093 | 0.094 | 0 | 0 | 0.102 |
WPY 1 * | 0.107 | 0.052 | 0 | 0.121 | 0.095 | 0 | 0 | 0.118 |
GPY * | 0.140 | 0.145 | 0 | 0.183 | 0.071 | 0 | 0 | 0.074 |
Ratio of PAHs | Mean | ±SD |
---|---|---|
BaP:BaA | 1.26 | 0.32 |
BaP:Chry | 1.69 | 0.34 |
BaP:BbFl | 2.44 | 0.35 |
BaP:BkFl | 1.79 | 2.02 |
BaP:IP | 1.61 | 0.21 |
BaP:DiBahA | 5.84 | 3.09 |
BaP:BghiP | 1.51 | 0.18 |
Sum of PAH8 vs | r2 | Sum of PAH4 vs | r2 | Sum of PAH2 vs | r2 |
---|---|---|---|---|---|
BaA | 0.9823 | BaA | 0.9960 | BaP | 0.9918 |
BaP | 0.9812 | BaP | 0.9911 | Chry | 0.9927 |
BbFl | 0.9933 | BbFl | 0.9843 | ||
Chry | 0.9853 | Chry | 0.9938 | ||
BkFl | 0.9407 | ||||
IcdP | 0.9596 | ||||
DiBahA | 0.5061 | ||||
BghiP | 0.9575 |
Sample | Name of the Product | Color | Ready to Grill Yes/No | Composition per 100 g |
---|---|---|---|---|
1A, 1B | K-Classic Marshmallows | pink, yellow | no | carbohydrates (80 g), including sugars (68 g); protein (4 g) |
B1, B2 and 4 | MCENNEDY, American Way BBQ Marshmallows | white | yes | carbohydrates (80.3 g), including sugars (60.4 g); protein (3.4 g); fat (0.1 g) |
2 and 5 | Twisted Jojo marshmallow with a fruit vanilla flavor | white, yellow, pink | no | carbohydrates (76.42 g), including sugars (73.96 g); protein (4.28 g); fat (0.21 g); salt (0.15 g); fiber (0.10 g) |
3 | Haribo Chamallows Mallow Mania | pink, yellow, green | no | carbohydrates (80 g), including sugars (68 g); protein (3.5 g) |
6 | Haribo Chamallows the Smurfs Family | white, yellow, pink and blue | no | carbohydrates (80 g), including sugars (68 g); protein (3.5 g) |
Compound | Retention Time [min] | Quantitative Ion Pair | Qualitative Ion Pair | ||
---|---|---|---|---|---|
Precursor Ion (m/z) → Product Ion | Collision Energy (eV) | Precursor Ion (m/z) → Product Ion | Collision Energy (eV) | ||
Phenanthrene | 25.50 | 178.1→128.1 | 30 | 178.1→152.1 | 20 |
Anthracene | 25.71 | 178.1→150.1 | 45 | 178.1→152.1 | 20 |
Pyrene | 32.01 | 202.1→200.1 | 35 | 202.1→201.1 | 20 |
BaA | 37.69 | 228.1→225.2 | 45 | 228.1→226.1 | 30 |
Chry | 37.86 | 228.1→226.1 | 30 | 228.1→202.1 | 25 |
BbFl | 42.41 | 252.1→250.1 | 30 | 252.1→226.1 | 25 |
BkFl | 42.51 | 252.1→250.1 | 35 | 252.1→226.1 | 25 |
BaP | 43.64 | 252.1→250.1 | 35 | 252.1→226.1 | 25 |
IP | 47.74 | 276.1→274.1 | 35 | 276.1→275.2 | 25 |
DiBahA | 47.89 | 278.1→276.1 | 30 | 278.1→252.1 | 25 |
BghiP | 48.55 | 276.1→274.1 | 40 | 276.1→275.2 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejczyk, M.; Janoszka, B.; Szumska, M.; Pastuszka, B.; Waligóra, S.; Damasiewicz-Bodzek, A.; Nowak, A.; Tyrpień-Golder, K. Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Marshmallows. Molecules 2024, 29, 3119. https://doi.org/10.3390/molecules29133119
Maciejczyk M, Janoszka B, Szumska M, Pastuszka B, Waligóra S, Damasiewicz-Bodzek A, Nowak A, Tyrpień-Golder K. Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Marshmallows. Molecules. 2024; 29(13):3119. https://doi.org/10.3390/molecules29133119
Chicago/Turabian StyleMaciejczyk, Maciej, Beata Janoszka, Magdalena Szumska, Beata Pastuszka, Sławomir Waligóra, Aleksandra Damasiewicz-Bodzek, Agnieszka Nowak, and Krystyna Tyrpień-Golder. 2024. "Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Marshmallows" Molecules 29, no. 13: 3119. https://doi.org/10.3390/molecules29133119