Electrochemical Synthesis of the In Human S-oxide Metabolites of Phenothiazine-Containing Antipsychotic Medications
Abstract
:1. Introduction
2. Result and Discussion
2.1. Structure–Electroactivity Relationship (SeAR) and Cyclic Voltammetry Studies
2.2. Influence of Applied Current Variations on the PTZ Metabolites’ Electrosynthesis
2.3. Metabolite Profiling and Sulfoxidation Mechanism of PTZ Metabolites
2.4. Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of PTZs
3. Materials and Methods
3.1. Electroanalysis Studies of PTZs
3.2. Electrosynthesis of PTZ-Based Metabolites
3.3. Chromatographic Separation and Analysis
3.4. Docking Procedures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohlow, M.J.; Moosmann, B. Phenothiazine: The Seven Lives of Pharmacology’s First Lead Structure. Drug Discov. Today 2011, 16, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Jaszczyszyn, A.; Ga̧siorowski, K.; Świa̧tek, P.; Malinka, W.; Cieślik-Boczula, K.; Petrus, J.; Czarnik-Matusewicz, B. Chemical Structure of Phenothiazines and Their Biological Activity. Pharmacol. Rep. 2012, 64, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, M.M.; Marraffa, J.M. Phenothiazines. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: New York, NY, USA, 2014; pp. 881–883. ISBN 9780123864543. [Google Scholar]
- Edinoff, A.N.; Armistead, G.; Rosa, C.A.; Anderson, A.; Patil, R.; Cornett, E.M.; Murnane, K.S.; Kaye, A.M.; Kaye, A.D. Phenothiazines and Their Evolving Roles in Clinical Practice: A Narrative Review. Health Psychol. Res. 2022, 10, 2022. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, J.W.; Midha, K.K.; Hawes, E.M.; McKay, G.; Marder, S.R.; Aravagiri, M.; Korchinski, E.D. Metabolism of Phenothiazine and Butyrophenone Antipsychotic Drugs: A Review of some Recent Research Findings and Clinical Implications. Br. J. Psychiatry 1993, 163, 19–24. [Google Scholar] [CrossRef]
- Dahl, S.G. Active Metabolites of Phenothiazine Drugs. In Clinical Pharmacology in Psychiatry; Elsevier: New York, NY, USA, 1981; pp. 125–137. [Google Scholar] [CrossRef]
- Bosch, E. Catalytic Oxidation of Chlorpromazine and Related Phenothiazines. Cation Radicals as the Reactive Intermediates in Sulfoxide Formation. Perkin Trans. I 1995, 8, 1057–1064. [Google Scholar] [CrossRef]
- Wen, B.; Zhou, M. Metabolic Activation of the Phenothiazine Antipsychotics Chlorpromazine and Thioridazine to Electrophilic Iminoquinone Species in Human Liver Microsomes and Recombinant P450s. Chem. Biol. Interact. 2009, 181, 220–226. [Google Scholar] [CrossRef]
- Dasgupta, A.; Dastidar, S.G.; Shirataki, Y.; Motohashi, N. Antibacterial Activity of Artificial Phenothiazines and Isoflavones from Plants BT. In Bioactive Heterocycles VI: Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles I; Motohashi, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 67–132. ISBN 978-3-540-79218-5. [Google Scholar]
- Wang, J.; Xu, R.; Xu, A. Solubility Determination and Thermodynamic Functions of 2-Chlorophenothiazine in Nine Organic Solvents from T = 283.15 K to T = 318.15 K and Mixing Properties of Solutions. J. Chem. Thermodyn. 2017, 106, 132–144. [Google Scholar] [CrossRef]
- Moran, N.C.; Butler, W.M. The Pharmacological Properties of Chlorpromazine Sulfoxide, a Major Metabolite of Chlorpromazine. A Comparison with Chlorpromazine. J. Pharmacol. Exp. Ther. 1956, 118, 328–337. [Google Scholar]
- Yeung, P.K.F.; Hubbard, J.W.; Korchinski, E.D.; Midha, K.K. Pharmacokinetics of Chlorpromazine and Key Metabolites. Eur. J. Clin. Pharmacol. 1993, 45, 563–569. [Google Scholar] [CrossRef]
- Jaworski, T.J.; Hawes, E.M.; Mckay, G.; Midha, K.K. The Metabolism of Chlorpromazine N-Oxide in Man and Dog. Xenobiotica 1990, 20, 107–115. [Google Scholar] [CrossRef]
- Owens, M.L.; Juenge, E.C.; Poklis, A. Convenient Oxidation of Phenothiazine Salts to Their Sulfoxides with Aqueous Nitrous Acid. J. Pharm. Sci. 1989, 78, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Noyori, R.; Aoki, M.; Sato, K. Green Oxidation with Aqueous Hydrogen Peroxide. Chem. Commun. 2003, 16, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Meng, J.; Jiang, X. Gram-Scale Synthesis of Sulfoxides via Oxygen Enabled by Fe(NO3)3·9H2O. Org. Process Res. Dev. 2023, 27, 1198–1202. [Google Scholar] [CrossRef]
- Stalder, R.; Roth, G.P. Preparative Microfluidic Electrosynthesis of Drug Metabolites. ACS Med. Chem. Lett. 2013, 4, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C.; Cheng, X.; Lei, A.; Mei, T.; Xu, H.; et al. Recent Applications of Homogeneous Catalysis in Electrochemical Organic Synthesis. CCS Chem. 2022, 4, 1120–1152. [Google Scholar] [CrossRef]
- Asra, R.; Jones, A.M. Green Electrosynthesis of Drug Metabolites. Toxicol. Res. 2023, 12, 150–177. [Google Scholar] [CrossRef] [PubMed]
- Fuchigami, H.; Bal, M.K.; Brownson, D.A.C.; Banks, C.E.; Jones, A.M. Voltammetric Behaviour of Drug Molecules as a Predictor of Metabolic Liabilities. Sci. Pharm. 2020, 88, 46. [Google Scholar] [CrossRef]
- Wetzel, A.; Jones, A.M. Electrically Driven N(sp2)-C(sp2/3) Bond Cleavage of Sulfonamides. ACS Sustain. Chem. Eng. 2020, 8, 3487–3493. [Google Scholar] [CrossRef]
- Bal, M.K.; Banks, C.E.; Jones, A.M. Metabolism Mimicry: An Electrosynthetic Method for the Selective Deethylation of Tertiary Benzamides. ChemElectroChem 2019, 6, 4284–4291. [Google Scholar] [CrossRef]
- Asra, R.; Povinelli, A.P.R.; Zazeri, G.; Jones, A.M. Computational Predictive and Electrochemical Detection of Metabolites (CP-EDM) of Piperine. Molecules 2024, 29, 2406. [Google Scholar] [CrossRef]
- Chooto, P.; Chooto, P. Cyclic Voltammetry and Its Applications. Voltammetry 2019. [Google Scholar] [CrossRef]
- Martinez-Rojas, F.; Espinosa-Bustos, C.; Ramirez, G.; Armijo, F. Electrochemical Oxidation of Chlorpromazine, Characterisation of Products by Mass Spectroscopy and Determination in Pharmaceutical Samples. Electrochim. Acta 2023, 443, 141873. [Google Scholar] [CrossRef]
- Takamura, K.; Inoue, S.; Kusu, F.; Otagir, M.; Uekama, K. Electrochemical Oxidation of Chlorpromazine-Cyclodextrin Inclusion Complex. Chem. Pharm. Bull. 1984, 32, 839–845. [Google Scholar] [CrossRef]
- Holze, R. Overoxidation of Intrinsically Conducting Polymers. Polymers 2022, 14, 1584. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, L.M.; Ebner, F.; Jöst, C.; Spengler, J.; Gönnheimer, N.; Hartmann, D.; Greb, L. An Air-Stable, Neutral Phenothiazinyl Radical with Substantial Radical Stabilization Energy. Chemistry 2020, 26, 3152. [Google Scholar] [CrossRef]
- Santos, H.F.; dos Santos, C.G.; Nascimento, O.R.; Reis, A.K.C.A.; Lanfredi, A.J.C.; de Oliveira, H.P.M.; Nantes-Cardoso, I.L. Charge Separation of Photosensitized Phenothiazines for Applications in Catalysis and Nanotechnology. Dye. Pigment. 2020, 177, 108314. [Google Scholar] [CrossRef]
- Kamtekar, K.T.; Dahms, K.; Batsanov, A.S.; Jankus, V.; Vaughan, H.L.; Monkman, A.P.; Bryce, M.R. Synthesis and Characterization of Fluorene-Based Oligomers and Polymers Incorporating N-Arylphenothiazine-S,S-Dioxide Units. J. Polym. Sci. A Polym. Chem. 2011, 49, 1129–1137. [Google Scholar] [CrossRef]
- Thériault, K.D.; Sutherland, T.C. Optical and Electrochemical Properties of Ethynylaniline Derivatives of Phenothiazine, Phenothiazine-5-Oxide and Phenothiazine-5,5-Dioxide. Phys. Chem. Chem. Phys. 2014, 16, 12266–12274. [Google Scholar] [CrossRef] [PubMed]
- Bolboaca, M.; Iliescu, T.; Paizs, C.; Irimie, F.D.; Kiefer, W. Raman, Infrared, and Surface-Enhanced Raman Spectroscopy in Combination with Ab Initio and Density Functional Theory Calculations on 10-Isopropyl-10H-Phenothiazine-5-Oxide. J. Phys. Chem. A 2003, 107, 1811–1818. [Google Scholar] [CrossRef]
- Hayen, H.; Karst, U. Analysis of Phenothiazine and Its Derivatives Using LC/Electrochemistry/MS and LC/Electrochemistry/Fluorescence. Anal. Chem. 2003, 75, 4833–4840. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.I.; Park, M.J.; Jung, Y.K.; Cho, N.S.; Cho, H.J.; Hwang, D.H.; Lee, S.K.; Park, J.H.; Hong, J.; et al. Phenothiazine-S,S-Dioxide- and Fluorene-Based Light-Emitting Polymers: Introduction of E−-Deficient S,S-Dioxide into E−-Rich Phenothiazine. J. Polym. Sci. A Polym. Chem. 2007, 45, 1236–1246. [Google Scholar] [CrossRef]
- Yang, C.J.; Chang, Y.J.; Watanabe, M.; Hon, Y.S.; Chow, T.J. Phenothiazine Derivatives as Organic Sensitizers for Highly Efficient Dye-Sensitized Solar Cells. J. Mater. Chem. 2012, 22, 4040–4049. [Google Scholar] [CrossRef]
- Shanmugasundaram, K.; Chitumalla, R.K.; Jang, J.; Choe, Y. Phenothiazine Based Blue Emitter for Light-Emitting Electrochemical Cells. New J. Chem. 2017, 41, 9668–9673. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, E.; Wan, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; Lu, J.; Zhang, K.; Wang, L. Effects of Gradual Oxidation of Aromatic Sulphur-Heterocycle Derivatives on Multilevel Memory Data Storage Performance. J. Mater. Chem. C Mater. 2015, 3, 2033–2039. [Google Scholar] [CrossRef]
- Keating, C.S.; McClure, B.A.; Rack, J.J.; Rubtsov, I.V. Sulfoxide Stretching Mode as a Structural Reporter via Dual-Frequency Two-Dimensional Infrared Spectroscopy. J. Chem. Phys. 2010, 133, 144513. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, K.C. Infrared Spectra of Sulfones and Related Compounds. Anal. Chem. 1949, 21, 1168–1172. [Google Scholar] [CrossRef]
- Park, J.K.; Lee, S. Sulfoxide and Sulfone Synthesis via Electrochemical Oxidation of Sulfides. J. Org. Chem. 2021, 86, 13790–13799. [Google Scholar] [CrossRef] [PubMed]
- Amri, N.; Wirth, T. Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. J. Org. Chem. 2021, 86, 15961–15972. [Google Scholar] [CrossRef] [PubMed]
- Krämer, M.; Broecker, S.; Madea, B.; Hess, C. Confirmation of Metabolites of the Neuroleptic Drug Prothipendyl Using Human Liver Microsomes, Specific CYP Enzymes and Authentic Forensic Samples—Benefit for Routine Drug Testing. J. Pharm. Biomed. Anal. 2017, 145, 517–524. [Google Scholar] [CrossRef]
- Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of Human Cytochrome P450 Enzymes and Its Clinical Impact. Drug Metab. Rev. 2009, 41, 89–295. [Google Scholar] [CrossRef]
- Wójcikowski, J.; Pichard-Garcia, L.; Maurel, P.; Daniel, W.A. The Metabolism of the Piperazine-Type Phenothiazine Neuroleptic Perazine by the Human Cytochrome P-450 Isoenzymes. Eur. Neuropsychopharmacol. 2004, 14, 199–208. [Google Scholar] [CrossRef] [PubMed]
Type of Compound | Example | Activity | R1 | R2 |
---|---|---|---|---|
Lead structure | phenothiazine | anthelmintic | H | H |
Intermediate structure | 2-chlorophenothiazine | - | -Cl | H |
Type 1) Amino alkyl compound | chlorpromazine | sedatives and antipsychotic | -Cl | |
promethazine | antihistamine | H | ||
Type 2) Piperidine | thioridazine | antimicrobial | -SCH3 | |
Type 3) Piperazine | trifluoperazine | anticonvulsant | -CF3 | |
fluphenazine | antipsychotic |
No. | HRMS (EI+) | HRMS (EI−) | Product |
---|---|---|---|
1 | - | 247.99 | 2CPTZ-SO |
2 | - | 263.98 | 2CPTZ-SO2 |
3 | 271.17 | - | n.d. |
4 | 282.28 | - | n.d. |
5 | 465.01 | 462.99 | polymeric products |
6 | 506.53 | - | |
7 | 697.99 | 695.98 | |
8 | - | 731.96 | |
9 | 928.99 | 926.97 |
No. | Rt (min) | Name | MW ES+ | MW ES− | MW | Structure |
---|---|---|---|---|---|---|
2CPTZ | ||||||
1 | 2.54 | Metabolite 1 Unknown | - | 186.2429 | 187 | n.d. |
2 | 2.69 | Metabolite 2 2CPTZ-SO | 250.0100 | 247.9937 | 249 | Chemical Formula: C12H8ClNOS |
3 | 2.98 | Metabolite 3 2CPTZ-SO2 | 266.0070 | 263.9906 | 265 | Chemical Formula: C12H8ClNO2S |
4 | 3.45 | Metabolite 4 Unknown | - | 317.9141 | 319 | n.d. |
5 | 4.16 | Metabolite 5 Unknown | - | 276.9808 | 278 | n.d. |
CPZ | ||||||
1 | 1.89 | Metabolite 1 CPZ-SO | 335.1009 | - | 334.0933 | Chemical Formula: C17H19ClN2OS |
2 | 2.10 | Metabolite 2 CPZ-SO2 | 351.0937 | - | 350.0886 | Chemical Formula: C17H19ClN2O2S |
3 | 2.16 | Metabolite 3 Unknown | 369.0600 | - | 368.052 | n.d. |
4 | 2.28 | Metabolite 4 Unknown | 186.2199 | - | 185.2126 | n.d. |
5 | 2.51 | Metabolite 5 Unknown | 250.0128 | 247.9941 | 249.0015 | Chemical Formula: C12H8ClNOS |
6 | 2.74 | Metabolite 6 Unknown | 349.0808 | - | 348.0735 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asra, R.; Malmakova, A.E.; Jones, A.M. Electrochemical Synthesis of the In Human S-oxide Metabolites of Phenothiazine-Containing Antipsychotic Medications. Molecules 2024, 29, 3038. https://doi.org/10.3390/molecules29133038
Asra R, Malmakova AE, Jones AM. Electrochemical Synthesis of the In Human S-oxide Metabolites of Phenothiazine-Containing Antipsychotic Medications. Molecules. 2024; 29(13):3038. https://doi.org/10.3390/molecules29133038
Chicago/Turabian StyleAsra, Ridho, Aigul Erbosynovna Malmakova, and Alan M. Jones. 2024. "Electrochemical Synthesis of the In Human S-oxide Metabolites of Phenothiazine-Containing Antipsychotic Medications" Molecules 29, no. 13: 3038. https://doi.org/10.3390/molecules29133038
APA StyleAsra, R., Malmakova, A. E., & Jones, A. M. (2024). Electrochemical Synthesis of the In Human S-oxide Metabolites of Phenothiazine-Containing Antipsychotic Medications. Molecules, 29(13), 3038. https://doi.org/10.3390/molecules29133038