The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry
Abstract
:1. Introduction
1.1. Antimicrobial Agents and Persistent Organic Pollutants
1.2. Established Methods for Organic Pollutant Removal
2. CAPPs for Degrading Organic Pollutants
2.1. CAPP-Based Technologies for the Removal of Antimicrobial Agents and Organic Pollutants from Different Matrices
2.2. A Space for Improvement—Reactive Oxygen and Nitrogen Species
2.3. Environmental Impact
2.3.1. Biological Effects of CAPP Treatments
2.3.2. CAPP-Based Strategies as a Tool for Limiting the Spread of Multidrug Resistance
2.3.3. Studies on the Putative Environmental Impact of CAPP-Treated Organic Solutions
3. Conclusions, Perspectives, and Future Outlooks
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
A | Atmosphere |
AMR | Antimicrobial resistance |
AMX | Amoxicillin |
AOPs | Advanced oxidation processes |
AOT | Advanced oxidation techniques |
APGD | Atmospheric glow discharge |
APPJ | Atmospheric pressure plasma jet |
CAPPs | Cold atmospheric pressure plasmas |
CD | Corona discharge |
CFX | Ciprofloxacin |
CNTs | Carbon nanotubes |
CV | Current voltage |
CX | Cefuroxime |
DBD | Dielectric barrier discharge |
DC | Direct current |
DDT | Dichlorodiphenyltrichlorethane |
D-man | D-mannitol |
DP | Discharge power |
EC50 | Half-maximal effective concentration |
EHPD | Electrohydraulic plasma discharge |
ERM | Erythromycin |
f | Frequency |
Fe-Mn/AC | Iron–manganese/activated carbon |
FOPs | Fenton oxidation processes |
HV | High voltage |
I | Discharge current |
MDR | Multidrug resistance |
MIC | Minimum inhibitory concentration |
NPG-LD | Nanosecond pulsed gas–liquid discharge |
NTP | Non-thermal plasma |
OES | Optical emission spectroscopy |
OFX | Ofloxacin |
OTC | Oxytetracycline |
PAHs | Polycyclic aromatic hydrocarbons |
PCB | Polychlorinated biphenyls |
PCDD | Polychlorinated dibenzo-p-dioxins |
PCDF | Polychlorinated dibenzofurans |
pm-rf | Pulse-modulated radio frequency |
POPs | Persistent organic pollutants |
RONS | Reactive Oxygen and Nitrogen Species |
SAX | Sulfamethazole |
SFR | Solution flow rate |
T | Treatment time |
TCH | Tetracycline hydrochloride |
TEMP | 2,2,6,6-tetramethylpiperidine |
TMP | Trimethoprim |
V | Treated volume |
References
- Available online: https://www.usbr.gov/mp/arwec/water-facts-ww-water-sup.html (accessed on 4 June 2024).
- Markiewicz, Z.; Kwiatkowski, Z.A.; Baj, J. Bakterie, Antybiotyki, Lekooporność; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2012. [Google Scholar]
- Versporten, A.; Bruyndonckx, R.; Adriaenssens, N.; Hens, N.; Monnet, D.L.; Molenberghs, G.; Goossens, H.; Weist, K.; Coenen, S. Consumption of tetracyclines, sulphonamides and trimethoprim, and other antibacterials in the community, European Union/European Economic Area, 1997–2017. J. Antimicrob. Chemother. 2021, 76 (Suppl. 2), ii45–ii59. [Google Scholar] [CrossRef]
- Auta, A.; Hadi, M.A.; Oga, E.; Adewuyi, E.O.; Abdu-Aguye, S.N.; Adeloye, D.; Strickland-Hodge, B.; Morgan, D.J. Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis. J. Infect. 2019, 78, 8–18. [Google Scholar] [CrossRef]
- Lyu, J.; Yang, L.; Zhang, L.; Ye, B.; Wang, L. Antibiotics in soil and water in China–a systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar] [CrossRef]
- Rocha, D.C.; da Silva Rocha, C.; Tavares, D.S.; de Morais Calado, S.L.; Gomes, M.P. Veterinary antibiotics and plant physiology: An overview. Sci. Total Environ. 2021, 767, 144902. [Google Scholar] [CrossRef]
- Kumar, S.B.; Arnipalli, S.R.; Ziouzenkova, O. Antibiotics in food chain: The consequences for antibiotic resistance. Antibiotics 2020, 9, 688. [Google Scholar] [CrossRef]
- Mo, W.Y.; Chen, Z.; Leung, H.M.; Leung, A.O.W. Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks. Environ. Sci. Pollut. Res. 2017, 24, 8978–8989. [Google Scholar] [CrossRef]
- Gomes, M.P.; Richardi, V.S.; Bicalho, E.M.; da Rocha, D.C.; Navarro-Silva, M.A.; Soffiatti, P.; Garcia, Q.S.; Sant’Anna-Santos, B.F. Effects of Ciprofloxacin and Roundup on seed germination and root development of maize. Sci. Total Environ. 2019, 651, 2671–2678. [Google Scholar] [CrossRef]
- Chapman, R.L. Algae: The world’s most important “plants”—An introduction. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 5–12. [Google Scholar] [CrossRef]
- Planavsky, N.J.; Asael, D.; Hofmann, A.; Reinhard, C.T.; Lalonde, S.V.; Knudsen, A.; Wang, X.; Ossa Ossa, F.; Pecoits, E.; Smith, A.J.B.; et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 2014, 7, 283–286. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.; Zhang, J.; Guan, T.; Chen, Y.; Shi, W. Critical roles of cyanobacteria as reservoir and source for antibiotic resistance genes. Environ. Int. 2020, 144, 106034. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Nie, X.-P.; Liu, B.-Y.; Yu, H.-J.; Liu, W.-Q.; Yang, Y.-F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 2013, 172, 23–32. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. A review of the toxicity in fish exposed to antibiotics. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108840. [Google Scholar] [CrossRef]
- Rodrigues, S.R.B. Effects of Antibiotics (Erythromycin and Oxytetracycline) in Several Biochemical, Cellular and Histological Biomarkers of Fish: A Comparative Study with Two Important Aquaculture Species, Oncorhynchus mykiss and Sparus aurata. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2018. [Google Scholar]
- Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in aquatic environment and their toxicity to fish. Pharmaceuticals 2020, 13, 189. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015, 24, 707–719. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903. [Google Scholar] [CrossRef]
- Saucier, L. Microbial spoilage, quality and safety within the context of meat sustainability. Meat Sci. 2016, 120, 78–84. [Google Scholar] [CrossRef]
- Refsdal, A. To treat or not to treat: A proper use of hormones and antibiotics. Anim. Reprod. Sci. 2000, 60, 109–119. [Google Scholar] [CrossRef]
- Ma, J.; Zhai, G. Antibiotic contamination: A global environment issue. J. Bioremed. Biodegrad. 2014, 5, 5–6. [Google Scholar]
- Simeoni, D.; Rizzotti, L.; Cocconcelli, P.; Gazzola, S.; Dellaglio, F.; Torriani, S. Antibiotic resistance genes and identification of staphylococci collected from the production chain of swine meat commodities. Food Microbiol. 2008, 25, 196–201. [Google Scholar] [CrossRef]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef]
- Davis, G.S.; Waits, K.; Nordstrom, L.; Grande, H.; Weaver, B.; Papp, K.; Horwinski, J.; Koch, B.; Hungate, B.A.; Liu, C.M. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol. 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Monger, X.C.; Gilbert, A.-A.; Saucier, L.; Vincent, A.T. Antibiotic resistance: From pig to meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef]
- Natural Resources Defense Council. Available online: https://www.nrdc.org/experts/avinash-kar/livestock-antibiotic-sales-drop-remain-very-high (accessed on 10 February 2022).
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef]
- Goldstein, M.; Shenker, M.; Chefetz, B. Insights into the uptake processes of wastewater-borne pharmaceuticals by vegetables. Environ. Sci. Technol. 2014, 48, 5593–5600. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2021, 20, 257–269. [Google Scholar] [CrossRef]
- Bhat, A.P.; Gogate, P.R. Degradation of nitrogen-containing hazardous compounds using advanced oxidation processes: A review on aliphatic and aromatic amines, dyes, and pesticides. J. Hazard. Mater. 2021, 403, 123657. [Google Scholar] [CrossRef]
- Fenner, K.; Canonica, S.; Wackett, L.P.; Elsner, M. Evaluating pesticide degradation in the environment: Blind spots and emerging opportunities. Science 2013, 341, 752–758. [Google Scholar] [CrossRef]
- Delabre, I.; Rodriguez, L.O.; Smallwood, J.M.; Scharlemann, J.P.; Alcamo, J.; Antonarakis, A.S.; Rowhani, P.; Hazell, R.J.; Aksnes, D.L.; Balvanera, P.; et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 2021, 7, eabc8259. [Google Scholar] [CrossRef]
- Ferraz, E.R.A.; de Oliveira, G.A.R.; de Oliveira, D.P. The impact of aromatic amines on the environment: Risks and damages. Front. Biosci.-Elite 2012, 4, 914–923. [Google Scholar]
- Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. [Google Scholar] [CrossRef]
- Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J. Environ. Manag. 2021, 291, 112685. [Google Scholar] [CrossRef]
- Ravi, K.; Bankar, B.D.; Jindani, S.; Biradar, A.V. Surfactant-assisted selective oxidation of aromatic amines to nitro compounds by in situ-formed performic acid. ACS Omega 2019, 4, 9453–9457. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Li, H.; Ma, R.; Yu, Z.; Li, L.; Xiang, M.; Chen, X.; Hua, X.; Yu, Y. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans. J. Environ. Manag. 2019, 237, 519–525. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef]
- Puzyn, T.; Mostrag, A. Organic Pollutants Ten Years after the Stockholm Convention: Environmental and Analytical Update; BoD–Books on Demand: Norderstedt, Germany, 2012. [Google Scholar]
- Available online: http://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed on 10 September 2021).
- Available online: https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response (accessed on 9 June 2024).
- Available online: https://www.unep.org/explore-topics/chemicals-waste/what-we-do/persistent-organic-pollutants-pops (accessed on 10 September 2021).
- Available online: https://www.who.int/news-room/q-a-detail/food-safety-persistent-organic-pollutants-(pops) (accessed on 10 September 2021).
- Van Den Berg, H.; Manuweera, G.; Konradsen, F. Global trends in the production and use of DDT for control of malaria and other vector-borne diseases. Malar. J. 2017, 16, 401. [Google Scholar] [CrossRef]
- Weber, R.; Watson, A.; Forter, M.; Oliaei, F. Persistent organic pollutants and landfills-a review of past experiences and future challenges. Waste Manag. Res. 2011, 29, 107–121. [Google Scholar] [CrossRef]
- Homem, V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Environ. Manag. 2011, 92, 2304–2347. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 2010, 256, 43–47. [Google Scholar] [CrossRef]
- Elmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010, 252, 46–52. [Google Scholar] [CrossRef]
- Ritesh, P.; Srivastava, V.C. Understanding of ultrasound enhanced electrochemical oxidation of persistent organic pollutants. J. Water Process Eng. 2020, 37, 101378. [Google Scholar] [CrossRef]
- Gan, S.; Ng, H.K. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chem. Eng. J. 2012, 213, 295–317. [Google Scholar]
- de Souza Santos, L.V.; Meireles, A.M.; Lange, L.C. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2. J. Environ. Manag. 2015, 154, 8–12. [Google Scholar] [CrossRef]
- Pérez-Moya, M.; Graells, M.; Castells, G.; Amigó, J.; Ortega, E.; Buhigas, G.; Pérez, L.M.; Mansilla, H.D. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res. 2010, 44, 2533–2540. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Jiang, L.; Yao, S.; Lin, K.; Zhou, Y.; Cui, C. Removal of antibiotic resistance genes and control of horizontal transfer risk by UV, chlorination and UV/chlorination treatments of drinking water. Chem. Eng. J. 2019, 358, 589–597. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Feng, Y.; Yang, F.; Zhang, J. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chem. Eng. J. 2014, 240, 211–220. [Google Scholar] [CrossRef]
- Ikehata, K.; Gamal El-Din, M.; Snyder, S.A. Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Sci. Eng. 2008, 30, 21–26. [Google Scholar] [CrossRef]
- Qiu, P.; Park, B.; Choi, J.; Thokchom, B.; Pandit, A.B.; Khim, J. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018, 45, 29–49. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, P. Photocatalytic decomposition of perfluorooctanoic acid with β-Ga2O3 wide bandgap photocatalyst. Catal. Commun. 2009, 10, 1184–1187. [Google Scholar] [CrossRef]
- Xie, L.; Du, T.; Wang, J.; Ma, Y.; Ni, Y.; Liu, Z.; Zhang, L.; Yang, C.; Wang, J. Recent advances on heterojunction-based photocatalysts for the degradation of persistent organic pollutants. Chem. Eng. J. 2021, 426, 130617. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Tajik, R.; Asilian Mohabadi, H.; Soleimanian, A. Decomposition of persistent organic pollutants of environment (PCB compounds) using microwave radiation and H2O2/Tio2. J. Arak Univ. Med. Sci. 2013, 15, 35–44. [Google Scholar]
- Trojanowicz, M. Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Sci. Total Environ. 2020, 718, 134425. [Google Scholar] [CrossRef]
- Bruggeman, P.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.; Graham, W.; Graves, D.B.; Hofman-Caris, R.; Maric, D.; Reid, J.P.; Ceriani, E. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Wende, K.; von Woedtke, T.; Weltmann, K.-D.; Bekeschus, S. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biol. Chem. 2018, 400, 19–38. [Google Scholar] [CrossRef]
- Terefinko, D.; Caban, M.; Motyka-Pomagruk, A.; Babinska, W.; Pohl, P.; Jamroz, P.; Cyganowski, P.; Sledz, W.; Lojkowska, E.; Stepnowski, P. Removal of clinically significant antibiotics from aqueous solutions by applying unique high-throughput continuous-flow plasma pencil and plasma brush systems. Chem. Eng. J. 2023, 452, 139415. [Google Scholar] [CrossRef]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Bárdos, L.; Baránková, H. Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Film. 2010, 518, 6705–6713. [Google Scholar] [CrossRef]
- Pankaj, S.K.; Keener, K.M. Cold plasma: Background, applications and current trends. Curr. Opin. Food Sci. 2017, 16, 49–52. [Google Scholar] [CrossRef]
- Barjasteh, A.; Dehghani, Z.; Lamichhane, P.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Lin, L.; Pho, H.Q.; Zong, L.; Li, S.; Pourali, N.; Rebrov, E.; Tran, N.N.; Ostrikov, K.K.; Hessel, V. Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chem. Eng. J. 2021, 417, 129355. [Google Scholar] [CrossRef]
- Magureanu, M.; Bilea, F.; Bradu, C.; Hong, D. A review on non-thermal plasma treatment of water contaminated with antibiotics. J. Hazard. Mater. 2021, 417, 125481. [Google Scholar] [CrossRef]
- Malik, M.A. Water purification by plasmas: Which reactors are most energy efficient? Plasma Chem. Plasma Process. 2010, 30, 21–31. [Google Scholar] [CrossRef]
- Hijosa-Valsero, M.; Molina, R.; Montràs, A.; Müller, M.; Bayona, J.M. Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: A review. Environ. Technol. Rev. 2014, 3, 71–91. [Google Scholar] [CrossRef]
- Takeuchi, N.; Yasuoka, K. Review of plasma-based water treatment technologies for the decomposition of persistent organic compounds. Jpn. J. Appl. Phys. 2020, 60, SA0801. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Zeghioud, H.; Nguyen-Tri, P.; Khezami, L.; Amrane, A.; Assadi, A.A. Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J. Water Process Eng. 2020, 38, 101664. [Google Scholar] [CrossRef]
- Magureanu, M.; Mandache, N.B.; Parvulescu, V.I. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment. Water Res. 2015, 81, 124–136. [Google Scholar] [CrossRef]
- Schiavon, M.; Torretta, V.; Casazza, A.; Ragazzi, M. Non-thermal plasma as an innovative option for the abatement of volatile organic compounds: A review. Water Air Soil Pollut. 2017, 228, 388. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.; Qiu, R.; Tang, Y.; Du, C. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chem. Eng. J. 2017, 313, 157–170. [Google Scholar] [CrossRef]
- Hatzisymeon, M.; Tataraki, D.; Tsakiroglou, C.; Rassias, G.; Aggelopoulos, C. Highly energy-efficient degradation of antibiotics in soil: Extensive cold plasma discharges generation in soil pores driven by high voltage nanopulses. Sci. Total Environ. 2021, 786, 147420. [Google Scholar] [CrossRef]
- Aggelopoulos, C.; Meropoulis, S.; Hatzisymeon, M.; Lada, Z.; Rassias, G. Degradation of antibiotic enrofloxacin in water by gas-liquid nsp-DBD plasma: Parametric analysis, effect of H2O2 and CaO2 additives and exploration of degradation mechanisms. Chem. Eng. J. 2020, 398, 125622. [Google Scholar] [CrossRef]
- Aggelopoulos, C.; Hatzisymeon, M.; Tataraki, D.; Rassias, G. Remediation of ciprofloxacin-contaminated soil by nanosecond pulsed dielectric barrier discharge plasma: Influencing factors and degradation mechanisms. Chem. Eng. J. 2020, 393, 124768. [Google Scholar] [CrossRef]
- Cheng, J.; Xie, Y.; Wei, Y.; Xie, D.; Sun, W.; Zhang, Y.; Li, M.; An, J. Degradation of tetracycline hydrochloride in aqueous via combined dielectric barrier discharge plasma and Fe–Mn doped AC. Chemosphere 2022, 286, 131841. [Google Scholar] [CrossRef]
- Nguyen, P.T.T.; Nguyen, H.T.; Tran, U.N.P.; Manh Bui, H. Removal of antibiotics from real hospital wastewater by cold plasma technique. J. Chem. 2021, 2021, 9981738. [Google Scholar] [CrossRef]
- Nguyen, P.T.T.; Bui, H.N.; Nguyen, H.T.; Pham, T.H.; Nguyen, T.H.; Bui, H.M. Elimination of Amoxicillin from Hospital Wastewater Using the Cold Plasma Technique. Pol. J. Environ. Stud. 2022, 31, 1237–1246. [Google Scholar] [CrossRef]
- Xue, M.; Wang, T.; Sun, Q.; Qu, G.; Jia, H.; Zhu, L. Insights into the highly efficient detoxification of the biotoxin patulin in water by discharge plasma oxidation. Chem. Eng. J. 2021, 411, 128432. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Yan, Y.; Wang, W.; Zhang, L.; Zong, W. The degradation of Alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control 2020, 117, 107333. [Google Scholar] [CrossRef]
- Feizollahi, E.; Arshad, M.; Yadav, B.; Ullah, A.; Roopesh, M. Degradation of deoxynivalenol by atmospheric-pressure cold plasma and sequential treatments with heat and UV light. Food Eng. Rev. 2021, 13, 696–705. [Google Scholar] [CrossRef]
- Siciliano, I.; Spadaro, D.; Prelle, A.; Vallauri, D.; Cavallero, M.C.; Garibaldi, A.; Gullino, M.L. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins 2016, 8, 125. [Google Scholar] [CrossRef]
- Bilea, F.; Tian, T.; Magureanu, M.; Rabat, H.; Antoissi, M.A.; Aubry, O.; Hong, D. Removal of a mixture of antibiotics in water using nonthermal plasma. Plasma Process. Polym. 2023, 20, 2300020. [Google Scholar] [CrossRef]
- Kim, K.-S.; Yang, C.-S.; Mok, Y. Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chem. Eng. J. 2013, 219, 19–27. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, D.; Rao, Y.; Zhang, J.; Qu, Y.; Gu, J. Evaluation of antibiotic oxytetracycline removal in water using a gas phase dielectric barrier discharge plasma. J. Environ. Manag. 2018, 226, 22–29. [Google Scholar] [CrossRef]
- Hao, C.; Yan, Z.; Liu, K.; Qiu, J. Degradation of pharmaceutical contaminant tetracycline in aqueous solution by coaxial-type DBD plasma reactor. IEEE Trans. Plasma Sci. 2020, 48, 471–481. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.; Xu, H.; Huang, Q. Degradation of tetracycline by atmospheric-pressure non-thermal plasma: Enhanced performance, degradation mechanism, and toxicity evaluation. Sci. Total Environ. 2022, 812, 152455. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A.R.L.; Noutsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M.G.A.; Picos-Corrales, L.A.; Moreno-Piraján, J.C. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ. Chem. Lett. 2022, 20, 1333–1375. [Google Scholar] [CrossRef]
- Khan, M.A.; Dzimitrowicz, A.; Caban, M.; Jamroz, P.; Terefinko, D.; Tylus, W.; Pohl, P.; Cyganowski, P. Catalytically enhanced direct degradation of nitro-based antibacterial agents using dielectric barrier discharge cold atmospheric pressure plasma and rhenium nanoparticles. Environ. Res. 2023, 231, 116297. [Google Scholar] [CrossRef]
- Sokolov, A.; Louhi-Kultanen, M. Behaviour of aqueous sulfamethizole solution and temperature effects in cold plasma oxidation treatment. Sci. Rep. 2018, 8, 8734. [Google Scholar] [CrossRef]
- Sokolov, A.; Kråkström, M.; Eklund, P.; Kronberg, L.; Louhi-Kultanen, M. Abatement of amoxicillin and doxycycline in binary and ternary aqueous solutions by gas-phase pulsed corona discharge oxidation. Chem. Eng. J. 2018, 334, 673–681. [Google Scholar] [CrossRef]
- El Shaer, M.; Eldaly, M.; Heikal, G.; Sharaf, Y.; Diab, H.; Mobasher, M.; Rousseau, A. Antibiotics degradation and bacteria inactivation in water by cold atmospheric plasma discharges above and below water surface. Plasma Chem. Plasma Process. 2020, 40, 971–983. [Google Scholar] [CrossRef]
- Liang, J.-P.; Zhou, X.-F.; Zhao, Z.-L.; Yang, D.-Z.; Wang, W.-C. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma. J. Environ. Manag. 2021, 278, 111539. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Zhu, D.; Zhang, Q.; Xi, T.; Liu, D.; Niu, J.; Huang, F.; Zhao, Y.; Qi, Z. Mechanism of Amoxicillin Degradation in Water Treated by Atmospheric-Pressure Air Microplasma. IEEE Trans. Plasma Sci. 2020, 48, 953–960. [Google Scholar] [CrossRef]
- Wang, C.; Qu, G.; Wang, T.; Deng, F.; Liang, D. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles. Chem. Eng. J. 2018, 346, 159–170. [Google Scholar] [CrossRef]
- Panorel, I.; Preis, S.; Kornev, I.; Hatakka, H.; Louhi-Kultanen, M. Oxidation of aqueous pharmaceuticals by pulsed corona discharge. Environ. Technol. 2013, 34, 923–930. [Google Scholar] [CrossRef]
- Shuheng, H.; Xinghao, L.; Zimu, X.; Jiaquan, W.; Yunxia, L.; Jie, S.; Yan, L.; Cheng, C. Degradation and mineralization of ciprofloxacin by gas–liquid discharge non-thermal plasma. Plasma Sci. Technol. 2018, 21, 015501. [Google Scholar]
- Aggelopoulos, C.A. Recent advances of cold plasma technology for water and soil remediation: A critical review. Chem. Eng. J. 2022, 428, 131657. [Google Scholar] [CrossRef]
- Dzimitrowicz, A.; Caban, M.; Terefinko, D.; Pohl, P.; Jamroz, P.; Babinska, W.; Cyganowski, P.; Stepnowski, P.; Lojkowska, E.; Sledz, W. Application of pulse-modulated radio-frequency atmospheric pressure glow discharge for degradation of doxycycline from a flowing liquid solution. Sci. Rep. 2022, 12, 7354. [Google Scholar] [CrossRef]
- Dzimitrowicz, A.; Motyka-Pomagruk, A.; Cyganowski, P.; Jamroz, P.; Terefinko, D.; Pohl, P.; Klis, T.; Caban, M. Cold atmospheric pressure plasmas as versatile tools for effective degradation of a mixture of hazardous and endocrine disturbing compounds from liquid wastes. J. Environ. Chem. Eng. 2021, 9, 106718. [Google Scholar] [CrossRef]
- Cyganowski, P.; Caban, M.; Khan, M.A.; Marzec, M.M.; Zak, A.; Pohl, P.; Jamroz, P.; Bernasik, A.; Dzimitrowicz, A. The Use of Cold Atmospheric Pressure Plasma for the Synthesis of Saccharide-Stabilized Re Nanostructures Enabling Effective Deactivation of Nitro-Based Antimicrobial Agents. Plasma Chem. Plasma Process. 2023, 43, 199–224. [Google Scholar] [CrossRef]
- Ajo, P.; Kornev, I.; Preis, S. Pulsed corona discharge in water treatment: The effect of hydrodynamic conditions on oxidation energy efficiency. Ind. Eng. Chem. Res. 2015, 54, 7452–7458. [Google Scholar] [CrossRef]
- Reuter, S.; Von Woedtke, T.; Weltmann, K.-D. The kINPen—A review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D Appl. Phys. 2018, 51, 233001. [Google Scholar]
- Liu, Y.; Liang, J.; Zhou, X.; Yuan, H.; Li, Y.; Chang, D.; Yang, K.; Yang, D. Degradation of persistent organic pollutants in soil by parallel tubes-array dielectric barrier discharge plasma cooperating with catalyst. Chem. Eng. J. 2022, 437, 135089. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Do, K.N.; Nguyen, T.C. Degradation of 2,4,6-Trinitroresorcinol in Aqueous Solution by Cold Plasma Technology. Pol. J. Environ. Stud. 2021, 30, 5195–5201. [Google Scholar] [CrossRef]
- Sarangapani, C.; Misra, N.; Milosavljevic, V.; Bourke, P.; O’Regan, F.; Cullen, P. Pesticide degradation in water using atmospheric air cold plasma. J. Water Process Eng. 2016, 9, 225–232. [Google Scholar] [CrossRef]
- Hatzisymeon, M.; Tataraki, D.; Rassias, G.; Aggelopoulos, C. Novel combination of high voltage nanopulses and in-soil generated plasma micro-discharges applied for the highly efficient degradation of trifluralin. J. Hazard. Mater. 2021, 415, 125646. [Google Scholar] [CrossRef]
- Cahyani, R.A.; Permata, Y.E.; Karamah, E.F.; Bismo, S. Removal of organic and inorganic (phenolic and iron compound) pollutants from wastewater using DBD cold plasma reactor. AIP Conf. Proc. 2019, 2175, 020005. [Google Scholar]
- Aziz, K.H.H.; Miessner, H.; Mueller, S.; Mahyar, A.; Kalass, D.; Moeller, D.; Khorshid, I.; Rashid, M.A.M. Comparative study on 2, 4-dichlorophenoxyacetic acid and 2,4-dichlorophenol removal from aqueous solutions via ozonation, photocatalysis and non-thermal plasma using a planar falling film reactor. J. Hazard. Mater. 2018, 343, 107–115. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Q.; Miao, C.; Huang, Q. Degradation of 2, 4-dichlorophenol in aqueous solution by dielectric barrier discharge: Effects of plasma-working gases, degradation pathways and toxicity assessment. Chemosphere 2018, 204, 351–358. [Google Scholar] [CrossRef]
- Nawaz, M.I.; Yi, C.; Asilevi, P.J.; Geng, T.; Aleem, M.; Zafar, A.M.; Azeem, A.; Wang, H. A study of the Performance of dielectric barrier discharge under different conditions for nitrobenzene degradation. Water 2019, 11, 842. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Palma, V. Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor. Sep. Purif. Technol. 2019, 215, 155–162. [Google Scholar] [CrossRef]
- Ulucan-Altuntas, K.; Saleem, M.; Tomei, G.; Marotta, E.; Paradisi, C. Atmospheric plasma-based approaches for the degradation of dimethyl phthalate (DMP) in water. J. Environ. Manag. 2022, 301, 113885. [Google Scholar] [CrossRef]
- Saleem, F.; Rehman, A.; Ahmad, F.; Khoja, A.H.; Javed, F.; Zhang, K.; Harvey, A. Removal of toluene as a toxic VOC from methane gas using a non-thermal plasma dielectric barrier discharge reactor. RSC Adv. 2021, 11, 27583–27588. [Google Scholar] [CrossRef]
- Saleem, M.; Biondo, O.; Sretenović, G.; Tomei, G.; Magarotto, M.; Pavarin, D.; Marotta, E.; Paradisi, C. Comparative performance assessment of plasma reactors for the treatment of PFOA; reactor design, kinetics, mineralization and energy yield. Chem. Eng. J. 2020, 382, 123031. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Cheng, X.; Zhang, A.; Li, X.; Liu, J.; Cai, S.; Yang, C.; Ognier, S.; Li, P. Degradation of phenol in water using a novel gas-liquid two-phase dielectric barrier discharge plasma reactor. Water Air Soil Pollut. 2018, 229, 314. [Google Scholar] [CrossRef]
- Puertas, M.E.C. Nanosecond-Pulsed Pin-to-Liquid Discharges for the Degradation of Recalcitrant Aqueous Organic Pollutants; McGill University: Montreal, QC, Canada, 2021. [Google Scholar]
- Vasikaran, E.M.; Murugesan, P.; Moses, J.; Anandharamakrishnan, C. Performance of non-thermal plasma reactor for removal of organic and inorganic chemical residues in aqueous media. J. Electrost. 2022, 115, 103671. [Google Scholar] [CrossRef]
- Krosuri, A.; Wu, S.; Bashir, M.A.; Walquist, M. Efficient degradation and mineralization of methylene blue via continuous-flow electrohydraulic plasma discharge. J. Water Process Eng. 2021, 40, 101926. [Google Scholar] [CrossRef]
- Abbas, Y.; Lu, W.; Wang, Q.; Dai, H.; Liu, Y.; Fu, X.; Pan, C.; Ghaedi, H.; Cheng, F.; Wang, H. Remediation of pyrene contaminated soil by double dielectric barrier discharge plasma technology: Performance optimization and evaluation. Environ. Pollut. 2020, 260, 113944. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Ishijima, T.; Osawa, N.; Seto, T. Quantitative analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: Effect of oxygen content and humidity level. Plasma Chem. Plasma Process. 2019, 39, 165–185. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 2009, 164, 1012–1018. [Google Scholar] [CrossRef]
- Xing, X.; Gao, B.-Y.; Zhong, Q.-Q.; Yue, Q.-Y.; Li, Q. Sorption of nitrate onto amine-crosslinked wheat straw: Characteristics, column sorption and desorption properties. J. Hazard. Mater. 2011, 186, 206–211. [Google Scholar] [CrossRef]
- Taziki, M.; Ahmadzadeh, H.; Murry, M.A.; Lyon, S.R. Nitrate and nitrite removal from wastewater using algae. Curr. Biotechnol. 2015, 4, 426–440. [Google Scholar] [CrossRef]
- Kim, J.; Ghimire, B.; Lim, S.; Choi, E.H.; Park, H.-K.; Kaushik, N.K. Coagulation, deformability, and aggregation of RBCs and platelets following exposure to dielectric barrier discharge plasma with the use of different feeding gases. J. Phys. D Appl. Phys. 2019, 52, 155202. [Google Scholar]
- Wu, J.; Xiong, Q.; Liang, J.; He, Q.; Yang, D.; Deng, R.; Chen, Y. Degradation of benzotriazole by DBD plasma and peroxymonosulfate: Mechanism, degradation pathway and potential toxicity. Chem. Eng. J. 2020, 384, 123300. [Google Scholar] [CrossRef]
- Gong, S.; Sun, Y.; Zheng, K.; Jiang, G.; Li, L.; Feng, J. Degradation of levofloxacin in aqueous solution by non-thermal plasma combined with Ag3PO4/activated carbon fibers: Mechanism and degradation pathways. Sep. Purif. Technol. 2020, 250, 117264. [Google Scholar] [CrossRef]
- Liu, K.; Ren, W.; Ran, C.; Zhou, R.; Tang, W.; Zhou, R.; Yang, Z.; Ostrikov, K.K. Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: Effects of gas flow on chemical reactions. J. Phys. D Appl. Phys. 2020, 54, 065201. [Google Scholar]
- Marković, M.; Jović, M.; Stanković, D.; Kovačević, V.; Roglić, G.; Gojgić-Cvijović, G.; Manojlović, D. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen. Sci. Total Environ. 2015, 505, 1148–1155. [Google Scholar] [CrossRef]
- Ferrer, I.; Ginebreda, A.; Figueras, M.; Olivella, L.; Tirapu, L.; Vilanova, M.; Barceló, D. Determination of drugs in surface water and wastewater samples by liquid chromatography–mass spectrometry: Methods and preliminary results including toxicity studies with Vibrio fischeri. J. Chromatogr. A 2001, 938, 187–197. [Google Scholar]
- Magureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Parvulescu, V.I. Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment. Water Res. 2010, 44, 3445–3453. [Google Scholar] [CrossRef]
- Kovačević, V.V.; Dojčinović, B.P.; Jović, M.; Roglić, G.M.; Obradović, B.M.; Kuraica, M.M. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres. J. Phys. D Appl. Phys. 2017, 50, 155205. [Google Scholar]
- Shang, K.; Wang, X.; Li, J.; Wang, H.; Lu, N.; Jiang, N.; Wu, Y. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate. Chem. Eng. J. 2017, 311, 378–384. [Google Scholar] [CrossRef]
- Tang, S.; Yuan, D.; Rao, Y.; Li, N.; Qi, J.; Cheng, T.; Sun, Z.; Gu, J.; Huang, H. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water. Chem. Eng. J. 2018, 337, 446–454. [Google Scholar] [CrossRef]
- Sar, A.B.; Shabani, E.G.; Haghighi, M.; Shabani, M. Synergistic catalytic degradation of ciprofloxacin using magnetic carbon nanomaterial/NiFe2O4 promoted cold atmospheric pressure plasma jet: Influence of charcoal, multi walled carbon nanotubes and walnut shell. J. Taiwan Inst. Chem. Eng. 2022, 132, 104131. [Google Scholar] [CrossRef]
- Sarangapani, C.; Ziuzina, D.; Behan, P.; Boehm, D.; Gilmore, B.F.; Cullen, P.; Bourke, P. Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity. Sci. Rep. 2019, 9, 3955. [Google Scholar] [CrossRef]
- De Witte, B.; Van Langenhove, H.; Demeestere, K.; Saerens, K.; De Wispelaere, P.; Dewulf, J. Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: Effect of pH and H2O2. Chemosphere 2010, 78, 1142–1147. [Google Scholar] [CrossRef]
- Paul, T.; Dodd, M.C.; Strathmann, T.J. Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity. Water Res. 2010, 44, 3121–3132. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, R.; Wang, P.; Mai-Prochnow, A.; McConchie, R.; Li, W.; Zhou, R.; Thompson, E.W.; Ostrikov, K.K.; Cullen, P.J. Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: Performance, degradation pathways and toxicity evaluation. Chem. Eng. J. 2021, 421, 127730. [Google Scholar] [CrossRef]
- Nippatlapalli, N.; Ramakrishnan, K.; Philip, L. Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non–Thermal pulsed corona plasma discharge reactors. Environ. Res. 2022, 203, 111807. [Google Scholar] [CrossRef]
- Krause, H.; Schweiger, B.; Schuhmacher, J.; Scholl, S.; Steinfeld, U. Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water. Chemosphere 2009, 75, 163–168. [Google Scholar] [CrossRef]
- Patange, A.; Boehm, D.; Giltrap, M.; Lu, P.; Cullen, P.; Bourke, P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Sci. Total Environ. 2018, 631, 298–307. [Google Scholar] [CrossRef]
- Carlet, J.; Collignon, P.; Goldmann, D.; Goossens, H.; Gyssens, I.C.; Harbarth, S.; Jarlier, V.; Levy, S.B.; N’Doye, B.; Pittet, D. Society’s failure to protect a precious resource: Antibiotics. Lancet 2011, 378, 369–371. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Li, H.; Zhang, Y.; Zhang, L.; Zhong, S.; Shu, X. Multi-catalysis of glow discharge plasma coupled with FeS2 for synergistic removal of antibiotic. Chemosphere 2023, 312, 137204. [Google Scholar] [CrossRef]
- Wang, T.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Formation and roles of hydrogen peroxide during soil remediation by direct multi-channel pulsed corona discharge in soil. Sep. Purif. Technol. 2015, 147, 17–23. [Google Scholar] [CrossRef]
- Al-Ahmad, A.; Daschner, F.; Kümmerer, K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol. 1999, 37, 158–163. [Google Scholar] [CrossRef]
- Halling-Sørensen, B.; Lützhøft, H.-C.H.; Andersen, H.R.; Ingerslev, F. Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin. J. Antimicrob. Chemother. 2000, 46 (suppl_1), 53–58. [Google Scholar]
- Kümmerer, K.; Al-Ahmad, A.; Mersch-Sundermann, V. Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 2000, 40, 701–710. [Google Scholar] [CrossRef]
- Alder, A.; McArdell, C.; Golet, E.; Kohler, H.-P.; Molnar, E.; Thi, N.A.P.; Siegrist, H.; Suter, M.-F.; Giger, W. Environmental exposure of antibiotics in wastewaters, sewage sludges and surface waters in Switzerland. In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Springer: Berlin, Germany, 2004; pp. 55–66. [Google Scholar]
- Golet, E.M.; Alder, A.C.; Giger, W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 2002, 36, 3645–3651. [Google Scholar] [CrossRef]
- Lindberg, R.H.; Björklund, K.; Rendahl, P.; Johansson, M.I.; Tysklind, M.; Andersson, B.A. Environmental risk assessment of antibiotics in the Swedish environment with emphasis on sewage treatment plants. Water Res. 2007, 41, 613–619. [Google Scholar] [CrossRef]
- Duong, H.A.; Pham, N.H.; Nguyen, H.T.; Hoang, T.T.; Pham, H.V.; Pham, V.C.; Berg, M.; Giger, W.; Alder, A.C. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere 2008, 72, 968–973. [Google Scholar] [CrossRef]
- Wang, Q.-J.; Mo, C.-H.; Li, Y.-W.; Gao, P.; Tai, Y.-P.; Zhang, Y.; Ruan, Z.-L.; Xu, J.-W. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ. Pollut. 2010, 158, 2350–2358. [Google Scholar]
- Yoon, M.; Campbell, J.L.; Andersen, M.E.; Clewell, H.J. Quantitative in vitro to in vivo extrapolation of cell-based toxicity assay results. Crit. Rev. Toxicol. 2012, 42, 633–652. [Google Scholar] [CrossRef]
- Singh, R.K.; Philip, L.; Ramanujam, S. Removal of 2, 4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay. Chemosphere 2017, 184, 207–214. [Google Scholar] [CrossRef]
CAPP System | Samples Type | Atmosphere | Construction Complexity | Construction Expenses | Operational Expenses | Perspectives for Rescaling | Possible Limitation |
---|---|---|---|---|---|---|---|
DBD | Liquid and solid | Atmospheric air, nitrogen, oxygen, and argon | Relatively low | Relatively low | Relatively low | Good | Plates electrode surface oxidation, blocking their dielectric role. |
CDs | Liquid and solid | Atmospheric air, argon, nitrogen, and oxygen | Low | Low | Relatively low | Good | Corrosion/decay/thermal melting of the discharge electrode. |
APPJ | Liquid and solid | Compressed air, nitrogen, oxygen, argon, helium, and carbon dioxide | Relatively high | Relatively high | Relatively high | Disputed perspectives | Hollow electrode collapse/clogging. Explosion due to flammable/explosive gas generation. |
CAPP System | Operational Conditions * | Target Antibiotic | Removal Efficacy (%) | Degradation Products Ion Masses (m/z) | Reference |
---|---|---|---|---|---|
Nanosecond pulsed DBD reactor | CV = 26.6 kV, f = 200 Hz, A = ambient air, 1 L min−1, DP = 0.93 W, V = 8.5 mL, T = 20 min, stationary system | Enrofloxacin in water, 40 mg L−1 | 100 | 374, 356, 311, 243, 315, 362, 193, 293 | [83] |
Nanosecond pulsed DBD reactor | CV = 17.4 kV, f = 200 Hz, A = ambient air, 1.0 L mins−1, DP = 1.21 W, T = 3 min, stationary system | Ciprofloxacin in soil, 200 mg kg−1 | 99 | 412 (α-hydroperoxy amide and dihydroxy subset) | [84] |
DBD reactor (with or without FeMn/activated carbon catalyst) | CV = 8.5 kV, A = ambient air, 3 L min−1, V = 500 mL, T = 15 min, stationary system | Tetracycline hydrochloride in wastewater, 50 mg L−1 | 73.4 (DBD alone), 98.8 (DBD/Fe-Mn/activated carbon) | 461, 477, 448, 496, 416, 480, 405, 306, 274 | [85] |
DBD reactor | CV = 36.5 kV, SFR = 4 L min−1, T = 31 min, semi-flowing system | Amoxicillin in wastewater, 27.8–31.6 mg L−1 | 98.1 | Several degradation pathways proposed (theoretical modelling) | [87] |
DBD reactor | f = 600 Hz, A = air or oxygen, DP = 12.9 W, V = 100 mL, T = 40 min, circulating system | Amoxicillin, 100 mg L−1 sulfamethazole, 80 mg L−1 in water | 100 | NA | [92] |
DBD reactor | DP = 8.9 W, f = 60 Hz, A = dry air, V = 1000 mL, T = 20 min, stationary system | Lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline, oxytetracycline, sulfathiazole, sulfamethoxazole, sulfamethazine, trimethoprim, in wastewater, 5 mg L−1 | 100 | NA | [93] |
DBD reactor | CV = 10 kV, A = ambient air, 1 L min−1, stationary system | Oxytetracycline in wastewater, 100 mg L−1 | 93.6 | 476.4, 432.3, 388.3, 340.3, 288.3, 239.3 | [94] |
Pulsed DBD reactor with falling film | CV = 22 kV, f = 100 Hz, A = ambient air, 3.5 L min−1, SFR = 0.5 L min−1, T = 30 min, circulating system | Tetracycline in water, 50 mg L−1 | 92.3 | 416, 428, 461, 477, 384, 224 | |
DBD reactor | CV = 20 kV, f = 9.22 kHz, I = 1.05 A, V = 200 mL, SFR = 2 L min−1, A = ambient air, 3 L min−1, DP = 95.2 W, T = 20 min, circulating system | Tetracycline in water, 200 mg L−1 | 96.5 | 416.1, 418.1, 303.1, 365.1, 406.1 | [96] |
DBD reactor | DP = 90 W, f = 9.1 Hz, A = atmospheric air, V = 20 mL, T = 5 min, stationary system | Chloramphenicol, 30 mg L−1, furazolidone, 30 mg L−1, either in water or wastewater | Both 99.0 | Amino-functionalized moieties of antibiotics | [110] |
Pulsed CD reactor | SFR = 4.5 L min−1, DP = 60 W, T = 24 min, circulating system | Sulfamethizole in water, 50 mg L−1 | 100 | OH-sulfamethizole, 3 OH-sulfamethizole, 4 OH-sulfamethizole, carboxy-sulfamethizole | [99] |
CD above surface1, air bubbling CD2 | CV = 3 kV, f = 5 kHz, I = 3 mA, A = ambient air, 1 L min−1, V = 50 mL, T1 = 90 min, T2 = 20 min, stationary system | Oxytetracycline hydrochloride, 50 mg L−1, doxycycline hyclate, 50 mg L−1, in water | 70 (coxytetracycline1) 97 (doxycycline1) 100 (oxytetracycline2) 100 (doxycycline2) | NA | [101] |
Pulsed CD reactor | CV = 22 kV, I = 180 A, SFR = 4.5 L min−1, circulating system | Amoxicillin, doxycycline, in water, 50 mg L−1 | both 100 | OH-amoxicillin, amoxicillin penicilloic acid OH-doxycycline and 2-OH-doxycycline | [100] |
Nanosecond pulsed CD | CV = 30 kV, f = 150 Hz, A = argon or air, 200 mL min−1, DP = 1.03 W, V = 15 mL, T = 50 min, stationary system | Trimethoprim in water, 40 mg L−1 | 94.6 | short-chain carboxylic acids, CO2, H2O, NH4+, NO3− | [102] |
Air bubbling CD | CV = 8 kV, f = 8 kHz, A = ambient air, 0.5 L min−1, V = 40 mL, T = 50 min, stationary system | Amoxicillin in water, 1 mg L−1 | 99.9 | CO, CO2, H2O, diketopiperazine 366, 349, 196, 147, 79, 115, 90, 60 | [103] |
Pulsed CD with natural soil particles | f = 75 Hz, A = air, 6.0 L min−1, V = 300 mL, T = 10 min, circulating system | Tetracycline in wastewater, 50 mg L−1 | 59.30 for black soil particles | 444, 461, 416, 400, 274, 238, 209, 149 | [104] |
CD reactor | CV = 30 kV, A = ambient air, 4 L min−1, V = 600 mL, T = 15 min, stationary system | Ofloxacin, 41.2 mg L−1, ciprofloxacin, 1.0 mg L−1, cefuroxime, 0.3 mg L−1, amoxicillin, 23.6 mg L−1, in wastewater | 72.1 99.6 99.2 75.8 | NA | [86] |
Argon APPJ | f = 670 Hz, DP = 32.6 W, A = argon, 2.5 L h−1, V = 30 mL, T = 24 min, stationary system | Ciprofloxacin in wastewater, 10 mg L−1 | 93.4 | 363, 307, 263, 261, 347, 288 | [106] |
pm-rf-APGD | f = 50 kHz, A = ambient air SFR = 2.8 mL min−1, continuous flow system | Doxycycline in water, 51.5 mg L−1 | 79.0 | 417.1649, 461.1541 | [108] |
pm-rf-APGD | f = 2300 Hz, duty cycle = 30%, A = ambient air, SFR = 3.0 mL min−1, continuous flow system | Bisphenol A, bisphenol S, dexamethasone, benzophenone, 2-nitrophenol, 17-alpha-ethinylestradiol, dapsone, in the 7-component mixture in water, 1 mg mL−1 | 58.8 28.2 28.5 74.5 61.7 71.5 92.8 | NA | [109] |
dc-APGD | CV = 1200 V, I = 30 mA, A = ambient air, SFR = 3.0 min−1, continuous flow system | Bisphenol A, bisphenol S, dexamethasone, benzophenone, 2-nitrophenol, 17-alpha-ethinylestradiol, dapsone, in the 7-component mixture in water, 1 mg mL−1 | 58.6 36.9 35.4 68.6 58.0 75.0 69.0 | NA | [109] |
APPJ plasma brush | f = 66 kHz, duty cycle = 52%, A = helium, 7.0 L min−1, SFR = 1.0 mL min−1, continuous flow system | Ofloxacin doxycycline ampicillin chloramphenicol in water, 10 mg mL−1 | 39.77 51.37 72.33 34.33 | Detailed degradation pathways proposed for each antibiotics | [67] |
CAPP System | Operational Conditions * | Pollutant Used | Removal Efficacy (%) | References |
---|---|---|---|---|
Tube array DBD reactor | CV = 28 kV, f = 9 kHz, A = nitrogen (80%) and oxygen (20%), 200 L min−1, T= 10 min, stationary system | Pyrene in soil, 100 mg kg−1 | 96.2 | [113] |
DBD reactor | A = ambient air, 3 L min−1, DP = 370 W, V = 500 mL, SFR = 450 mL min−1, T = 120 min, circulating system | 2,4,6-Trinitroresorcinol in water, 135 mg L−1 | 100.00 | [114] |
DBD reactor | CV = 80 kV, f = 50 Hz, V= 20 mL, T = 8 min, stationary system | Dichlorvos, 850 µg L−1, Malathion, 1320 µg L−1, Endosulfan, 350 µg L−1, in water | 78.98 69.62 57.71 | [115] |
Coaxial DBD plasma micro-discharges with high-voltage nanosecond pulses reactor | CV = 26.8 kV, f = 100 Hz, A = Air, 0.075 L min−1, DP = 1–2 MW, I = 75 A, T = 10 min, stationary system | Trifluralin in soil, 200 mg kg−1 | 99.5 | [116] |
Coaxial DBD reactor | CV = 15 kV, A = Air, 2.5 L min−1, V = 500 mL, T = 90 min, circulating system | Phenol, 2,4-Dichlorophenol (DCP), both in wastewater, 50 mg L−1, | 56.17 89.55 | [117] |
DBD with falling film reactor | A = Argon, 1 L min−1, DP = 200 W, V = 500 mL, T = 15 min, circulating system | 2,4-dichlorophenoxyacetic acid, 2,4-dichlorophenol, both in water, 100 mg L−1 | 100 | [118] |
DBD reactor | CV = 20 kV, A = Argon, 1 L min−1, V = 3 mL, T = 2 min, stationary system | 2,4-dichlorophenol (2,4-DCP) in water, 400 mg L−1 | 98.16 | [119] |
DBD reactor | CV = 1.8 kV, A = Oxygen, 3 L min−1, DP = 0.538 W, SFR = 1.0 m3 h−1, T = 60 min, circulating system | Nitrobenzene in water, 20 mg L−1 | 75 | [120] |
DBD reactor with falling film | CV = 20 kV, f = 20 kHz, A = oxygen, 0.18 L min−1, DP = 45 W, V = 100 mL, SFR = 90 mL min−1, T = 5–25 min, circulating system | Methylene blue, 20 mg L−1 Phenol, 50 mg L−1 Paracetamol, 25 mg L−1 Caffeine, 50 mg L−1, Ceftriaxone, 5 mg L−1, in wastewater | 92 (T = 10 min) 100 (T = 20 min) 100 (T = 15 min) 100 (T = 20 min) 100 (T = 5 min) | [121] |
Self-pulsing discharge (SPD)1 multipin corona discharge (MCD)2 | CV = 30 kV, DP = 3 W, A = Air, 100 mL min−1, I = 12 mA, V = 50 mL, T = 30 min, stationary system | Dimethyl phthalate in contaminated water, 0.00002 mol L−1 | 91 | [122] |
Coaxial DBD reactor | DP = 40 W, A = CH4, 40 mL min−1, T = 2.86 s, gaseous system | Toluene in gas, 33 g Nm−3 | 85.9 | [123] |
Self-pulsing streamer discharge (SPD) reactor | CV = 30 kV, I = 12 mA, f = 100 Hz, DP = 2.89 W A = Argon, 100 mL min−1 V = 15 mL, T = 30 min, stationary system | Perfluorooctanoic acid (PFOA) in contaminated water, 41.4 mg L−1 | 84.0 | [124] |
Gas–liquid two-phase DBD reactor | CV= 17.6 kV, DP = 15 W, A = Air, 60 mL mins−1, T = 30 min, stationary system | Phenol in water, 1.06 mmol L−1 | 95.5 | [125] |
Pin-to-liquid discharge reactor | CV = 10 kV for MBD, 11 kV for DTZ; f = 1 kHz for MBD, 3 kHz for DTZ, A = oxygen; V = 7.5 mL, T = 11–20 min, stationary system | Methylene blue dye (MBD), 7 mg L−1, Diatrizoate (DTZ), 0.2 mg L−1, Both in water | 84 (T = 11 min) 90 (T = 20 min) | [126] |
Atmospheric-air-assisted GD reactor | CV = 6 kV, f = 100 Hz, A = atmospheric air, V = 20 mL, T = 30 min, stationary system | Orange G, Congo red, Crystal violet, Coomassie brilliant blue, all in water, 5 mg L−1, | 99 | [127] |
Continuous-flow electrohydraulic plasma discharge (EHPD) | F = 60 Hz, DP = 300 W, A = Air, 3 L mins−1, V = 150 mL, SFR = 68 mL min−1, T = 10 min, circulating system | Methylene blue (MB) in water, 100 mg L−1 | 97.69 | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cyganowski, P.; Terefinko, D.; Motyka-Pomagruk, A.; Babinska-Wensierska, W.; Khan, M.A.; Klis, T.; Sledz, W.; Lojkowska, E.; Jamroz, P.; Pohl, P.; et al. The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules 2024, 29, 2910. https://doi.org/10.3390/molecules29122910
Cyganowski P, Terefinko D, Motyka-Pomagruk A, Babinska-Wensierska W, Khan MA, Klis T, Sledz W, Lojkowska E, Jamroz P, Pohl P, et al. The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules. 2024; 29(12):2910. https://doi.org/10.3390/molecules29122910
Chicago/Turabian StyleCyganowski, Piotr, Dominik Terefinko, Agata Motyka-Pomagruk, Weronika Babinska-Wensierska, Mujahid Ameen Khan, Tymoteusz Klis, Wojciech Sledz, Ewa Lojkowska, Piotr Jamroz, Pawel Pohl, and et al. 2024. "The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry" Molecules 29, no. 12: 2910. https://doi.org/10.3390/molecules29122910
APA StyleCyganowski, P., Terefinko, D., Motyka-Pomagruk, A., Babinska-Wensierska, W., Khan, M. A., Klis, T., Sledz, W., Lojkowska, E., Jamroz, P., Pohl, P., Caban, M., Magureanu, M., & Dzimitrowicz, A. (2024). The Potential of Cold Atmospheric Pressure Plasmas for the Direct Degradation of Organic Pollutants Derived from the Food Production Industry. Molecules, 29(12), 2910. https://doi.org/10.3390/molecules29122910