FeOOH Nanosheets Coupled with ZnCdS Nanoparticles for Highly Improved Photocatalytic Degradation of Organic Dyes and Tetracycline in Water
Abstract
:1. Introduction
2. Results
2.1. Catalyst Structure
2.2. Photocatalytic Dye Degradation Performances
2.3. Proposed Photocatalytic Mechanism
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis
4.2.1. Synthesis of ZnCdS Nanoparticles (Named ZnCdS NCs)
4.2.2. Synthesis of FeOOH Nanosheets
4.2.3. Synthesis of FeOOH/ZCS Nanocomposites
4.3. Characterization
4.4. Photocatalytic Tests
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, H.; Zhou, Q.; Li, M.; Zhou, R.; Mao, Y.; Wang, P. Photocatalytic O2 activation and reactive oxygen species evolution by surface B-N bond for organic pollutants degradation. Appl. Catal. B Environ. 2022, 310, 121329. [Google Scholar] [CrossRef]
- He, F.; Weon, S.; Jeon, W.; Chung, M.W.; Choi, W. Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air. Nat. Commun. 2021, 12, 6259. [Google Scholar] [CrossRef]
- Ma, H.; Wang, X.; Tan, T.; Zhou, X.; Dong, F.; Sun, Y. Stabilize the oxygen vacancies in Bi2SiO5 for durable photocatalysis via altering local electronic structure with phosphate dopant. Appl. Catal. B Environ. 2022, 319, 121911. [Google Scholar] [CrossRef]
- Xue, J.; Peldszus, S.; Van Dyke, M.I.; Huck, P.M. Removal of polystyrene microplastic spheres by alum-based coagulation-flocculation-sedimentation (CFS) treatment of surface waters. Chem. Eng. J. 2021, 422, 130023. [Google Scholar] [CrossRef]
- Park, S.J.; Das, G.S.; Schütt, F.; Adelung, R.; Mishra, Y.K.; Tripathi, K.M.; Kim, T. Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: Degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment. NPG Asia Mater. 2019, 11, 8. [Google Scholar] [CrossRef]
- Zhang, Q.; Mirzaei, A.; Wang, Y.; Song, G.; Wang, C.; Besteiro, L.V.; Govorov, A.O.; Chaker, M.; Ma, D. Extracting hot holes from plasmonic semiconductors for photocatalysis. Appl. Catal. B Environ. 2022, 317, 121792. [Google Scholar] [CrossRef]
- Xu, S.; Qian, W.; Zhang, D.; Zhao, X.; Zhang, X.; Li, C.; Bowen, C.R.; Yang, Y. A coupled photo-piezo-catalytic effect in a BST-PDMS porous foam for enhanced dye wastewater degradation. Nano Energy 2020, 77, 105305. [Google Scholar] [CrossRef]
- Kisch, H. Semiconductor Photocatalysis for Chemoselective Radical Coupling Reactions. Acc. Chem. Res. 2017, 50, 1002–1010. [Google Scholar] [CrossRef]
- Anwer, H.; Park, J.-W. Lorentz force promoted charge separation in a hierarchical, bandgap tuned, and charge reversible NixMn(0.5−x)O photocatalyst for sulfamethoxazole degradation. Appl. Catal. B Environ. 2022, 300, 120724. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.-N.; Zhao, M.-L.; Zhang, C.-Y.; Huang, C.-X.; Cheng, S.; Xu, H.-M.; Qian, H.-S. Magnetically Recyclable Fe3O4@ZnxCd1–xS Core–Shell Microspheres for Visible Light-Mediated Photocatalysis. Langmuir 2018, 34, 9264–9271. [Google Scholar] [CrossRef]
- Yang, H.; Wang, W.; Wu, X.; Siddique, M.S.; Su, Z.; Liu, M.; Yu, W. Reducing ROS generation and accelerating the photocatalytic degradation rate of PPCPs at neutral pH by doping Fe-N-C to g-C3N4. Appl. Catal. B Environ. 2022, 301, 120790. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Huang, D.; Wen, M.; Zhou, C.; Li, Z.; Cheng, M.; Chen, S.; Xue, W.; Lei, L.; Yang, Y.; Xiong, W.; et al. ZnxCd1−xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction. Appl. Catal. B Environ. 2020, 267, 118651. [Google Scholar] [CrossRef]
- Xu, X.; Lu, R.; Zhao, X.; Zhu, Y.; Xu, S.; Zhang, F. Novel mesoporous ZnxCd1−xS nanoparticles as highly efficient photocatalysts. Appl. Catal. B Environ. 2012, 125, 11–20. [Google Scholar] [CrossRef]
- Li, F.; Long, Y.; Ma, H.; Qiang, T.; Zhang, G.; Shen, Y.; Zeng, L.; Lu, J.; Cong, Y.; Jiang, B.; et al. Promoting the reduction of CO2 to formate and formaldehyde via gas–liquid interface dielectric barrier discharge using a Zn0.5Cd0.5S/CoP/multiwalled carbon nanotubes catalyst. J. Colloid Interface Sci. 2022, 622, 880–891. [Google Scholar] [CrossRef]
- Gao, X.; Zeng, D.; Zeng, Q.; Xie, Z.; Fujita, T.; Wang, X.; He, G.; Wei, Y. Anchoring Zn0.5Cd0.5S solid solution onto 2D porous Co–CoO nanosheets for highly improved photocatalytic H2 generation. Mater. Chem. Front. 2021, 5, 7208–7215. [Google Scholar] [CrossRef]
- Gao, X.; Zeng, D.; Yang, J.; Ong, W.-J.; Fujita, T.; He, X.; Liu, J.; Wei, Y. Ultrathin Ni(OH)2 nanosheets decorated with Zn0.5Cd0.5S nanoparticles as 2D/0D heterojunctions for highly enhanced visible light-driven photocatalytic hydrogen evolution. Chin. J. Catal. 2021, 42, 1137–1146. [Google Scholar] [CrossRef]
- Chandrashekhar, V.G.; Senthamarai, T.; Kadam, R.G.; Malina, O.; Kašlík, J.; Zbořil, R.; Gawande, M.B.; Jagadeesh, R.V.; Beller, M. Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nat. Catal. 2022, 5, 20–29. [Google Scholar] [CrossRef]
- Ter-Oganessian, N.V.; Guda, A.A.; Sakhnenko, V.P. Linear magnetoelectric effect in göthite, α-FeOOH. Sci. Rep. 2017, 7, 16410. [Google Scholar] [CrossRef]
- Li, L.; Guo, C.; Ning, J.; Zhong, Y.; Chen, D.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 2021, 293, 120203. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, B.; Wang, Q.; Xing, S. Facile synthesis of α-FeOOH/γ-Fe2O3 by a pH gradient method and the role of γ-Fe2O3 in H2O2 activation under visible light irradiation. Chem. Eng. J. 2018, 354, 75–84. [Google Scholar] [CrossRef]
- Kang, Y.; Mao, Z.; Wang, Y.; Pan, C.; Ou, M.; Zhang, H.; Zeng, W.; Ji, X. Design of a two-dimensional interplanar heterojunction for catalytic cancer therapy. Nat. Commun. 2022, 13, 2425. [Google Scholar] [CrossRef]
- Kolhe, N.D.; Walekar, L.S.; Kadam, A.N.; Chopade, A.S.; Lee, S.-W.; Mhamane, D.S.; Shringare, S.N.; Lawand, A.S.; Gokavi, G.S.; Misra, M.; et al. MOF derived in-situ construction of core-shell Z-scheme BiVO4@α-Fe2O3-CF nanocomposites for efficient photocatalytic treatment of organic pollutants under visible light. J. Clean. Prod. 2023, 420, 138179. [Google Scholar] [CrossRef]
- Salunkhe, T.T.; Gurugubelli, T.R.; Babu, B.; Yoo, K. Recent Innovative Progress of Metal Oxide Quantum-Dot-Integrated g-C3N4 (0D-2D) Synergistic Nanocomposites for Photocatalytic Applications. Catalysts 2023, 13, 1414. [Google Scholar] [CrossRef]
- Wang, F.; Su, Y.; Min, S.; Li, Y.; Lei, Y.; Hou, J. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light. J. Solid State Chem. 2018, 260, 23–30. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J.; Zeng, D.; He, G.; Dai, C.; Bao, Y.; Wei, Y. Two-dimensional nickel nanosheets coupled with Zn0.5Cd0.5S nanocrystals for highly improved visible-light photocatalytic H2 production. J. Alloys Compd. 2021, 871, 159460. [Google Scholar] [CrossRef]
- Fan, H.; Huang, X.; Kähler, K.; Folke, J.; Girgsdies, F.; Teschner, D.; Ding, Y.; Hermann, K.; Schlögl, R.; Frei, E. In-Situ Formation of Fe Nanoparticles from FeOOH Nanosheets on γ-Al2O3 as Efficient Catalysts for Ammonia Synthesis. ACS Sustain. Chem. Eng. 2017, 5, 10900–10909. [Google Scholar] [CrossRef]
- Dong, J.; Fang, W.; Yuan, H.; Xia, W.; Zeng, X.; Shangguan, W. Few-Layered MoS2/ZnCdS/ZnS Heterostructures with an Enhanced Photocatalytic Hydrogen Evolution. ACS Appl. Energy Mater. 2022, 5, 4893–4902. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Guo, Y.; Jin, Z.; Cao, G.; Qiu, J.; Lian, F.; Wang, A.; Wang, W. Ultrathin nanosheets of FeOOH with oxygen vacancies as efficient polysulfide electrocatalyst for advanced lithium–sulfur batteries. Energy Storage Mater. 2022, 47, 561–568. [Google Scholar] [CrossRef]
- Li, N.; Wu, J.; Lu, Y.; Zhao, Z.; Zhang, H.; Li, X.; Zheng, Y.-Z.; Tao, X. Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 238, 27–37. [Google Scholar] [CrossRef]
- Feng, B.; Wu, Z.; Liu, J.; Zhu, K.; Li, Z.; Jin, X.; Hou, Y.; Xi, Q.; Cong, M.; Liu, P.; et al. Combination of ultrafast dye-sensitized-assisted electron transfer process and novel Z-scheme system: AgBr nanoparticles interspersed MoO3 nanobelts for enhancing photocatalytic performance of RhB. Appl. Catal. B Environ. 2017, 206, 242–251. [Google Scholar] [CrossRef]
- Yan, H.; Pan, Y.; Liao, X.; Zhu, Y.; Yin, C.; Huang, R.; Pan, C. Enhancement of Fe2+/Fe3+ cycles by the synergistic effect between photocatalytic and co-catalytic of ZnxCd1−xS on photo-Fenton system. Appl. Surf. Sci. 2022, 576, 151881. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.; Zhou, W.; Liu, Y.; Yin, L.; Hai, X.; Song, H.; Ye, J. Photoassisted Construction of Holey Defective g-C3N4 Photocatalysts for Efficient Visible-Light-Driven H2O2 Production. Small 2018, 14, 1703142. [Google Scholar] [CrossRef]
- Meng, L.; He, J.; Zhou, X.; Deng, K.; Xu, W.; Kidkhunthod, P.; Long, R.; Tang, Y.; Li, L. Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nat. Commun. 2021, 12, 5247. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, M.; Xie, Q.; Wang, Y.; Cui, X.; Jiang, L. B-ZnxCd1−xS/Cd Heterojunction with Sulfur Vacancies for Photocatalytic Overall Dyeing Wastewater Splitting. ACS Sustain. Chem. Eng. 2022, 10, 2938–2946. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Wang, W.; Qian, H.; Cheng, S.; Wang, Y.; Zha, Z.; Zhong, Y.; Hu, Y. Scalable fabrication of ZnxCd1−xS double-shell hollow nanospheres for highly efficient hydrogen production. Appl. Catal. B Environ. 2018, 239, 309–316. [Google Scholar] [CrossRef]
- Boltersdorf, J.; Sullivan, I.; Shelton, T.L.; Wu, Z.; Gray, M.; Zoellner, B.; Osterloh, F.E.; Maggard, P.A. Flux Synthesis, Optical and Photocatalytic Properties of n-type Sn2TiO4: Hydrogen and Oxygen Evolution under Visible Light. Chem. Mater. 2016, 28, 8876–8889. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, Y.; Fan, J.; Tang, Z. Construction of novel Z-scheme flower-like Bi2S3/SnIn4S8 heterojunctions with enhanced visible light photodegradation and bactericidal activity. Appl. Surf. Sci. 2019, 465, 212–222. [Google Scholar] [CrossRef]
- Gao, B.; Liu, L.; Liu, J.; Yang, F. Photocatalytic degradation of 2,4,6-tribromophenol on Fe2O3 or FeOOH doped ZnIn2S4 heterostructure: Insight into degradation mechanism. Appl. Catal. B Environ. 2014, 147, 929–939. [Google Scholar] [CrossRef]
- Fan, H.; Huang, X.; Shang, L.; Cao, Y.; Zhao, Y.; Wu, L.Z.; Tung, C.H.; Yin, Y.; Zhang, T. Controllable synthesis of ultrathin transition-metal hydroxide nanosheets and their extended composite nanostructures for enhanced catalytic activity in the heck reaction. Angew. Chem. 2016, 55, 2167–2170. [Google Scholar] [CrossRef]
- Rajendran, S.; Chellapandi, T.; UshaVipinachandran, V.; Venkata Ramanaiah, D.; Dalal, C.; Sonkar, S.K.; Madhumitha, G.; Bhunia, S.K. Sustainable 2D Bi2WO6/g-C3N5 heterostructure as visible light-triggered abatement of colorless endocrine disruptors in wastewater. Appl. Surf. Sci. 2022, 577, 151809. [Google Scholar] [CrossRef]
- Yang, P.; Chen, C.; Wang, D.; Ma, H.; Du, Y.; Cai, D.; Zhang, X.; Wu, Z. Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi2WO6 Z-scheme catalyst. Appl. Catal. B Environ. 2021, 285, 119877. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Lin, Y.; Zhang, X.; Yu, Y.; Zhang, R. Z-scheme Cu2(OH)3F nanosheets-decorated 3D Bi2WO6 heterojunction with an intimate hetero-surface contact through a hydrogen bond for enhanced photoinduced charge separation and transfer. Chem. Eng. J. 2022, 427, 131704. [Google Scholar] [CrossRef]
- Ren, H.; Qi, F.; Labidi, A.; Zhao, J.; Wang, H.; Xin, Y.; Luo, J.; Wang, C. Chemically bonded carbon quantum dots/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic degradation: Interfacial engineering and mechanism insight. Appl. Catal. B Environ. 2023, 330, 122587. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, S.; Zhang, X.; Qu, L.; Qi, H.; Wang, B.; Xu, B.; Huang, Z. Carbon-doped flower-like Bi2WO6 decorated carbon nanosphere nanocomposites with enhanced visible light photocatalytic degradation of tetracycline. Adv. Compos. Hybrid Mater. 2023, 6, 47. [Google Scholar] [CrossRef]
- Su, M.; Sun, H.; Tian, Z.; Zhao, Z.; Li, P. Z-scheme 2D/2D WS2/Bi2WO6 heterostructures with enhanced photocatalytic performance. Appl. Catal. A 2022, 631, 118485. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Xia, M.; An, H.; Bai, H.; Wei, J.; Yang, B.; Yang, G. Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis. Appl. Catal. B Environ. 2020, 261, 118244. [Google Scholar] [CrossRef]
- Zhu, X.; Qin, F.; Zhang, X.; Zhong, Y.; Wang, J.; Jiao, Y.; Luo, Y.; Feng, W. Synthesis of tin-doped three-dimensional flower-like bismuth tungstate with enhanced photocatalytic activity. Int. J. Mol. Sci. 2022, 23, 8422. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Ling, Q.; Zhu, Y. Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl. Catal. B Environ. 2017, 200, 222–229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J. FeOOH Nanosheets Coupled with ZnCdS Nanoparticles for Highly Improved Photocatalytic Degradation of Organic Dyes and Tetracycline in Water. Molecules 2024, 29, 2913. https://doi.org/10.3390/molecules29122913
Yang J. FeOOH Nanosheets Coupled with ZnCdS Nanoparticles for Highly Improved Photocatalytic Degradation of Organic Dyes and Tetracycline in Water. Molecules. 2024; 29(12):2913. https://doi.org/10.3390/molecules29122913
Chicago/Turabian StyleYang, Jingren. 2024. "FeOOH Nanosheets Coupled with ZnCdS Nanoparticles for Highly Improved Photocatalytic Degradation of Organic Dyes and Tetracycline in Water" Molecules 29, no. 12: 2913. https://doi.org/10.3390/molecules29122913
APA StyleYang, J. (2024). FeOOH Nanosheets Coupled with ZnCdS Nanoparticles for Highly Improved Photocatalytic Degradation of Organic Dyes and Tetracycline in Water. Molecules, 29(12), 2913. https://doi.org/10.3390/molecules29122913