Stereoselective Solid-State Synthesis of Biologically Active Cyclobutane and Dicyclobutane Isomers via Conformation Blocking and Transference
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parra, R.D.; Zeng, X.C. Staggered and eclipsed conformations of C2F6: A systematic ab initio study. J. Fluor. Chem. 1997, 83, 51–60. [Google Scholar] [CrossRef]
- Hu, F.L.; Wang, H.F.; Guo, D.; Zhang, H.; Lang, J.P.; Beves, J. Controlled formation of chiral networks and their reversible chiroptical switching behaviour by UV/microwave irradiation. Chem. Commun. 2016, 52, 7990–7993. [Google Scholar] [CrossRef]
- Wu, J.W.; Long, B.F.; Wang, M.F.; Young, D.J.; Hu, F.L.; Mi, Y.; Lang, J.P. Tunable photosalient behaviours within coordination polymers via functional molecular prearrangements. Chem. Commun. 2022, 58, 2674–2677. [Google Scholar] [CrossRef]
- MacGillivray, L.R.; Papaefstathiou, G.S.; Friscic, T.; Hamilton, T.D.; Bucar, D.K.; Chu, Q.; Varshney, D.B.; Georgiev, I.G. Supramolecular control of reactivity in the solid state: From templates to ladderanes to metal−organic frameworks. Acc. Chem. Res. 2008, 41, 280–291. [Google Scholar] [CrossRef]
- Hamilton, T.D.; Papaefstathiou, G.S.; Friscic, T.; Bucar, D.K.; MacGillivray, L.R. Onion-shell metal−organic polyhedra (MOPs): A general approach to decorate the exteriors of MOPs using principles of supramolecular chemistry. J. Am. Chem. Soc. 2008, 130, 14366–14367. [Google Scholar] [CrossRef]
- Kole, G.K.; Kojima, T.; Kawano, M.; Vittal, J.J. Reversible Single-Crystal-to-Single-Crystal Photochemical Formation and Thermal Cleavage of a Cyclobutane Ring. Angew. Chem. Int. Ed. 2014, 53, 2143–2146. [Google Scholar] [CrossRef]
- Medishetty, R.; Husain, A.; Bai, Z.; Runcevski, T.; Dinnebier, R.E.; Naumov, P.; Vittal, J.J. Single crystals pop under UV light: A photosalient effect triggered by a [2 + 2] cycloaddition reaction. Angew. Chem. Int. Ed. 2014, 53, 5907–5911. [Google Scholar] [CrossRef]
- Medishetty, R.; Koh, L.L.; Kole, G.K.; Vittal, J.J. Solid-State Structural Transformations from 2D Interdigitated Layers to 3D Interpenetrated Structures. Angew. Chem. Int. Ed. 2011, 50, 11141–11144. [Google Scholar] [CrossRef]
- Yang, S.Y.; Deng, X.L.; Jin, R.F.; Naumov, P.; Panda, M.K.; Huang, R.B.; Zheng, L.S.; Teo, B.K. Crystallographic snapshots of the interplay between reactive guest and host molecules in a porous coordination polymer: Stereochemical coupling and feedback mechanism of three photoactive centers triggered by UV-induced isomerization, dimerization, and polymerization reactions. J. Am. Chem. Soc. 2014, 136, 558–561. [Google Scholar]
- Islam, S.; Datta, J.; Maity, S.; Dutta, B.; Khan, S.; Ghosh, P.; Ray, P.P.; Mir, M.H. Photodimerization of a 1D ladder polymer through single-crystal to single-crystal transformation has an effect on electrical conductivity. Cryst. Growth Des. 2019, 19, 4057–4062. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, G.C.; Kwak, S.; Oh, E.J.; Yun, E.J.; Chomvong, K.; Cate, J.H.D.; Jin, Y.S. Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nat. Commun. 2019, 10, 1356. [Google Scholar] [CrossRef]
- Liu, D.; Ren, Z.G.; Li, H.X.; Lang, J.P.; Li, N.Y.; Abrahams, B.F. Single-Crystal-to-Single-Crystal Transformations of Two Three-Dimensional Coordination Polymers through Regioselective [2 + 2] Photodimerization Reactions. Angew. Chem. Int. Ed. 2010, 49, 4767–4770. [Google Scholar] [CrossRef]
- Hu, F.L.; Mi, Y.; Zhu, C.; Abrahams, B.F.; Braunstein, P.; Lang, J.P. Stereoselective Solid-State Synthesis of Substituted Cyclobutanes Assisted by Pseudorotaxane-like MOFs. Angew. Chem. Int. Ed. 2018, 57, 12878–12883. [Google Scholar] [CrossRef]
- Kawamichi, T.; Kodama, T.; Kawano, M.; Fujita, M. Single-crystalline molecular flasks: Chemical transformation with bulky reagents in the pores of porous coordination networks. Angew. Chem. Int. Ed. 2008, 47, 8030–8032. [Google Scholar] [CrossRef]
- Yan, T.; Sun, L.Y.; Deng, Y.X.; Han, Y.F.; Jin, G.X. Facile Synthesis of Size-Tunable Functional Polyimidazolium Macrocycles through a Photochemical Closing Strategy. Chem. Eur. J. 2015, 21, 17610–17613. [Google Scholar] [CrossRef]
- Kato, T.; Nakamura, Y.; Morita, Y. Reactions Using Micellar Systems IV Regioselectivity in the Photodimerizations of 2-Pyridones in Micelles and Reversed Micelles. Chem. Pharm. Bull. 1983, 31, 2552–2563. [Google Scholar] [CrossRef]
- Li, N.Y.; Liu, D.; Ren, Z.G.; Lollar, C.; Lang, J.P.; Zhou, H.C. Controllable fluorescence switching of a coordination chain based on the photoinduced single-crystal-to-single-crystal reversible transformation of a syn-[2.2] metacyclophane. Inorg. Chem. 2018, 57, 849–856. [Google Scholar] [CrossRef]
- Kusaka, S.; Kiyose, A.; Sato, H.; Hijikata, Y.; Hori, A.; Ma, Y.; Matsuda, R. Dynamic topochemical reaction tuned by guest molecules in the nanospace of a metal–organic framework. J. Am. Chem. Soc. 2019, 141, 15742–15746. [Google Scholar] [CrossRef]
- Claassens, I.E.; Barbour, L.J.; Haynes, D.A. A multistimulus responsive porous coordination polymer: Temperature-mediated control of solid-state [2 + 2] cycloaddition. J. Am. Chem. Soc. 2019, 141, 11425–11429. [Google Scholar] [CrossRef]
- Brimioulle, R.; Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2 + 2] photocycloaddition reactions. Science 2013, 342, 840–843. [Google Scholar] [CrossRef]
- Pagire, S.K.; Hossain, A.; Traub, L.; Kerres, S.; Reiser, O. Photosensitised regioselective [2 + 2]-cycloaddition of cinnamates and related alkenes. Chem. Commun. 2017, 53, 12072–12075. [Google Scholar] [CrossRef]
- Mangion, I.K.; MacMillan, D.W. Total synthesis of brasoside and littoralisone. J. Am. Chem. Soc. 2005, 127, 3696–3697. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, K.; Li, B.; Cui, L.; Li, J.; Jia, X.; Zhao, H.; Fang, J.; Li, C. Efficient separation of cis-and trans-1,2-dichloroethene isomers by adaptive biphen [3] arene crystals. Angew. Chem. Int. Ed. 2019, 131, 10387–10390. [Google Scholar] [CrossRef]
- Wei, Y.S.; Zhang, M.; Liao, P.Q.; Lin, R.B.; Li, T.Y.; Shao, G.; Zhang, J.P.; Chen, X.M. Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework. Nat. Commun. 2015, 6, 8348. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Takeyama, Y.; Kusukawa, T.; Fujita, M. Cavity-directed, highly stereoselective [2 + 2] photodimerization of olefins within self-assembled coordination cages. Angew. Chem. Int. Ed. 2002, 41, 1347–1349. [Google Scholar] [CrossRef]
- Claassens, I.E.; Nikolayenko, V.I.; Haynes, D.A.; Barbour, L.J. Solvent-Mediated Synthesis of Cyclobutane Isomers in a Photoactive Cadmium (II) Porous Coordination Polymer. Angew. Chem. Int. Ed. 2018, 57, 15563–15566. [Google Scholar] [CrossRef]
- Hamilton, T.D.; Papaefstathiou, G.S.; MacGillivray, L.R. Template-controlled reactivity: Following nature’s way to design and construct metal-organic polyhedra and polygons. J. Solid State Chem. 2005, 178, 2409–2413. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Ramamurthy, V. Self-assembled coordination cage as a reaction vessel: Triplet sensitized [2 + 2] photodimerization of acenaphthylene, and [4 + 4] photodimerization of 9-anthraldehyde. Tetrahedron Lett. 2005, 46, 4495–4498. [Google Scholar] [CrossRef]
- Briceno, A.; Hill, Y.; Gonzalez, T.; Diaz, D.G. Combining hydrogen bonding and metal coordination for controlling topochemical [2 + 2] cycloaddition from multi-component assemblies. Dalton Trans. 2009, 9, 1602–1610. [Google Scholar] [CrossRef]
- Santra, R.; Biradha, K. Nitrate ion assisted argentophilic interactions as a template for solid state [2 + 2] photodimerization of pyridyl acrylic acid, its methyl ester, and acryl amide. Cryst. Growth Des. 2010, 10, 3315–3320. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Han, Y.F.; Lin, Y.J.; Jin, G.X. [2 + 2] Photodimerization in the solid state aided by molecular templates of rectangular macrocycles bearing oxamidato ligands. Organometallics 2010, 29, 2842–2849. [Google Scholar] [CrossRef]
- Hu, F.L.; Wang, S.L.; Lang, J.P.; Abrahams, B.F. In-situ X-ray diffraction snapshotting: Determination of the kinetics of a photodimerization within a single crystal. Sci. Rep. 2014, 4, 6815. [Google Scholar] [CrossRef]
- Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Fujiwara, Y.I.; Kadota, K.; Nagarkar, S.S.; Tobori, N.; Kitagawa, S.; Horike, S. Synthesis of Oligodiacetylene Derivatives from Flexible Porous Coordination Frameworks. J. Am. Chem. Soc. 2017, 139, 13876–13881. [Google Scholar] [CrossRef]
- Gan, M.M.; Liu, J.Q.; Zhang, L.; Wang, Y.Y.; Hahn, F.E.; Han, Y.F. Preparation and post-assembly modification of metallosupramolecular assemblies from poly (N-heterocyclic carbene) ligands. Chem. Rev. 2018, 118, 9587–9641. [Google Scholar] [CrossRef]
- Hu, F.L.; Shi, Y.X.; Chen, H.H.; Lang, J.P. A Zn (II) coordination polymer and its photocycloaddition product: Syntheses, structures, selective luminescence sensing of iron (III) ions and selective absorption of dyes. Dalton Trans. 2015, 44, 18795–18803. [Google Scholar] [CrossRef]
- Gan, M.M.; Yu, J.G.; Wang, Y.Y.; Han, Y.F. Template-directed photochemical [2 + 2] cycloaddition in crystalline materials: A useful tool to access cyclobutane derivatives. Cryst. Growth Des. 2018, 18, 553–565. [Google Scholar] [CrossRef]
- Schmidt, G. M-J. Photodimerization in the solid state. Pure Appl. Chem. 1971, 27, 647–678. [Google Scholar] [CrossRef]
- MacGillivray, L.R.; Reid, J.L.; Ripmeester, J.A. Supramolecular control of reactivity in the solid state using linear molecular templates. J. Am. Chem. Soc. 2000, 122, 7817–7818. [Google Scholar] [CrossRef]
- Sokolov, A.N.; Swenson, D.C.; MacGillivray, L.R. Conformational polymorphism in a heteromolecular single crystal leads to concerted movement akin to collective rack-and-pinion gears at the molecular level. Proc. Natl. Acad. Sci. USA 2008, 105, 1794–1797. [Google Scholar] [CrossRef]
- Inukai, M.; Fukushima, T.; Hijikata, Y.; Ogiwara, N.; Horike, S.; Kitagawa, S. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach. J. Am. Chem. Soc. 2015, 137, 12183–12186. [Google Scholar] [CrossRef]
- Hu, F.L.; Wang, S.L.; Abrahams, B.F.; Lang, J.P. Observance of a large conformational change associated with the rotation of the naphthyl groups during the photodimerization of criss-cross aligned C=C bonds within a 2D coordination polymer. CrystEngComm 2015, 17, 4903–4911. [Google Scholar] [CrossRef]
- Huang, Y.G.; Shiota, Y.; Su, S.Q.; Wu, S.Q.; Yao, Z.S.; Li, G.L.; Kanegawa, S.; Kang, S.; Kamachi, T.; Yoshizawa, K.; et al. Thermally Induced Intra-Carboxyl Proton Shuttle in a Molecular Rack-and-Pinion Cascade Achieving Macroscopic Crystal Deformation. Angew. Chem. Int. Ed. 2016, 55, 14628–14632. [Google Scholar] [CrossRef]
- Chiaravalloti, F.; Gross, L.; Rieder, K.H.; Stojkovic, S.; Gourdon, M.A.; Joachim, C.; Moresco, F. A rack-and-pinion device at the molecular scale. Nat. Mater. 2007, 6, 30–33. [Google Scholar] [CrossRef]
- Kelly, C.B.; Milligan, J.A.; Tilley, L.J.; Sodano, T.M. Bicyclobutanes: From curiosities to versatile reagents and covalent warheads. Chem. Sci. 2022, 13, 11721–11737. [Google Scholar] [CrossRef]
- Wang, N.; Yan, R.P.; Xiong, Y.S.; Mi, Y.; Hu, F.L.; Ge, Y.; Lang, J.P. Coordination Polymer- Mediated Molecular Surgery for Precise Interconversion of Dicyclobutane Compounds. Inorg. Chem. 2022, 61, 21016–21023. [Google Scholar] [CrossRef]
- Li, J.; Gao, K.; Bian, M.; Ding, H. Recent advances in the total synthesis of cyclobutane- containing natural products. Org. Chem. Front. 2020, 7, 136–154. [Google Scholar] [CrossRef]
- Wang, M.F.; Mi, Y.; Hu, F.L.; Niu, Z.; Yin, X.H.; Huang, Q.; Wang, H.F.; Lang, J.P. Coordination-driven stereospecific control strategy for pure cycloisomers in solid-state diene photocycloaddition. J. Am. Chem. Soc. 2019, 142, 700–704. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXLA. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- He, M.X.; Mo, Z.Y.; Wang, Z.Q.; Cheng, S.Y.; Xie, R.R.; Tang, H.T.; Pan, Y.M. Electrochemical Synthesis of 1-Naphthols by Intermolecular Annulation of Alkynes with 1,3-Dicarbonyl Compounds. Org. Lett. 2020, 22, 724–728. [Google Scholar] [CrossRef]
Compounds | MGC-803 | T-24 | HepG-2 | BEL-7402 | HeLa | HL-7702 |
---|---|---|---|---|---|---|
Isomer 1α | >20 | >20 | >20 | >20 | >20 | >20 |
Isomer 1β | 7.6 ± 0.2 | 7.3 ± 0.5 | 10.7 ± 0.6 | 18.8 ± 0.6 | 6.3 ± 0.3 | >20 |
Isomer 1γ | >20 | 8.2 ± 0.9 | 10.6 ± 0.3 | 10.8 ± 0.7 | 13.3 ± 1.3 | >20 |
Isomer 2 | >20 | 7.0 ± 0.3 | 8.2 ± 0.9 | 8.9 ± 1.2 | 6.2 ± 0.8 | >20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Gu, Y.; Young, D.; Hu, F.; Luo, Z. Stereoselective Solid-State Synthesis of Biologically Active Cyclobutane and Dicyclobutane Isomers via Conformation Blocking and Transference. Molecules 2024, 29, 2909. https://doi.org/10.3390/molecules29122909
Qin Z, Gu Y, Young D, Hu F, Luo Z. Stereoselective Solid-State Synthesis of Biologically Active Cyclobutane and Dicyclobutane Isomers via Conformation Blocking and Transference. Molecules. 2024; 29(12):2909. https://doi.org/10.3390/molecules29122909
Chicago/Turabian StyleQin, Zhen, Yunqiong Gu, Davidjames Young, Feilong Hu, and Zhirong Luo. 2024. "Stereoselective Solid-State Synthesis of Biologically Active Cyclobutane and Dicyclobutane Isomers via Conformation Blocking and Transference" Molecules 29, no. 12: 2909. https://doi.org/10.3390/molecules29122909
APA StyleQin, Z., Gu, Y., Young, D., Hu, F., & Luo, Z. (2024). Stereoselective Solid-State Synthesis of Biologically Active Cyclobutane and Dicyclobutane Isomers via Conformation Blocking and Transference. Molecules, 29(12), 2909. https://doi.org/10.3390/molecules29122909