Selective Heterogeneous Fenton Degradation of Formaldehyde Using the Fe-ZSM-5 Catalyst
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fe3+ Loading Condition of Catalyst
2.1.1. Influence of Different Impregnation Concentration on Catalyst Performance
2.1.2. Influence of Different Impregnation Temperatures on Catalyst
2.1.3. Influence of Different Impregnation Liquid-to-Solid Ratios on Iron Loading
2.1.4. Effect of Different Impregnation Times on Iron Load
2.2. Characterization of Catalysts
2.3. Degradation of Formaldehyde in the Fe-ZSM-5/H2O2 System
2.3.1. Effect of Experimental Parameters on Degradation of Formaldehyde
2.3.2. Selectivity of the Fe-ZSM-5 Catalyst towards Formaldehyde
2.3.3. Mechanism of the Formaldehyde Degradation
2.3.4. Degradation of the Catalyst on a High Concentration of Formaldehyde Wastewater
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of the Fe-ZSM-5 Catalyst
3.3. Characterization
3.4. Heterogeneous Fenton Catalytic Performance
3.5. Stability and Reusability Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Ru, X.; Yang, W.; Dai, Z.; Ofori, M.A.; Chen, J.; Hou, J.; Zhong, Z.; Jin, H. Study on preparation of cationic flocculants by grafting binary monomer on cellulose substrate by γ-ray co-irradiation. J. Environ. Chem. Eng. 2022, 10, 107138. [Google Scholar] [CrossRef]
- Du, L.; Gao, W.; Li, Z.; Jiao, W.; Liu, Y. Oxidative degradation of formaldehyde in wastewater by MgO/O3/H2O2 in a rotating packed bed. Chem. Eng. Process. Process Intensif. 2020, 155, 108053. [Google Scholar] [CrossRef]
- Gu, X.; Tan, C.; He, L.; Guo, J.; Zhao, X.; Qi, K.; Yan, Y. Mn2+ doped AgInS2 photocatalyst for formaldehyde degradation and hydrogen production from water splitting by carbon tube enhancement. Chemosphere 2022, 304, 135292. [Google Scholar] [CrossRef]
- Kajitvichyanukul, P.; Lu, M.-C.; Liao, C.-H.; Wirojanagud, W.; Koottatep, T. Degradation and detoxification of formaline wastewater by advanced oxidation processes. J. Hazard. Mater. 2006, 135, 337–343. [Google Scholar] [CrossRef]
- Mac Donald, M.J.; Wu, Z.; Ruzicka, J.-Y.; Golovko, V.; Tsang, D.C.W.; Yip, A.C.K. Catalytic consequences of charge-balancing cations in zeolite during photo-Fenton oxidation of formaldehyde in alkaline conditions. Sep. Purif. Technol. 2014, 125, 269–274. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, Q.; Liu, H.; Wei, S.; Wang, L. Effect of Fe doping on the surface properties of δ-MnO2 nanomaterials and its decomposition of formaldehyde at room temperature. J. Environ. Chem. Eng. 2022, 10, 108277. [Google Scholar] [CrossRef]
- Wu, X.; Li, Z.; Tao, J.; Xie Yu, X.; Wei, L.; Song, Z. Rapid degradation of formaldehyde using Fe coupled with walnut shell biochar with high surface defect in Fenton-like reaction. Process Saf. Environ. Prot. 2024, 186, 1053–1065. [Google Scholar]
- Sun, K.; Wang, X.; Yuan, H.; Jian, H.; Wei, S.; Chun, C.; Feng, G. Magnetically separable and recyclable ZnFe2O4 nanoparticles as an effective activator in resorcinol-formaldehyde resins-based photocatalysis-self-Fenton system. Sep. Purif. Technol. 2024, 351, 128044. [Google Scholar] [CrossRef]
- Zhu, Z.; Tu, Y.; Ye, M.; Zeng, Q.; Rao, J.; Chen, N. A formaldehyde-free bio-composite sheet used as adhesive with excellent water-wet bonding performance. Ind. Crops Prod. 2023, 198, 116680. [Google Scholar] [CrossRef]
- Salesmonteiro, M.K.; Salesmonteiro, M.M.; Demelohenrique, A.M.; Javiersaez, C.D.; Santoselisama, V.R.; Manuel, A. A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide. Curr. Opin. Electrochem. 2021, 27, 100685. [Google Scholar]
- Ganiyu, S.O.; van Hullebusch, E.D.; Cretin, M.; Esposito, G.; Oturan, M.A. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review. Sep. Purif. Technol. 2015, 156, 891–914. [Google Scholar] [CrossRef]
- Iglesias, O.; Meijide, J.; Bocos, E.; Sanromán, M.Á.; Pazos, M. New approaches on heterogeneous electro-Fenton treatment of winery wastewater. Electrochim. Acta 2015, 169, 134–141. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Aravindakumar, C.T.; Shah, N.S.; Boczkaj, G. Advanced oxidation processes (AOPs) based wastewater treatment unexpected nitration side reactions—a serious environmental issue: A review. Chem. Eng. J. 2022, 430, 133002. [Google Scholar] [CrossRef]
- Moussavi, G.; Yazdanbakhsh, A.; Heidarizad, M. The removal of formaldehyde from concentrated synthetic wastewater using O3/MgO/H2O2 process integrated with the biological treatment. J. Hazard. Mater. 2009, 171, 907–913. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Z.; Yu, T.; Liu, C.; Qian, H.; Li, J. Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health. Environ. Res. 2022, 205, 112550. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Y.; Zhang, Z.; Zhou, L.; Yu, G.; Wen, X.; Chi, T.; Wang, G.; Su, Y.; Deng, F. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review. Chem. Eng. J. 2022, 431, 133932. [Google Scholar] [CrossRef]
- He, H.; Li, Y.; Wang, J.; Wu, J.; Sun, L.; Cai, Y.; Cheng, H.; Wang, X. Tunable Fe-deficiency modified sodium ferric silicate for improving photo-Fenton-like activity. Chem. Eng. J. 2022, 450, 138141. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, J.; Yi, Q.; Li, D.; Liu, C.; Liu, Y. Construction of core-shell Fe3O4@GO-CoPc photo-Fenton catalyst for superior removal of tetracycline: The role of GO in promotion of H2O2 to •OH conversion. J. Environ. Manag. 2022, 308, 114613. [Google Scholar] [CrossRef]
- Panda, N.; Sahoo, H.; Mohapatra, S. Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3–SiO2 composite. J. Hazard. Mater. 2011, 185, 359–365. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Zhu, Y.; Hu, Y.; Li, C. Aerosol synthesis of Graphene-Fe3O4 hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction. J. Environ. Chem. Eng. 2016, 4, 2469–2476. [Google Scholar] [CrossRef]
- Silva, M.; Baltrusaitis, J. Destruction of emerging organophosphate contaminants in wastewater using the heterogeneous iron-based photo-Fenton-like process. J. Hazard. Mater. Lett. 2021, 2, 100012. [Google Scholar] [CrossRef]
- Tan, Y.; Zhao, W.; Sun, L.; Zhang, R.; Hou, J.; Fu, S.; Xu, W.; Zhang, R. Photocatalytic abatement of formaldehyde under visible light irradiation via bamboo carbon/TiO2 modified by plasma at low temperature. J. Clean. Prod. 2022, 369, 133280. [Google Scholar] [CrossRef]
- Moussavi, G.; Bagheri, A.; Khavanin, A. The investigation of degradation and mineralization of high concentrations of formaldehyde in an electro-Fenton process combined with the biodegradation. J. Hazard. Mater. 2012, 237–238, 147–152. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Mohammadifard, Z.; Saboori, R.; Mirbagheri, N.S.; Sabbaghi, S. Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation. Environ. Pollut. 2019, 251, 783–791. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, L.; Zhao, X.; Chen, H.; Zhai, Q. Iron-glutamate-silicotungstate ternary complex as highly active heterogeneous Fenton-like catalyst for 4-chlorophenol degradation. Chin. J. Catal. 2015, 36, 2203–2210. [Google Scholar] [CrossRef]
- Ziembowicz, S.; Kida, M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review. Chemosphere 2022, 296, 134041. [Google Scholar] [CrossRef]
- Chen, B.; Xu, J.; Dai, G.; Sun, X.; Situ, Y.; Huang, H. Accelerated Fe(III)/Fe(II) cycle couples with in-situ generated H2O2 boosting visible light-induced Fenton-like oxidation. Sep. Purif. Technol. 2022, 299, 121688. [Google Scholar] [CrossRef]
- Raj, S.I.; Jaiswal, A. Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation. J. Photochem. Photobiol. A Chem. 2021, 410, 113158. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Yang, Z.; Qian, J.; Pan, B. Selective interfacial oxidation of organic pollutants in Fenton-like system mediated by Fe(III)-adsorbed carbon nanotubes. Appl. Catal. B Environ. 2021, 292, 120193. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, L.; Sun, Y.; Liang, F.; Wang, C. Transformation of metal species and catalytic reaction mechanism of metal modified ZSM-5 in alkane aromatization. Fuel Process. Technol. 2023, 245, 107739. [Google Scholar] [CrossRef]
- Xing, X.; Na, C.; Jie, S.; Yong, Z.; Zhong, Z.; Xin, H.; Ping, Z. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine. J. Environ. Sci. 2020, 96, 105431. [Google Scholar] [CrossRef]
- He, L.-C.; Wang, X.-F.; Liu, C.-F.; Li, B.; Luo, M.-F.; Chen, J. Modulating multi-active sites in CeO2-modified MnOx/ZSM-5 catalyst for selective catalytic oxidation of diethylamine. Appl. Catal. A Gen. 2022, 648, 118929. [Google Scholar] [CrossRef]
- Shao, J.A.; Jiang, H.; Yang, M.; Xiao, J.; Yang, H.; Chen, Y.; Zhang, S.; Chen, H. Catalytic fast pyrolysis of cellulose over different metal-modified ZSM-5 zeolites for light olefins. J. Anal. Appl. Pyrolysis 2022, 166, 105628. [Google Scholar] [CrossRef]
- Ahmadi Zahrani, A.; Ayati, B. Using heterogeneous Fe-ZSM-5 nanocatalyst to improve the electro Fenton process for acid blue 25 removal in a novel reactor with orbiting electrodes. J. Electroanal. Chem. 2020, 873, 114456. [Google Scholar] [CrossRef]
- Rostamizadeh, M.; Jafarizad, A.; Gharibian, S. High efficient decolorization of Reactive Red 120 azo dye over reusable Fe-ZSM-5 nanocatalyst in electro-Fenton reaction. Sep. Purif. Technol. 2018, 192, 340–347. [Google Scholar] [CrossRef]
- Cleveland, V.; Bingham, J.-P.; Kan, E. Heterogeneous Fenton degradation of bisphenol A by carbon nanotube-supported Fe3O4. Sep. Purif. Technol. 2014, 133, 388–395. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J. Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications. J. Mol. Liq. 2021, 332, 115755. [Google Scholar] [CrossRef]
- Deshmukh, G.M.; Shete, A.; Pawar, D.M. Oxidative absorption of hydrogen sulfide using iron-chelate based process: Chelate degradation. J. Chem. Technol. Biotechnol. 2013, 88, 432–436. [Google Scholar] [CrossRef]
- Owen, B.A.; Dudney, C.S.; Tan, E.L.; Easterly, C.E. Formaldehyde in drinking water: Comparative hazard evaluation and an approach to regulation. Regul. Toxicol. Pharmacol. 1990, 11, 220–236. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2 g−1) | Pore Size (nm) | Total Pore Volume (cm3 g−1) |
---|---|---|---|
ZSM-5 | 654.505 | 2.329 | 0.207 |
Fe-ZSM-5 | 642.669 | 2.247 | 0.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Hou, J.; Zhang, D.; Liao, Z.; Yang, L.; Yang, W.; Ru, X.; Dai, Z. Selective Heterogeneous Fenton Degradation of Formaldehyde Using the Fe-ZSM-5 Catalyst. Molecules 2024, 29, 2911. https://doi.org/10.3390/molecules29122911
Zhou P, Hou J, Zhang D, Liao Z, Yang L, Yang W, Ru X, Dai Z. Selective Heterogeneous Fenton Degradation of Formaldehyde Using the Fe-ZSM-5 Catalyst. Molecules. 2024; 29(12):2911. https://doi.org/10.3390/molecules29122911
Chicago/Turabian StyleZhou, Peiguo, Jiaxin Hou, Donghui Zhang, Ziqiao Liao, Liping Yang, Wenjing Yang, Xin Ru, and Zongbiao Dai. 2024. "Selective Heterogeneous Fenton Degradation of Formaldehyde Using the Fe-ZSM-5 Catalyst" Molecules 29, no. 12: 2911. https://doi.org/10.3390/molecules29122911
APA StyleZhou, P., Hou, J., Zhang, D., Liao, Z., Yang, L., Yang, W., Ru, X., & Dai, Z. (2024). Selective Heterogeneous Fenton Degradation of Formaldehyde Using the Fe-ZSM-5 Catalyst. Molecules, 29(12), 2911. https://doi.org/10.3390/molecules29122911