Development of Plasmonic Attapulgite/Co(Ti)Ox Nanocomposite Using Spent Batteries toward Photothermal Reduction of CO2
Abstract
:1. Introduction
2. Experimental
2.1. Carbon Thermal Reduction of LIB Anodes
2.2. Preparation of H-ATP/Co(Ti)Ox
2.3. Photocatalytic Reduction of CO2
2.4. In Situ DRIFTS Analysis
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Analysis
3.2. Transmission Electron Microscopy (TEM) Analysis
3.3. UV-Vis Analysis
3.4. Photoluminescence (PL) and Photoelectrochemical Analysis
3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis
3.6. CO2 Temperature-Programmed Desorption (CO2-TPD)
3.7. Oxygen Vacancy Analysis
3.8. In Situ DRIFTS Analysis
3.9. Performance of Photothermal Catalytic Reduction of CO2
3.10. Mechanism of Photothermal Catalytic Reduction of CO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecilia, J.A.; Plata, D.B.; García, E.V. CO2 valorization and its subsequent valorization. Molecules 2021, 26, 500. [Google Scholar] [CrossRef]
- Liu, Y.H.; Chu, X.N.; Shi, A.Q.; Yao, C.; Ni, C.Y.; Li, X.Z. Construction of 2D bismuth silicate heterojunctions from natural mineral toward cost-effective photocatalytic reduction of CO2. Ind. Eng. Chem. Res. 2022, 61, 12294–12306. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhang, C.Y.; Shi, A.Q.; Zuo, S.X.; Yao, C.; Ni, C.Y.; Li, X.Z. Full solar spectrum driven CO2 conversion over S-Scheme natural mineral nanocomposite enhanced by LSPR effect. Powder Technol. 2022, 396, 615–625. [Google Scholar] [CrossRef]
- Mateo, D.; Cerrillo, J.L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.H.; Li, Y.D.; Zhang, C.J. Recent Progress in the Integration of CO2 Capture and Utilization. Molecules 2023, 28, 4500. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.J.; Ding, J.; Tong, X.; Yao, H.; Yang, R.Y.; Zhong, Q. Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4. J. CO2 Util. 2022, 61, 102003. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, Y.M.; Huang, Y.L.; Luo, B.; Jing, L.; Jing, D.W. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications-A review. Nano Res. 2022, 15, 10268–10291. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, P.J.; Zhang, H.X.; Zhao, J.H.; Shi, H.; Huang, Y.M.; Yang, H.Q. Oxygen vacancies in Co3O4 promote CO2 photoreduction. Appl. Catal. B Environ. 2022, 300, 120729. [Google Scholar] [CrossRef]
- Li, T.; Cui, J.D.; Lin, Y.Z.; Liu, K.C.; Li, R.; Wang, B.; Xie, H.Q.; Li, K. Cobalt ion redox and conductive polymers boosted the photocatalytic activity of the graphite carbon nitride-Co3O4 Z-scheme heterostructure. New J. Chem. 2021, 45, 162–168. [Google Scholar] [CrossRef]
- Qin, S.; Ge, C.R.; Kong, X.M.; Fu, M.; Zhuang, Z.H.; Li, X.Z. Photothermal Catalytic Reduction of CO2 by Cobalt Silicate Heterojunction Constructed from Clay Minerals. Catalysts 2023, 13, 32. [Google Scholar] [CrossRef]
- Mirshokraee, S.A.; Muhyuddin, M.; Morina, R.; Poggini, L.; Berretti, E.; Bellini, M.; Lavacchi, A.; Ferrara, C.; Santoro, C. Upcycling of waste lithium-cobalt-oxide from spent batteries into electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction: A strategy to turn the trash into treasure. J. Power Sources 2023, 557, 232571. [Google Scholar] [CrossRef]
- Rahmawati, F.; Yuliati, L.; Alaih, I.S.; Putri, F.R. Carbon rod of zinc-carbon primary battery waste as a substrate for CdS and TiO2 photocatalyst layer for visible light driven photocatalytic hydrogen production. J. Environ. Chem. Eng. 2017, 5, 2251–2258. [Google Scholar] [CrossRef]
- Tian, B.Y.; Zhao, W.X.; Cui, Y.C.; Chu, H.C.; Qi, S.Y.; Wang, J.; Xin, B.P. Utilizing waste Zn-Mn batteries in combination with waste SCR catalyst to construct a magnetically recoverable and highly photocatalytic materials. Chem. Phys. Lett. 2022, 796, 139530. [Google Scholar] [CrossRef]
- Zuo, S.X.; Zhang, H.G.; Li, X.Z.; Han, C.Y.; Yao, C.; Ni, C.Y. Dual Active Sites Boosting Photocatalytic Nitrogen Fixation over Upconversion Mineral Nanocomposites under the Full Spectrum. ACS Sustain. Chem. Eng. 2022, 10, 1440–1450. [Google Scholar] [CrossRef]
- Gao, R.R.; Zhang, Y.Y.; Han, C.Y.; Gui, H.G.; Yao, C.; Ni, C.Y.; Li, X.Z. Integrating biomass and minerals into photocatalysts for efficient photocatalytic N2 fixation coupled with biomass conversion. Green Chem. 2023, 25, 8706–8717. [Google Scholar] [CrossRef]
- Cao, G.B.; Xing, H.R.; Gui, H.G.; Yao, C.; Chen, Y.J.; Chen, Y.S.; Li, X.Z. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Res. 2024, 17, 5061–5072. [Google Scholar] [CrossRef]
- Yan, Z.R.; Liu, Q.H.; Liang, L.X.; Ouyang, J. Surface hydroxyls mediated CO2 methanation at ambient pressure over attapulgite-loaded Ni-TiO2 composite catalysts with high activity and reuse ability. J. CO2 Util. 2021, 47, 101489. [Google Scholar] [CrossRef]
- Guo, B.Y.; Ma, J.F.; Shi, Y.C.; Zheng, K.W.; Wu, M.H.; Ren, G.F.; Komarneni, S. Co3O4/CoO ceramic catalyst: Bisulfite assisted catalytic degradation of methylene blue. Ceram. Int. 2021, 47, 27617–27623. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Mariappan, R.; Bakkiyaraj, R.; Santhosh, S. Comprehensive characterization and electrochemical performance of Fe-doped Co3O4 nanoparticles for energy storage applications. Ionics 2023, 29, 5039–5053. [Google Scholar] [CrossRef]
- Zhang, J.H.; Guan, B.; Wu, X.Z.; Chen, Y.J.; Guo, J.F.; Ma, Z.R.; Bao, S.B.; Jiang, X.; Chen, L.; Shu, K.Y.; et al. Research on photocatalytic CO2 conversion to renewable synthetic fuels based on localized surface plasmon resonance: Current progress and future perspectives. Catal. Sci. Technol. 2023, 13, 1932–1975. [Google Scholar] [CrossRef]
- Yang, F.; Lu, Y.T.; Liu, M.T.; Yang, S.Q.; Tu, W.L.; Zhang, W.X.; Zhu, C.Z.; Guo, Z.J.; Yuan, A.H. Carbon-framework-encapsulated CoMn2O4 spinel derived from electrospun nanofiber coupling via the photothermal approach reinforces PMS activation to eliminate 2,4-dichlorophenol. Mater. Chem. Front. 2022, 6, 2810–2825. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.Y.; Yan, Z.Q.; Xu, C.Q.; Zhang, W.M.; Ban, H.Y.; Li, C.M. Electrochemical impedance spectroscopy (EIS) under illumination, along with photocurrent response, was employed to elucidate the photoinduced electron transfer effects. J. Catal. 2022, 412, 10–20. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, Y.F.; Pei, X.Y.; Dong, X.Y.; Kou, Z.K.; Cui, M.; Meng, C.G. Dispersed FeOx nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. J. Colloid Interface Sci. 2022, 611, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Q.; Liu, W.; Cao, L.X.; Su, G.; Xu, H.M.; Liu, B.H. Graphene incorporated nanocrystalline TiO2 films for the photocathodic protection of 304 stainless steel. Appl. Surf. Sci. 2013, 283, 498–504. [Google Scholar] [CrossRef]
- Dabaro, M.D.; Appiah-Ntiamoah, R.; Guye, M.E.; Kim, H. PAN-templated synthesis of layered Co3O4 nanosheets for rapid reduction of 4-NP to 4-AP: Improved formation of unique Co3+-rich (440) facet on the crystal lattice of Co3O4. J. Environ. Chem. Eng. 2023, 11, 111496. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.D.; Zhai, W.F.; Liu, H.; Sakthivel, T.; Guo, S.W.; Dai, Z.F. Metastabilizing the ruthenium clusters by interfacial oxygen vacancies for boosted water splitting electrocatalysis. Adv. Energy Mater. 2024, 14, 2400059. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.D.; Li, L.; Sakthivel, T.; Guo, Z.X.; Dai, Z.F. Intensifying the supported ruthenium metallic bond to boost the interfacial hydrogen spillover toward pH-universal hydrogen evolution catalysis. Adv. Funct. Mater. 2024, 34, 2401452. [Google Scholar] [CrossRef]
- Li, X.R.; Wang, X.T.; Nan, Y.B.; Sun, Y.A.; Xu, H.; Chi, L.F.; Huang, Y.L.; Duan, J.Z.; Hou, B.R. Effect of Co3O4/TiO2 heterojunction photoanode with enhanced photocathodic protection on 304 stainless steel under visible light. Colloid Surf. A Physicochem. Eng. Asp. 2023, 664, 131150. [Google Scholar] [CrossRef]
- Guo, M.; Wang, Z.Q.; Wu, X.L.; Qiu, J.Q.; Gu, L.L.; Yang, Z.Q. Constructing Bi2MoO6/Pomelo-peel-derived carbon 0D/3D heterojunctions to enhance photothermal catalytic CO2 reduction in full solar spectrum. ACS Appl. Energy Mater. 2023, 6, 2863–2876. [Google Scholar] [CrossRef]
- Bian, H.; Liu, T.F.; Li, D.; Xu, Z.; Lian, J.H.; Chen, M.; Yan, J.Q.; Liu, S.Z.F. Unveiling the effect of interstitial dopants on CO2 activation over CsPbBr3 catalyst for efficient photothermal CO2 reduction. Chem. Eng. J. 2022, 435, 135071. [Google Scholar] [CrossRef]
- Yang, P.J.; Wang, R.R.; Tao, H.L.; Zhang, Y.F.; Titirici, M.M.; Wang, X.C. Cobalt nitride anchored on nitrogen-rich carbons for efficient carbon dioxide reduction with visible light. Appl. Catal. B-Environ. 2021, 280, 119454. [Google Scholar] [CrossRef]
- Sun, M.Y.; Zhao, B.H.; Chen, F.P.; Liu, C.B.; Lu, S.Y.; Yu, Y.F.; Zhang, B. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280. [Google Scholar] [CrossRef]
- Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A.Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579. [Google Scholar] [CrossRef] [PubMed]
- Alhogbi, B.G.; Aslam, M.; Hameed, A.; Qamar, M.T. The efficacy of Co3O4 loaded WO3 sheets for the enhanced photocatalytic removal of 2,4,6-trichlorophenol in natural sunlight exposure. J. Hazards Mater. 2020, 397, 122835. [Google Scholar] [CrossRef] [PubMed]
Element | Co | Li | Ti |
---|---|---|---|
Content/wt% | 49.69 | 6.11 | 2.94 |
Samples (wt%) | H-ATP/Co(Ti)O-10% | H-ATP/Co(Ti)O-20% | H-ATP/Co(Ti)O-30% | H-ATP/Co(Ti)O-40% | H-ATP/Co(Ti)O-50% |
---|---|---|---|---|---|
SiO2 | 84.21% | 74.91% | 65.55% | 56.18% | 46.82% |
Co3O4 | 6.34% | 13.06% | 19.31% | 24.79% | 32.21% |
TiO2 | 0.37% | 0.65% | 0.98% | 1.34% | 1.65% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, S.; Qin, S.; Xue, B.; Xu, R.; Shi, H.; Lu, X.; Yao, C.; Gui, H.; Li, X. Development of Plasmonic Attapulgite/Co(Ti)Ox Nanocomposite Using Spent Batteries toward Photothermal Reduction of CO2. Molecules 2024, 29, 2865. https://doi.org/10.3390/molecules29122865
Zuo S, Qin S, Xue B, Xu R, Shi H, Lu X, Yao C, Gui H, Li X. Development of Plasmonic Attapulgite/Co(Ti)Ox Nanocomposite Using Spent Batteries toward Photothermal Reduction of CO2. Molecules. 2024; 29(12):2865. https://doi.org/10.3390/molecules29122865
Chicago/Turabian StyleZuo, Shixiang, Shan Qin, Bing Xue, Rong Xu, Huiting Shi, Xiaowang Lu, Chao Yao, Haoguan Gui, and Xiazhang Li. 2024. "Development of Plasmonic Attapulgite/Co(Ti)Ox Nanocomposite Using Spent Batteries toward Photothermal Reduction of CO2" Molecules 29, no. 12: 2865. https://doi.org/10.3390/molecules29122865
APA StyleZuo, S., Qin, S., Xue, B., Xu, R., Shi, H., Lu, X., Yao, C., Gui, H., & Li, X. (2024). Development of Plasmonic Attapulgite/Co(Ti)Ox Nanocomposite Using Spent Batteries toward Photothermal Reduction of CO2. Molecules, 29(12), 2865. https://doi.org/10.3390/molecules29122865