Effective CO2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. Pore Structure Analysis
2.3. SEM and TEM Analysis
2.4. Catalytic Performances toward CO2 Methanation
2.5. H2-TPR and CO2-TPD Analysis
2.6. XPS Analysis
2.7. Characterization of the Used Catalysts
2.8. Catalyst Reaction Mechanism Analysis
3. Experimental
3.1. Catalyst Preparation
3.2. Catalytic Activity Test
3.3. Catalyst Characterization Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohanty, U.S.; Ali, M.; Azhar, M.R.; Al-Yaseri, A.; Keshavarz, A.; Iglauer, S. Current advances in syngas (CO + H2) production through bi-reforming of methane using various catalysts: A review. Int. J. Hydrogen Energy 2021, 46, 32809–32845. [Google Scholar] [CrossRef]
- Ye, R.-P.; Li, Q.; Gong, W.; Wang, T.; Razink, J.J.; Lin, L.; Qin, Y.-Y.; Zhou, Z.; Adidharma, H.; Tang, J.; et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Appl. Catal. B Environ. 2020, 268, 118474. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Xiong, Z.; Liao, C.; Shih, K. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl. Surf. Sci. 2018, 439, 552–559. [Google Scholar] [CrossRef]
- Das, S.; Jangam, A.; Du, Y.; Hidajat, K.; Kawi, S. Highly dispersed nickel catalysts via a facile pyrolysis generated protective carbon layer. Chem. Commun. (Camb.) 2019, 55, 6074–6077. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, S.; Zhao, G.; Yang, H.; Yuan, M.; An, X.; Zhou, H.; Qiao, Y.; Tian, Y. CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance. Int. J. Hydrogen Energy 2018, 43, 239–250. [Google Scholar] [CrossRef]
- Wang, X.; Shi, H.; Kwak, J.H.; Szanyi, J. Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies. ACS Catal. 2015, 5, 6337–6349. [Google Scholar] [CrossRef]
- Xin, J.N.; Cui, H.J.; Cheng, Z.M.; Zhou, Z.M. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Appl. Catal. A Gen. 2018, 554, 95–104. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, M.; Li, S.; Chen, B.; Liu, H.; Han, B. The superiority of Pd2 in CO2 hydrogenation to formic acid. Chem. Sci. 2024, 15, 5525–5530. [Google Scholar] [CrossRef]
- Ocampo, F.; Louis, B.; Roger, A.-C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol–gel method. Appl. Catal. A Gen. 2009, 369, 90–96. [Google Scholar] [CrossRef]
- Panagiotopoulou, P. Methanation of CO2 over alkali-promoted Ru/TiO2 catalysts: II. Effect of alkali additives on the reaction pathway. Appl. Catal. B Environ. 2018, 236, 162–170. [Google Scholar] [CrossRef]
- Guo, Y.; Mei, S.; Yuan, K.; Wang, D.-J.; Liu, H.-C.; Yan, C.-H.; Zhang, Y.-W. Low-Temperature CO2 Methanation over CeO2-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect. ACS Catal. 2018, 8, 6203–6215. [Google Scholar] [CrossRef]
- Xu, J.; Su, X.; Duan, H.; Hou, B.; Lin, Q.; Liu, X.; Pan, X.; Pei, G.; Geng, H.; Huang, Y.; et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J. Catal. 2016, 333, 227–237. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, C.; Liu, H.; Jin, Y.; Zhang, R. Enhanced performance of oxygen vacancies on CO2 adsorption and activation over different phases of ZrO2. Front. Energy 2023, 17, 545–554. [Google Scholar] [CrossRef]
- Lykaki, M.; Mandela, E.; Varvoutis, G.; Lampropoulos, A.; Marnellos, G.E.; Konsolakis, M. State-of-the-art thermocatalytic systems for CH4 and CO production via CO2 hydrogenation: Critical comparison, mechanistic considerations and structure-performance insights. Discov. Chem. Eng. 2024, 4, 11. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; Zhu, M.H.; Han, Y.F. Essential Role of the Support for Nickel-Based CO2 Methanation Catalysts. Acs Catal. 2020, 10, 14581–14591. [Google Scholar] [CrossRef]
- Muroyama, H.; Tsuda, Y.; Asakoshi, T.; Masitah, H.; Okanishi, T.; Matsui, T.; Eguchi, K. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 2016, 343, 178–184. [Google Scholar] [CrossRef]
- Siang, T.J.; Jalil, A.A.; Fatah, N.A.A.; Chung, M.E. Tailoring Rh content on dendritic fibrous silica alumina catalyst for enhanced CO2 capture in catalytic CO2 methanation. J. Environ. Chem. Eng. 2021, 9, 104616. [Google Scholar] [CrossRef]
- Bai, Z.; Li, X.; Ding, L.; Qu, Y.; Chang, X. Artificial Cu-Ni catalyst towards highly efficient nitrate-to-ammonia conversion. Sci. China Mater. 2023, 66, 2329–2338. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Chen, Z.; Zhang, R.; Wen, Q.; He, Z.; Li, M.; Xiong, X. Significant Improvement of Mechanical Properties of SiC-Nanowire-Reinforced SiCf/SiC Composites via Atomic Deposition of Ni Catalysts. Materials 2022, 15, 2900. [Google Scholar] [CrossRef]
- Traitangwong, A.; Guo, X.; Meeyoo, V.; Li, C. xNi/Ni0.05Ce0.20Zr0.75O2 Solid Solution over a CO2 Methanation Reaction. Ind. Eng. Chem. Res. 2020, 59, 13440–13449. [Google Scholar] [CrossRef]
- Kurian, M. Cerium oxide based materials for water treatment—A review. J. Environ. Chem. Eng. 2020, 8, 104439. [Google Scholar] [CrossRef]
- Thammachart, M.; Meeyoo, V.; Risksomboon, T.; Osuwan, S. Catalytic activity of CeO2–ZrO2 mixed oxide catalysts prepared via sol–gel technique: CO oxidation. Catal. Today 2001, 68, 53–61. [Google Scholar] [CrossRef]
- Putna, E.S.; Bunluesin, T.; Fan, X.L.; Gorte, R.J.; Vohs, J.M.; Lakis, R.E.; Egami, T. Ceria flms on zirconia substrates: Models for understanding oxygen-storage properties. Catal. Today 1999, 50, 343–352. [Google Scholar] [CrossRef]
- Muraki, H.; Zhang, G. Design of advanced automotive exhaust catalysts. Catal. Today 2000, 63, 337–345. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhao, Z.; Yang, H.; He, J.; Suib, S.L. Surface redox characters and synergetic catalytic properties of macroporous ceria-zirconia solid solutions. J. Hazard. Mater. 2019, 366, 54–64. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Trovarelli, A. On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion. Catal. Today 2012, 181, 108–115. [Google Scholar] [CrossRef]
- Potdar, H.S.; Deshpande, S.B.; Deshpande, A.S.; Gokhale, S.P.; Date, S.K.; Khollam, Y.B.; Patil, A.J. Preparation of ceria–zirconia (Ce0.75Zr0.25O2) powders by microwave–hydrothermal (MH) route. Mater. Chem. Phys. 2002, 74, 306–312. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Chen, M.; Tang, Z.; Yang, Z.; Hu, J.; Zhang, H. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts-Part I: Effect of nickel content. Fuel Process. Technol. 2019, 192, 227–238. [Google Scholar] [CrossRef]
- Xie, A.; Tao, Y.; Zhang, W.; Duo, X.; Chang, J.; Xue, B.; Luo, S.; Zhou, G. Synthesizing CeO2–NiTiO3/Attapulgite and Investigating the Conversion Rate of NOx, Sulfur Resistance, N2 Selectivity, and Stability of the Catalyst through Applied SCR by Upper-Level Undergraduate Students. J. Chem. Educ. 2020, 97, 1660–1665. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, F.; Xiong, R.; Peng, T.; Ma, Y.; Hu, J.; Xie, L.; Jiang, C. Thermal insulation and flame retardancy of attapulgite reinforced gelatin-based composite aerogel with enhanced strength properties. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106040. [Google Scholar] [CrossRef]
- Yao, H.; Xie, Z.; Li, Z.; Huang, C.; Yuan, Q.; Zheng, X. The relationship between the rheological behavior and interlayer bonding properties of 3D printing cementitious materials with the addition of attapulgite. Constr. Build. Mater. 2022, 316, 125809. [Google Scholar] [CrossRef]
- Italiano, C.; Llorca, J.; Pino, L.; Ferraro, M.; Antonucci, V.; Vita, A. CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides. Appl. Catal. B Environ. 2020, 264, 118494. [Google Scholar] [CrossRef]
- Wierzbicki, D.; Baran, R.; Dębek, R.; Motak, M.; Gálvez, M.E.; Grzybek, T.; Da Costa, P.; Glatzel, P. Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions: Operando X-ray absorption and emission spectroscopy investigation. Appl. Catal. B Environ. 2018, 232, 409–419. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. 2014, 57, 79–144. [Google Scholar] [CrossRef]
- He, X.; Ouyang, J.; Yang, H. Eu2O3-functionalized ZnO/palygorskite. RSC Adv. 2013, 3, 20385–20390. [Google Scholar] [CrossRef]
- Liang, C.; Gao, Z.; Lian, H.; Li, X.; Zhang, S.; Liu, Q.; Dong, D.; Hu, X. Impacts of metal loading in Ni/attapulgite on distribution of the alkalinity sites and reaction intermediates in CO2 methanation reaction. Int. J. Hydrogen Energy 2020, 45, 16153–16160. [Google Scholar] [CrossRef]
- García-Romero, E.; Suárez, M. Sepiolite–palygorskite: Textural study and genetic considerations. Appl. Clay Sci. 2013, 86, 129–144. [Google Scholar] [CrossRef]
- Chen, S.; Miao, C.; Liang, L.; Ouyang, J. Oxygen Vacancies-Mediated CO2 Methanation Over Ni/CeO2–ZrO2 Solid Solutions Assembled on Clay Minerals. Energy Fuels 2022, 36, 8340–8350. [Google Scholar] [CrossRef]
- Xu, L.; Wen, X.; Chen, M.; Lv, C.; Cui, Y.; Wu, X.; Wu, C.-e.; Yang, B.; Miao, Z.; Hu, X. Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel 2020, 282, 118813. [Google Scholar] [CrossRef]
- Ashok, J.; Ang, M.L.; Kawi, S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods. Catal. Today 2017, 281, 304–311. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Q.; Liang, L.; Ouyang, J. Surface hydroxyls mediated CO2 methanation at ambient pressure over attapulgite-loaded Ni-TiO2 composite catalysts with high activity and reuse ability. J. CO2 Util. 2021, 47, 101489. [Google Scholar] [CrossRef]
- Romero-Sáez, M.; Dongil, A.B.; Benito, N.; Espinoza-González, R.; Escalona, N.; Gracia, F. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies. Appl. Catal. B: Environ. 2018, 237, 817–825. [Google Scholar] [CrossRef]
- Guo, M.; Lu, G. The difference of roles of alkaline-earth metal oxides on silica-supported nickel catalysts for CO2 methanation. RSC Adv. 2014, 4, 58171–58177. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. Int. J. Hydrogen Energy 2012, 37, 18001–18020. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Shao, J.; Dai, Y.; Ding, J.; Tang, Z. Attapulgite clay supported Ni nanoparticles encapsulated by porous silica: Thermally stable catalysts for ammonia decomposition to COx free hydrogen. Int. J. Hydrogen Energy 2016, 41, 21157–21165. [Google Scholar] [CrossRef]
- Feng, P.; Huang, K.; Xu, Q.; Qi, W.; Xin, S.; Wei, T.; Liao, L.; Yan, Y. Ni supported on the CaO modified attapulgite as catalysts for hydrogen production from glycerol steam reforming. Int. J. Hydrogen Energy 2020, 45, 8223–8233. [Google Scholar] [CrossRef]
- Charisiou, N.D.; Siakavelas, G.; Tzounis, L.; Sebastian, V.; Monzon, A.; Baker, M.A.; Hinder, S.J.; Polychronopoulou, K.; Yentekakis, I.V.; Goula, M.A. An in depth investigation of deactivation through carbon formation during the biogas dry reforming reaction for Ni supported on modified with CeO2 and La2O3 zirconia catalysts. Int. J. Hydrogen Energy 2018, 43, 18955–18976. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, X.; Rui, N.; Hu, X.; Liu, C.-J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B: Environ. 2019, 244, 159–169. [Google Scholar] [CrossRef]
- Peck, M.A.; Langell, M.A. Comparison of Nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS. Chem. Mater. 2012, 24, 4483–4490. [Google Scholar] [CrossRef]
- Burroughs, P.; Hamnett, A.; Orchard, A.F.; Thornton, G. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J. Chem. Soc. Dalton Trans. 1976, 17, 1686–1698. [Google Scholar] [CrossRef]
- Sukonket, T.; Khan, A.; Saha, B.; Ibrahim, H.; Tantayanon, S.; Kumar, P.; Idem, R. Influence of the Catalyst Preparation Method, Surfactant Amount, and Steam on CO2 Reforming of CH4 over 5Ni/Ce0.6Zr0.4O2 Catalysts. Energy Fuels 2011, 25, 864–877. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, Y.; Wang, S.; Zhao, Q.; Mao, D.; Hu, C. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst. ACS Catal. 2018, 8, 6495–6506. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R.J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl. Catal. B Environ. 2020, 270, 118846. [Google Scholar] [CrossRef]
- Alarcón, A.; Guilera, J.; Soto, R.; Andreu, T. Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2. Appl. Catal. B Environ. 2020, 263, 118346. [Google Scholar] [CrossRef]
- Hernandez Lalinde, J.A.; Roongruangsree, P.; Ilsemann, J.; Bäumer, M.; Kopyscinski, J. CO2 methanation and reverse water gas shift reaction. Kinetic study based on in situ spatially-resolved measurements. Chem. Eng. J. 2020, 390, 124629. [Google Scholar] [CrossRef]
- Ji, Z.; Shen, X.; Yang, J.; Zhu, G.; Chen, K. A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: Green synthesis and catalytic properties. Appl. Catal. B Environ. 2014, 144, 454–461. [Google Scholar] [CrossRef]
- Wu, H.; Yuan, M.; Huang, J.; Li, X.; Wang, Y.; Li, J.; You, Z. CO2 methanation over Ru/12CaO∙7Al2O3 catalysts: Effect of encaged anions on catalytic mechanism. Appl. Catal. A Gen. 2020, 595, 117474. [Google Scholar] [CrossRef]
- Liang, L.; Miao, C.; Chen, S.; Zheng, X.; Ouyang, J. Effective CO2 methanation at ambient pressure over Lanthanides (La/Ce/Pr/Sm) modified cobalt-palygorskite composites. J. CO2 Util. 2022, 63, 102114. [Google Scholar] [CrossRef]
- Miao, C.; Chen, S.; Shang, K.; Liang, L.; Ouyang, J. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane. ACS Appl. Mater. Interfaces 2022, 14, 47616–47632. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | Vpore (cm3/g) | Dpore (nm) |
---|---|---|---|
1Ni-CZA | 127.02 | 0.21 | 5.40 |
5Ni-CZA | 100.47 | 0.18 | 5.64 |
15Ni-CZA | 108.32 | 0.16 | 5.18 |
20Ni-CZA | 103.17 | 0.16 | 5.50 |
15Ni-3CZA | 119.05 | 0.21 | 6.08 |
15Ni-1CZA | 132.33 | 0.28 | 7.52 |
15Ni-0.8CZA | 133.07 | 0.30 | 7.79 |
15Ni-ATP | 116.74 | 0.33 | 11.63 |
15Ni-CZ | 58.30 | 0.07 | 4.20 |
CZ | 63.32 | 0.05 | 3.10 |
Samples | Temperature (°C) | Time on Stream (h) | CO2 Conv. (%) | CH4 Sel. (%) | Ref. |
---|---|---|---|---|---|
45Ni/Ni005CZO | 350 | 100 | 54 | approximately100 | [20] |
Ni/CZ-AE | 275 | 70 | 55 | 99.8 | [40] |
8Ni-TiO2-ATP | 400 | 80 | 55 | 80 | [41] |
Ni/Zr/CNT-COI | 350 | 50 | ≈40 | 95 | [42] |
Ni/Si | 350 | 50 | 59.0 | 95.4 | [43] |
se-Ni/Sr/Si | 350 | 50 | 65.5 | 97.7 | [43] |
se-Ni/Ba/Si | 350 | 50 | 59.7 | 97.7 | [43] |
15Ni-3CZA | 400 | 50 | 68.4 | 97.3 | This work |
15Ni-1CZA | 400 | 50 | 69.0 | 97.4 | This work |
15Ni-0.8CZA | 400 | 50 | 70.8 | 97.5 | This work |
Samples | Peak1/°C | Quantity (mmol/g) | Peak2/°C | Quantity (mmol/g) |
---|---|---|---|---|
15Ni-ATP | 267.2 | 3.35022 | - | - |
15Ni-CZ | 352.2 | 2.19577 | 490.0 | 2.89357 |
15Ni-0.8CZA | 342.9 | 1.93512 | 464.0 | 1.93321 |
Samples | Peak1/°C | Quantity (mmol/g) | Peak2/°C | Quantity (mmol/g) |
---|---|---|---|---|
15Ni-ATP | 87.2 | 0.09601 | 398.2 | 0.88576 |
15Ni-CZ | 92.4 | 0.05382 | 277.6 | 0.15366 |
15Ni-0.8CZA | 98.7 | 0.10319 | 212.6 | 0.10898 |
Samples | Peak3/°C | Quantity (mmol/g) | Peak4/°C | Quantity (mmol/g) |
15Ni-ATP | 585.0 | 1.30504 | - | - |
15Ni-CZ | 483.2 | 0.52515 | - | - |
15Ni-0.8CZA | 383.4 | 0.43050 | 549.3 | 0.68940 |
SiO2 | MgO | Al2O3 | Fe2O3 | CaO | K2O | P2O5 | TiO2 | Na2O | MnO | Others |
---|---|---|---|---|---|---|---|---|---|---|
62.47 | 14.95 | 10.58 | 6.21 | 1.40 | 1.29 | 1.07 | 0.95 | 0.87 | 0.11 | 0.05 |
Samples | Ni (NO3)2•6H2O/g | CZA/g | CZ:ATP | Ni:CZ:ATP |
---|---|---|---|---|
15Ni-3CZA | 0.25 | 0.5 | 3:1 | 0.15:3:1 |
15Ni-1CZA | 0.25 | 0.5 | 1:1 | 0.15:1:1 |
15Ni-0.8CZA | 0.25 | 0.5 | 0.8:1 | 0.15:0.8:1 |
15Ni-CZ | 0.25 | 0.5 | 1:0 | 0.15:1:0 |
15Ni-ATP | 0.25 | 0.5 | 0:1 | 0.15:0:1 |
1Ni-CZA | 0.016 | 0.5 | 6:1 | 0.01:6:1 |
5Ni-CZA | 0.083 | 0.5 | 6:1 | 0.05:6:1 |
15Ni-CZA | 0.25 | 0.5 | 6:1 | 0.15:6:1 |
20Ni-CZA | 0.33 | 0.5 | 6:1 | 0.20:6:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Fu, J.; Peng, Y.; Liang, L.; Ouyang, J. Effective CO2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite. Molecules 2024, 29, 4550. https://doi.org/10.3390/molecules29194550
Chen S, Fu J, Peng Y, Liang L, Ouyang J. Effective CO2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite. Molecules. 2024; 29(19):4550. https://doi.org/10.3390/molecules29194550
Chicago/Turabian StyleChen, Shumei, Jiacheng Fu, Yonghui Peng, Lixing Liang, and Jing Ouyang. 2024. "Effective CO2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite" Molecules 29, no. 19: 4550. https://doi.org/10.3390/molecules29194550
APA StyleChen, S., Fu, J., Peng, Y., Liang, L., & Ouyang, J. (2024). Effective CO2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite. Molecules, 29(19), 4550. https://doi.org/10.3390/molecules29194550