The Use of External Fields (Magnetic, Electric, and Strain) in Molecular Beam Epitaxy—The Method and Application Examples
Abstract
:1. Introduction
2. General Concept of the External Field-Assisted MBE System
2.1. Sample Holders
2.2. Sample Stations, Manipulators, and the Transfer System
2.3. Description of the UHV System
3. Specialized Sample Holders
3.1. Sample Holders with Magnetic Fields
3.1.1. Constant Magnetic Field PTS Adapters
3.1.2. PTS Adapters with Small Electromagnets
3.2. Sample Holders for Electrical Measurements
3.3. Sample Holder for Substrate Bending
4. Application Examples
4.1. Epitaxial Films Grown under a Magnetic Field—Fe3O4(111)/MgO(111) and Fe(001)/MgO(001)
4.2. MOKE—Spin Reorientation Transition in Pt/Co/Pt
4.3. Transport Measurement—In Situ Resistivity of Magnetite Ultrathin Films
4.4. Bending of the Substrate—Induced Uniaxial Anisotropy in Co Films on Gold
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henini, M. (Ed.) Molecular Beam Epitaxy: From Research to Mass Production; Elsevier Science BV: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Guillon, O.; Elsässer, C.; Gutfleisch, O.; Janek, J.; Korte-Kerzel, S.; Raabe, D.; Volkert, C.A. Manipulation of Matter by Electric and Magnetic Fields: Toward Novel Synthesis and Processing Routes of Inorganic Materials. Mater. Today 2018, 21, 527–536. [Google Scholar] [CrossRef]
- Yasunaga, H.; Natori, A. Electromigration on Semiconductor Surfaces. Surf. Sci. Rep. 1992, 15, 205–280. [Google Scholar] [CrossRef]
- Hu, C.K.; Rosenberg, R.; Lee, K.Y. Electromigration Path in Cu Thin-Film Lines. Appl. Phys. Lett. 1999, 74, 2945–2947. [Google Scholar] [CrossRef]
- Hirose, C.; Matsumoto, Y.; Yamamoto, Y.; Koinuma, H. Electric Field Effect in Pulsed Laser Deposition of Epitaxial ZnO Thin Film. Appl. Phys. A Mater. Sci. Process. 2004, 79, 807–809. [Google Scholar] [CrossRef]
- Kumar, A.; Pandya, D.K.; Chaudhary, S. Electric Field Assisted Sputtering of Fe3O4 Thin Films and Reduction in Anti-Phase Boundaries. J. Appl. Phys. 2012, 112, 073909. [Google Scholar] [CrossRef]
- Kumar, A.; Wetterskog, E.; Lewin, E.; Tai, C.W.; Akansel, S.; Husain, S.; Edvinsson, T.; Brucas, R.; Chaudhary, S.; Svedlindh, P. Effect of in Situ Electric-Field-Assisted Growth on Antiphase Boundaries in Epitaxial Fe3O4 Thin Films on MgO. Phys. Rev. Mater. 2018, 2, 054407. [Google Scholar] [CrossRef]
- Zheng, L.X.; Xie, M.H.; Xu, S.J.; Cheung, S.H.; Tong, S.Y. Current-Induced Migration of Surface Adatoms during GaN Growth by Molecular Beam Epitaxy. J. Cryst. Growth 2001, 227–228, 376–380. [Google Scholar] [CrossRef]
- Tomar, V.; Gungor, M.R.; Maroudas, D. Current-Induced Stabilization of Surface Morphology in Stressed Solids. Phys. Rev. Lett. 2008, 100, 036106. [Google Scholar] [CrossRef]
- Kakeshita, T.; Saburi, T.; Shimizu, K. Effects of Hydrostatic Pressure and Magnetic Field on Martensitic Transformations. Mater. Sci. Eng. A 1999, 273–275, 21–39. [Google Scholar] [CrossRef]
- Kim, J.S.; Mohanty, B.C.; Han, C.S.; Han, S.J.; Ha, G.H.; Lin, L.; Cho, Y.S. In Situ Magnetic Field-Assisted Low Temperature Atmospheric Growth of Gan Nanowires via the Vapor-Liquid-Solid Mechanism. ACS Appl. Mater. Interfaces 2014, 6, 116–121. [Google Scholar] [CrossRef]
- Park, J.M.; Sohgawa, M.; Kanashima, T.; Okuyama, M.; Nakashima, S. Preparation of Epitaxial BiFeO3 Thin Films on La-SrTiO3 Substrate by Using Magnetic-Field-Assisted Pulsed Laser Deposition. J. Korean Phys. Soc. 2013, 62, 1041–1045. [Google Scholar] [CrossRef]
- Nilsen, O.; Lie, M.; Foss, S.; Fjellvåg, H.; Kjekshus, A. Effect of Magnetic Field on the Growth of α-Fe2O3 Thin Films by Atomic Layer Deposition. Appl. Surf. Sci. 2004, 227, 40–47. [Google Scholar] [CrossRef]
- Kolotovska, V.; Friedrich, M.; Zahn, D.R.T.; Salvan, G. Magnetic Field Influence on the Molecular Alignment of Vanadyl Phthalocyanine Thin Films. J. Cryst. Growth 2006, 291, 166–174. [Google Scholar] [CrossRef]
- Lim, S.H.; Han, S.H.; Kim, H.J.; Song, S.H.; Lee, D. Formation of Induced Anisotropy in Amorphous Sm–Fe Based Thin Films by Field Sputtering. J. Appl. Phys. 2000, 87, 5801–5803. [Google Scholar] [CrossRef]
- Kuświk, P.; Szymański, B.; Anastaziak, B.; Matczak, M.; Urbaniak, M.; Ehresmann, A.; Stobiecki, F. Enhancement of Perpendicular Magnetic Anisotropy of Co Layer in Exchange-Biased Au/Co/NiO/Au Polycrystalline System. J. Appl. Phys. 2016, 119, 215307. [Google Scholar] [CrossRef]
- Gritsenko, C.; Omelyanchik, A.; Berg, A.; Dzhun, I.; Chechenin, N.; Dikaya, O.; Tretiakov, O.A.; Rodionova, V. Inhomogeneous Magnetic Field Influence on Magnetic Properties of NiFe/IrMn Thin Film Structures. J. Magn. Magn. Mater. 2019, 475, 763–766. [Google Scholar] [CrossRef]
- Wakiya, N.; Kawaguchi, T.; Sakamoto, N.; Das, H.; Shinozaki, K.; Suzuki, H. Progress and Impact of Magnetic Field Application during Pulsed Laser Deposition (PLD) on Ceramic Thin Films. J. Ceram. Soc. Japan 2017, 125, 856–865. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A Perpendicular-Anisotropy CoFeB-MgO Magnetic Tunnel Junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Dziwoki, A.; Blyzniuk, B.; Freindl, K.; Madej, E.; Młyńczak, E.; Wilgocka-Ślęzak, D.; Korecki, J.; Spiridis, N. Magnetic-Field-Assisted Molecular Beam Epitaxy: Engineering of Fe3O4 Ultrathin Films on MgO(111). Materials 2023, 16, 1485. [Google Scholar] [CrossRef]
- Blyzniuk, B.; Dziwoki, A.; Freindl, K.; Kozioł-Rachwał, A.; Madej, E.; Młyńczak, E.; Szpytma, M.; Wilgocka-Ślezak, D.; Korecki, J.; Spiridis, N. Magnetization Reversal in Fe(001) Films Grown by Magnetic Field Assisted Molecular Beam Epitaxy. J. Magn. Magn. Mater. 2023, 586, 171151. [Google Scholar] [CrossRef]
- Dumesnil, K.; Andrieu, S. Epitaxial Magnetic Layers Grown by MBE: Model Systems to Study the Physics in Nanomagnetism and Spintronic, in Molecular Beam Epitaxy: From Research to Mass Production; Henini, M., Ed.; Elsevier Science BV: Amsterdam, The Netherlands, 2013; Chapter 20. [Google Scholar]
- Sander, D. The Correlation between Mechanical Stress and Magnetic Anisotropy in Ultrathin Films. Rep. Prog. Phys. 1999, 62, 809–858. [Google Scholar] [CrossRef]
- Zheng, W.C.; Zheng, D.X.; Wang, Y.C.; Jin, C.; Bai, H.L. Uniaxial strain tuning of the Verwey transition in flexible Fe3O4/muscovite epitaxial heterostructures. Appl. Phys. Lett. 2018, 113, 142403. [Google Scholar] [CrossRef]
- Park, S.; Jang, H.; Kim, J.Y.; Park, B.G.; Koo, T.Y.; Park, J.H. Strain Control of Morin Temperature in Epitaxial α-Fe2O3(0001) Film. Epl 2013, 103, 27007. [Google Scholar] [CrossRef]
- Available online: https://prevac.eu/product/pts-sample-holders-for-up-to-1-inch-samples/ (accessed on 25 May 2024).
- Available online: https://prevac.eu/product/flag-style-sample-holders/ (accessed on 25 May 2024).
- Available online: https://prevac.eu/product/transport-boxes/ (accessed on 25 May 2024).
- Szlachetko, J.; Szade, J.; Beyer, E.; Błachucki, W.; Ciochoń, P.; Dumas, P.; Freindl, K.; Gazdowicz, G.; Glatt, S.; Guła, K.; et al. SOLARIS national synchrotron radiation centre in Krakow, Poland. Eur. Phys. J. Plus 2023, 138, 10. [Google Scholar] [CrossRef]
- Available online: https://prevac.eu/product/4-5-axes-ln2-manipulators/ (accessed on 25 May 2024).
- Available online: https://prevac.eu/product/4-5-axes-ln2-manipulators-for-flag-holders/ (accessed on 25 May 2024).
- Spiridis, N.; Freindl, K.; Wojas, J.; Kwiatek, N.; Madej, E.; Wilgocka-Ślęzak, D.; Dróżdż, P.; Ślęzak, T.; Korecki, J. Superstructures on Epitaxial Fe3O4(111) Films: Biphase Formation versus the Degree of Reduction. J. Phys. Chem. C 2019, 123, 4204–4216. [Google Scholar] [CrossRef]
- Kronast, F.; Schlichting, J.; Radu, F.; Mishra, S.K.; Noll, T.; Dürr, H.A. Spin-resolved photoemission microscopy and magnetic imaging in applied magnetic fields. Surf. Interface Anal. 2010, 42, 1532–1536. [Google Scholar] [CrossRef]
- le Guyader, L.; Kleibert, A.; Fraile Rodríguez, A.; el Moussaoui, S.; Balan, A.; Buzzi, M.; Raabe, J.; Nolting, F. Studying nanomagnets and magnetic heterostructures with X-ray PEEM at the Swiss Light Source. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 371–380. [Google Scholar] [CrossRef]
- Foerster, M.; Prat, J.; Massana, V.; Gonzalez, N.; Fontsere, A.; Molas, B.; Matilla, O.; Pellegrin, E.; Aballe, L. Custom sample environments at the ALBA XPEEM. Ultramicroscopy 2016, 171, 63–69. [Google Scholar] [CrossRef]
- Hild, K.; Emmel, J.; Schönhense, G.; Elmers, H.J. Threshold Photoemission Magnetic Circular Dichroism at the Spin-Reorientation Transition of Ultrathin Epitaxial Pt/Co/Pt(111)/W(110) Films. Phys. Rev. B Condens. Matter Mater. Phys. 2009, 80, 224426. [Google Scholar] [CrossRef]
- Eerenstein, W.; Palstra, T.T.M.; Hibma, T.; Celotto, S. Origin of the increased resistivity in epitaxial Fe3O4 films. Phys. Rev. B 2002, 66, 201101. [Google Scholar] [CrossRef]
- Spiridis, N.; Kisielewski, M.; Maziewski, A.; Slezak, T.; Cyganik, P.; Korecki, J. Correlation of Morphology and Magnetic Properties in Ultrathin Epitaxial Co Films on Au(111). Surf. Sci. 2002, 507–510, 546–552. [Google Scholar] [CrossRef]
- Schaff, O.; Schmid, A.K.; Bartelt, N.C.; de la Figuera, J.; Hwang, R.Q. In-situ STM studies of strain-stabilized thin-film dislocation networks under applied stress. Mater. Sci. Eng. A 2001, 319, 914–918. [Google Scholar] [CrossRef]
Magnetic Field Source | Magnetic Field Type | Magnetic Field Orientation | Magnetic Field Range | Temperature Range |
---|---|---|---|---|
Sm-Co | constant | in-plane | 150 mT | RT |
Sm-Co | constant | in-plane | 130 mT | 120–870 K |
Sm-Co | constant | out-of-plane | 290 mT | RT |
Sm-Co | constant | out-of-plane | 140 mT | 120–870 K |
Coil + Armco | variable | in-plane | ±70 mT | 120–570 K |
Coil + Armco | variable | out-of-plane | ±100 mT | 120–570 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziwoki, A.; Blyzniuk, B.; Freindl, K.; Madej, E.; Młyńczak, E.; Wilgocka-Ślęzak, D.; Korecki, J.; Spiridis, N. The Use of External Fields (Magnetic, Electric, and Strain) in Molecular Beam Epitaxy—The Method and Application Examples. Molecules 2024, 29, 3162. https://doi.org/10.3390/molecules29133162
Dziwoki A, Blyzniuk B, Freindl K, Madej E, Młyńczak E, Wilgocka-Ślęzak D, Korecki J, Spiridis N. The Use of External Fields (Magnetic, Electric, and Strain) in Molecular Beam Epitaxy—The Method and Application Examples. Molecules. 2024; 29(13):3162. https://doi.org/10.3390/molecules29133162
Chicago/Turabian StyleDziwoki, Adam, Bohdana Blyzniuk, Kinga Freindl, Ewa Madej, Ewa Młyńczak, Dorota Wilgocka-Ślęzak, Józef Korecki, and Nika Spiridis. 2024. "The Use of External Fields (Magnetic, Electric, and Strain) in Molecular Beam Epitaxy—The Method and Application Examples" Molecules 29, no. 13: 3162. https://doi.org/10.3390/molecules29133162
APA StyleDziwoki, A., Blyzniuk, B., Freindl, K., Madej, E., Młyńczak, E., Wilgocka-Ślęzak, D., Korecki, J., & Spiridis, N. (2024). The Use of External Fields (Magnetic, Electric, and Strain) in Molecular Beam Epitaxy—The Method and Application Examples. Molecules, 29(13), 3162. https://doi.org/10.3390/molecules29133162