Sustainable Transformation of Two Algal Species of Different Genera to High-Value Chemicals and Bioproducts
Abstract
:1. Introduction
- -
- Scenedesmus species are freshwater algae, which exhibit high growth rates, multiply quickly, adapt easily to changing conditions, and hence are suitable for semi-industrial and industrial cultivation. These algae are high in nutrition and synthesize biologically active substances such as carotenoids, chlorophylls, mycosporin-like amino acids, and polyphenols, with antioxidant and antiviral potential.
- -
- The algae of the genus Porphyridium are representatives of a totally different group of marine deep-sea algae, which are characterized by a pigment composition different from that of green algae. Furthermore, they are rich sources of unique polyunsaturated fatty acids, carotenes, phycobiliproteins, amino acids, and minerals such as Ca, Mg, Zn, and K [7].
- -
- These genera are interesting and challenging in their own right and provide examples of the generic issues to be faced when realizing any one-feed/multi-product biorefinery targeting the sustainable transformation of a biomass to valuables and bioactives with applications in various industries.
2. Results and Discussion
- Biochemical composition
2.1. Extraction Yield
2.1.1. Soxhlet Extractions
2.1.2. Supercritical Fluid Extraction (SFE)
2.2. Extracts Quali- and Quantification
2.2.1. GC-FID
+ 4 × (% tetraenoics) +5 × (% pentaenoics) + 6 × (% hexaenoics)
2.2.2. Analysis and Quantification of Antioxidants
2.2.3. Total Phenolic Content (TPC) and Antioxidant Activity (AA)
- i.
- Both S. obliquus BGP and P. cruentum oils are “best oils” and can be used for biodiesel production without any antioxidants.
- ii.
- P. cruentum oils, regardless of the extraction technique used, can enrich functional foods since they have high levels of PUFAs, which are two- to three-times higher than those found in S. obliquus BGP oils. P. cruentum oil can also serve as a substitute for fish oil because of the high amounts of AA and EPA synthesized.
- iii.
- S. obliquus BGP and P. cruentum oils have commensurable high values of h/H that are in the upper range of the corresponding indices of shellfish and fish. These oils can be used as additives in human nutrition to prevent cardiovascular disease, particularly for people with high blood pressure.
- iv.
- S. obliquus BGP oil obtained through scCO2 extraction with 10% ethanol exhibited the lowest IA of 0.25, which is lower than most red and brown seaweeds as reported in [27]. Therefore, it can be considered a suitable additive to foods or products that can help prevent plaque accumulation and reduce levels of total cholesterol and LDL-C or “bad” cholesterol.
- v.
- TPC and AA analysis of two strains’ oils show the impact of genera and extraction methods. S. obliquus BGP ethanol oil has the highest TPC, over three-times higher than P. cruentum. The lowest IC50 is calculated for P. cruentum ethanol oil—over 4.5-times lower than S. obliquus BGP. The best AA performers are oils from both species obtained by SFE.
3. Materials and Methods
3.1. Microalgal Strains
3.2. Chemicals and Reagents
3.3. Biochemical Analyses
3.4. Microalgal Extracts Recovery
3.4.1. Preliminary Preparation of the Material
3.4.2. Soxhlet Extraction
3.4.3. Supercritical Fluid Extraction
3.5. Characterization and Quantification of the Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaignard, C.; Gargouch, N.; Dubessay, P.; Delattre, C.; Pierre, G.; Laroche, C.; Fendri, I.; Abdelkafi, S.; Michaud, P. New horizons in culture and valorization of red microalgae. Biotechnol. Adv. 2019, 37, 193–222. [Google Scholar] [CrossRef]
- Mobin, S.; Firoz, A. Some promising microalgal species for commercial applications: A review. Energy Procedia 2017, 110, 510–517. [Google Scholar] [CrossRef]
- Koyande, A.; Show, P.; Guo, R.; Tang, B.; Ogino, C.; Chang, J. Bio-processing of algal bio-refinery: A review on current advances and future perspectives. Bioengineered 2019, 10, 574–592. [Google Scholar] [CrossRef]
- Tzima, S.; Georgiopoulou, I.; Louli, V.; Magoulas, K. Recent advances in supercritical CO2 extraction of pigments, lipids and bioactive compounds from microalgae. Molecules 2023, 28, 1410. [Google Scholar] [CrossRef]
- Gallego, R.; Martínez, M.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Development of a green downstream process for the valorization of Porphyridium cruentum biomass. Molecules 2019, 24, 1564. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wang, W.; Chen, Z.; Li, C.; Wu, H.; Wu, H.; Xiang, W. A novel three-step extraction strategy for high-value products from red algae Porphyridium purpureum. Foods 2021, 10, 2164. [Google Scholar] [CrossRef]
- Pignolet, O.; Jubeau, S.; Vaca-Garcia, C.; Michaud, P. Highly valuable microalgae: Biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 2013, 40, 781–796. [Google Scholar] [CrossRef]
- Vasileva, I.; Boyadzhieva, S.; Kalotova, G.; Ivanova, J.; Kabaivanova, L.; Naydenova, G.; Jordanova, M.; Yankov, D.; Stateva, R. A new Bulgarian strain of Scenedesmus sp.—Identification, growth, biochemical composition, and oil recovery. Bulg. Chem. Commun. 2021, 53, 105–116. [Google Scholar] [CrossRef]
- Georgiopoulou, I.; Louli, V.; Magoulas, K. Comparative study of conventional, microwave-assisted and supercritical fluid extraction of bioactive compounds from microalgae: The case of Scenedesmus obliquus. Separations 2023, 10, 290. [Google Scholar] [CrossRef]
- Silva, M.; Martins, M.; Leite, M.; Miliao, G.; Coimbra, J. Microalga Scenedesmus obliquus: Extraction of bioactive compounds and antioxidant activity. Rev. Cienc. Agronom. 2021, 52. [Google Scholar] [CrossRef]
- Khatoon, H.; Rahman, N.; Suleiman, S.; Banerjee, S.; Abol-Munafi, A. Growth and proximate composition of Scenedesmus obliquus and Selenastrum bibraianum cultured in different media and condition. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 251–257. [Google Scholar] [CrossRef]
- Ardiles, P.; Cerezal-Mezquita, P.; Salinas-Fuentes, F.; Órdenes, D.; Renato, G.; Ruiz-Domínguez, M.C. Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes 2020, 8, 1628. [Google Scholar] [CrossRef]
- Becker, E. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical characterization of six microalgae with potential utility for food application. J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Callejón, M.; Medina, A.; Sánchez, M.; Moreno, P.; López, E.; Cerdán, L.; Molina-Grima, E. Supercritical fluid extraction and pressurized liquid extraction processes applied to eicosapentaenoic acid-rich polar lipid recovery from the microalga Nannochloropsis sp. Algal Res. 2022, 61, 102586. [Google Scholar] [CrossRef]
- Gilbert-Lopez, B.; Mendiola, J.; Van Den Broek, L.; Houweling-Tan, B.; Sijtsma, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017, 24, 111–121. [Google Scholar] [CrossRef]
- Guedes, A.; Giao, M.; Matias, A.; Nunes, A.; Pintado, M.; Duarte, C.; Malcata, F. Supercritical fluid extraction of carotenoids and chlorophylls a, b and c, from a wild strain of Scenedesmus obliquus for use in food processing. J. Food Eng. 2013, 116, 478–482. [Google Scholar] [CrossRef]
- Raposo, M.; Morais, A.; Morais, R. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci. 2014, 101, 56–63. [Google Scholar] [CrossRef]
- Feller, R.; Matos, A.; Mazzutti, S.; Moecke, E.; Tres, M.; Derner, R.; Oliveira, J.; Junior, A. Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane. J. Supercrit. Fluids 2018, 133, 437–443. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y.; Zhang, B.; Li, D.; Yan, J.; Yang, J.; Sun, J.; Cao, H.; Wang, Y.; Zhang, F. Effects of different n-6/n-3 polyunsaturated fatty acids ratios on lipid metabolism in patients with hyperlipidemia: A randomized controlled clinical trial. Front. Nutr. 2023, 10, 1166702. [Google Scholar] [CrossRef]
- WHO. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; WHO: Geneva, Switzerland, 2003; pp. 87–88.
- Ander, B.; Dupasquier, C.; Prociuk, M.; Pierce, G.; Faha, F. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol. 2003, 8, 164–172. [Google Scholar]
- Grover, S.; Kumari, P.; Kumar, A.; Soni, A.; Sehgal, S.; Sharma, V. Preparation and quality evaluation of different oil blends. Lett. Appl. NanoBioScience 2021, 10, 2126–2137. [Google Scholar]
- Pinto, T.I.; Coelho, J.A.; Pires, B.I.; Neng, N.R.; Nogueira, J.M.; Bordado, J.C.; Sardinha, J.P. Supercritical carbon dioxide extraction, antioxidant activity, and fatty acid composition of bran oil from rice varieties cultivated in Portugal. Separations 2021, 8, 115. [Google Scholar] [CrossRef]
- Knothe, G.; Dunn, R.O. Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J. Am. Oil Chem. Soc. 2003, 80, 1021–1026. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, M. Assessment of potential of oils for biodiesel production. Renew. Sustain. Energy Rev. 2015, 44, 814–823. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Colombo, M.L.; Giavarini, R.P.F.; De Angelis, L.; Galli, C.; Bolis, C. Marine macroalgae as sources of polyunsaturated fatty acids. Plant Foods Hum. Nutr. 2006, 61, 67–72. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.; Cambero, I.; Santos, C.; Pin, C.; Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Vasileva, I.; Ivanova, J. Biochemical profile of green and red algae–A key for understanding their potential application as food additives. TJS 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Boyadzhieva, S.; Coelho, J.A.P.; Errico, M.; Reynel-Avilla, H.E.; Yankov, D.S.; Bonilla-Petriciolet, A.; Stateva, R.P. Assessment of Gnaphalium viscosum (Kunth) Valorization Prospects: Sustainable Recovery of Antioxidants by Different Techniques. Antioxidants 2022, 11, 2495. [Google Scholar] [CrossRef] [PubMed]
- Momchilova, S.; Kazakova, A.; Taneva, S.; Aleksieva, K.; Mladenova, R.; Karakirova, Y.; Petkova, Z.; Kamenova-Nacheva, M.; Teneva, D.; Denev, P. Effect of Gamma Irradiation on Fat Content, Fatty Acids, Antioxidants and Oxidative Stability of Almonds, and Electron Paramagnetic Resonance (EPR) Study of Treated Nuts. Molecules 2023, 28, 1439. [Google Scholar] [CrossRef] [PubMed]
Extraction Method | Extraction Conditions | S. obliquus BGP | P. cruentum | |
---|---|---|---|---|
Solvent | Temperature (°C) | Extraction Yield (wt %) | Extraction Yield (wt %) | |
Soxhlet | ethanol | 78 | 23.6 ± 1.1 | 26.5 ± 1.15 |
Two-step Soxhlet | n-hexane (step 1) ethanol (step 2) | 68 78 | 11.1 ± 0.5 16.9 ± 0.84 Cumulative yield: 28 | 2.57 ± 0.14 29.52 ± 1.47 Cumulative yield: 32 |
Fatty Acids | Soxhlet extraction | |||||
---|---|---|---|---|---|---|
S. obliquus BGP | P. cruentum | |||||
96% EtOH | First Step n-Hexane | Second Step 96% EtOH | 96% EtOH | First Step n-Hexane | Second Step 96% EtOH | |
C12:0 | traces | 1.0 ± 0.07 | traces | nd | 0.1 ± 0.01 | nd |
C14:0 | 0.2 ± 0.01 | 0.5 ± 0.03 | 0.2 ± 0.01 | 0.3 ± 0.02 | 0.3 ± 0.01 | 0.2 ± 0.01 |
C15:0 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.3 ± 0.03 | 0.2 ± 0.01 | 0.2 ± 0.02 |
C16:0 | 22.3 ± 0.7 | 18.8 ± 0.6 | 24.1 ± 0.9 | 37.8 ± 0.9 | 23.6 ± 0.7 | 33.9 ± 0.8 |
C16:1-isom | 5.0 ± 0.5 | 3.8 ± 0.1 | 5.7 ± 0.6 | 1.7 ± 0.1 | 1.2 ± 0.09 | 1.6 ± 0.1 |
C16:2 | 3.1 ± 0.1 | 2.6 ± 0.2 | 3.6 ± 0.5 | nd | 0.2 ± 0.01 | 0.2 ± 0.01 |
C16:3 | 3.0 ± 0.4 | 2.4 ± 0.2 | 3.5 ± 0.4 | nd | nd | nd |
C16:4 | 2.4 ± 0.2 | 1.7 ± 0.1 | 3.0 ± 0.3 | nd | nd | nd |
C17:0 | 0.2 ± 0.02 | 0.2 ± 0.01 | 0.3 ± 0.02 | 0.2 ± 0.01 | 0.2 ± 0.02 | 0.1 ± 0.01 |
C18:0 | 2.7 ± 0.3 | 3.2 ± 0.4 | 2.2 ± 0.3 | 1.0 ± 0.1 | 0.9 ± 0.03 | 0.6 ± 0.02 |
C18:1 (n-9) | 32.8 ± 0.7 | 38.7 ± 0.9 | 27.6 ± 0.8 | 3.5 ± 0.4 | 4.5 ± 0.5 | 2.5 ± 0.3 |
C18:1 (n-7) | 0.7 ± 0.02 | 0.6 ± 0.01 | 0.8 ± 0.03 | 1.3 ± 0.5 | 0.7 ± 0.03 | 0.7 ± 0.03 |
C18:2 (n-6) | 14.3 ± 0.5 | 13.5 ± 0.4 | 14.8 ± 0.4 | 15.2 ± 0.5 | 21.2 ± 0.5 | 14.9 ± 0.6 |
C18:3 (n-6) | 0.8 ± 0.04 | 0.6 ± 0.02 | 1.0 ± 0.04 | 0.2 ± 0.01 | 0.5 ± 0.03 | 0.3 ± 0.03 |
C18:3 (n-3) | 9.5 ± 0.8 | 9.1 ± 0.7 | 9.9 ± 0.8 | 0.5 ± 0.02 | 0.3 ± 0.01 | 0.3 ± 0.01 |
C18:4 | 1.9 ± 0.1 | 1.9 ± 0.2 | 2.0 ± 0.2 | nd | nd | nd |
C20:0 | 0.1 ± 0.01 | 0.1 ± 0.01 | 0.1 ± 0.01 | nd | nd | nd |
C20:1 | 0.3 ± 0.01 | 0.4 ± 0.03 | 0.4 ± 0.01 | 0.2 ± 0.01 | nd | nd |
C20:2 | nd | nd | nd | 2.6 ± 0.3 | 1.0 ± 0.4 | 1.7 ± 0.5 |
C20:3-isom | nd | nd | nd | 1.9 ± 0.3 | 2.2 ± 0.7 | 1.5 ± 0.4 |
C20:4 | nd | nd | nd | 23.6 ± 0.8 | 34.8 ± 0.9 | 31.4 ± 0.9 |
C20:5 | nd | nd | nd | 9.7 ± 0.6 | 8.1 ± 0.5 | 9.9 ± 0.9 |
C22:0 | 0.2 ± 0.01 | 0.6 ± 0.04 | 0.3 ± 0.01 | nd | nd | nd |
C22:1 | 0.4 ± 0.01 | 0.2 ± 0.01 | 0.4 ± 0.02 | nd | nd | nd |
SFA | 25.8 | 24.5 | 27.3 | 39.6 | 25.3 | 35.0 |
MUFA | 39.2 | 43.7 | 34.9 | 6.7 | 6.4 | 4.8 |
DUFA | 17.4 | 16.1 | 18.4 | 17.8 | 22.4 | 16.8 |
PUFA | 17.6 | 15.7 | 19.4 | 35.9 | 45.9 | 43.4 |
PUFA:SFA | 1.03 | 1.02 | 1.04 | 1.36 | 2.69 | 1.71 |
Fatty Acids | S. obliquus BGP | P. cruentum |
---|---|---|
400 Bar, 40 °C, 10% EtOH | 400 Bar, 40 °C, 10% EtOH | |
C12:0 | nd | 0.7 ± 0.03 |
C14:0 | 0.2 ± 0.01 | 0.4 ± 0.01 |
C15:0 | 0.1 ± 0.01 | 0.3 ± 0.02 |
C16:0 | 18.6 ± 0.4 | 29.0 ± 0.6 |
C16:1-isom | 2.9 ± 0.2 | 1.2 ± 0.1 |
C16:2 | 2.5 ± 0.1 | nd |
C16:3 | 3.7 ± 0.3 | nd |
C16:4 | 5.9 ± 0.3 | nd |
C17:0 | 0.1 ± 0.01 | 0.2 ± 0.01 |
C18:0 | 1.6 ± 0.09 | 1.1 ± 0.09 |
C18:1 (n-9) | 28.6 ± 0.7 | 3.3 ± 0.3 |
C18:1 (n-7) | 0.9 ± 0.07 | 0.8 ± 0.05 |
C18:2 (n-6) | 11.6 ± 0.3 | 17.5 ± 0.4 |
C18:3 (n-6) | 0.4 ± 0.03 | 0.3 ± 0.02 |
C18:3 (n-3) | 19.1 ± 0.8 | 0.2 ± 0.01 |
C18:4 | 2.2 ± 0.09 | nd |
C20:0 | 0.1 ± 0.01 | nd |
C20:1 | 0.3 ± 0.01 | nd |
C20:2 | nd | 2.1 ± 0.3 |
C20:3-isom | nd | 2.2 ± 0.3 |
C20:4 | nd | 29.0 ± 0.8 |
C20:5 | nd | 11.7 ± 0.5 |
C22:0 | 0.7 ± 0.03 | nd |
C22:1 | 0.3 ± 0.02 | nd |
C24:0 | 0.2 ± 0.01 | nd |
SFA | 21.6 | 31.7 |
MUFA | 33.0 | 5.3 |
DUFA | 14.1 | 19.6 |
PUFA | 31.3 | 43.4 |
PUFA:SFA | 1.54 | 1.99 |
Oil Parameters and Indices | Soxhlet Extraction | |||||
---|---|---|---|---|---|---|
S. obliquus BGP | P. cruentum | |||||
96% EtOH | First Step n-Hexane | Second Step 96% EtOH | 96% EtOH | First Step n-Hexane | Second Step 96% EtOH | |
OX | 0.26 | 0.34 | 0.37 | 0.17 | 0.23 | 0.16 |
APE | 1.16 | 1.25 | 1.08 | 0.41 | 0.54 | 0.37 |
BAPE | 0.35 | 0.33 | 0.37 | 0.17 | 0.23 | 0.16 |
OSI | 3.89 | 3.90 | 3.89 | 3.90 | 3.90 | 3.90 |
UI | 131.1 | 126.6 | 134.9 | 193 | 239.9 | 219.8 |
h/H | 2.58 | 3.24 | 2.23 | 1.47 | 3.03 | 1.8 |
IA | 0.31 | 0.29 | 0.34 | 0.65 | 0.33 | 0.53 |
Oil Parameters | S. obliquus BGP | P. cruentum |
---|---|---|
400 Bar, 40 °C, 10% EtOH | 400 Bar, 40 °C, 10% EtOH | |
OX | 0.51 | 0.19 |
APE | 1.21 | 0.45 |
BAPE | 0.51 | 0.19 |
OSI | 3.89 | 3.9 |
UI | 163.2 | 227.1 |
h/H | 3.22 | 2.21 |
IA | 0.25 | 0.46 |
Species | Extraction Method | h/H = (cis-C18:1 + ΣPUFA)/(C12:0 + C14:0+ C16:0) |
---|---|---|
S. obliquus BGP | Soxhlet 96% ethanol | 2.27 |
Soxhlet n-hexane (first-step) | 2.71 | |
Soxhlet 96% ethanol second step after n-hexane | 1.96 | |
400 bar, 60 °C, 10% ethanol | 3.23 | |
P. cruentum | Soxhlet 96% ethanol | 1.07 |
Soxhlet n-hexane (first-step) | 2.13 | |
Soxhlet 96% ethanol second step after n-hexane | 1.37 | |
400 bar, 40 °C, 10% ethanol | 1.58 |
Compound Identified | S. obliquus BGP | P. cruentum | ||||
---|---|---|---|---|---|---|
Soxhlet 96% Ethanol | Soxhlet 96% Ethanol Second Step after n-Hexane | 400 Bar, 60 °C, 10% Ethanol | Soxhlet 96% Ethanol | Soxhlet 96% Ethanol Second Step after n-Hexane | 400 Bar, 40 °C, 10% Ethanol | |
ng/mg | ||||||
Phenolic acids | ||||||
Hydroxycinnamic and caffeoylquinic acid derivatives | ||||||
o-coumaric acid | 4.171 | 4.143 | 3.931 | 3.470 | 4.242 | 4.340 |
p-coumaric acid | 0.242 | 0.148 | 0.040 | 0.550 | 0.061 | 0.262 |
m-coumaric acid | 4.439 | 4.748 | 4.571 | 5.216 | 2.269 | 4.613 |
ferulic acid | 0.221 | 0.458 | 0.412 | 17.030 | 2.164 | 1.246 |
cinnamic acid | 2.934 | 1.633 | 3.275 | 0.559 | 9.769 | 2.026 |
3-O-caffeoylquinic (chlorogenic) acid | 0.085 | 0.415 | 0.393 | 2.245 | 0.764 | 0.546 |
Hydroxybenzoic acid derivatives | ||||||
gallic acid | 0.014 | 0.072 | 0.046 | 0.026 | 0.041 | 0.012 |
vanillic acid | 2.880 | 167.174 | 14.911 | n.d. | 9.114 | 7.287 |
ellagic acid | 3.206 | 0.471 | 0.839 | 0.281 | 0.394 | 0.530 |
gentisic acid | 0.226 | 1.778 | 0.578 | 2.519 | 0.091 | 0.093 |
protocatechinic acid | 0.602 | 0.453 | 0.118 | 2.265 | 0.111 | 0.192 |
o-hydroxybenzoic acid | 4.964 | 5.433 | 4.459 | 10.913 | 3.254 | 5.702 |
m-hydroxybenzoic acid | 0.060 | 1.279 | 1.786 | 0.792 | 0.463 | 0.841 |
syringic acid | 0.246 | 0.063 | 1.130 | 2.696 | 1.122 | 0.210 |
3-OH-4-methoxybenzoic acid | 2.773 | 94.075 | 12.126 | 2.011 | 8.290 | 2.744 |
Flavonoids | ||||||
Flavonols | ||||||
quercetin | 0.603 | 0.180 | 0.724 | 0.084 | 0.093 | 0.160 |
myrecitrin | 0.123 | 0.012 | 0.126 | 0.016 | 0.045 | 0.016 |
myrecitin | 0.483 | 0.356 | 0.435 | 0.041 | 0.266 | 0.799 |
rutin | 2.700 | 4.597 | 4.925 | 4.025 | 5.867 | 4.559 |
resveratrol | 0.174 | 0.202 | 0.220 | 0.232 | 0.190 | 0.091 |
kaempferol | 0.607 | 0.101 | 1.986 | 0.163 | 0.053 | 0.120 |
kaempferol-3-O-glycoside | 31.063 | 13.782 | 99.507 | 22.810 | 0.974 | 21.391 |
fisetin | 0.482 | 0.066 | 0.105 | 0.204 | 0.015 | 0.024 |
Flavones | ||||||
luteolin | 0.648 | 0.103 | 0.199 | 0.100 | 0.051 | 0.105 |
apigenin | 0.443 | 0.049 | 0.910 | 0.081 | 0.039 | 0.067 |
Flavan-3-ols | ||||||
catechin | n.d. | 0.066 | 0.042 | 0.052 | 0.398 | 0.156 |
epicatechin | 0.052 | 0.118 | 0.043 | 0.059 | 3.590 | 0.108 |
Flavanones | ||||||
hisperidin | 0.123 | 0.012 | 0.003 | 0.003 | 0.001 | 0.004 |
naringenin | 0.166 | 0.006 | 0.086 | 0.040 | 0.002 | 0.003 |
Species | Extraction Method | TPC | DPPH | |
---|---|---|---|---|
Quercetin eq. [μg/mg] | Trolox eq. [mM] | IC50 mg Extract | ||
S. obliquus BGP | Soxhlet 96% ethanol | 409.59 ± 7.42 | 1.81 | 2.65 |
Soxhlet 96% ethanol second step after n-hexane | 155.85 ± 0.40 | 1.58 | 1.42 | |
400 bar, 60 °C, 10% ethanol | 255.73 ± 6.33 | 1.98 | 3.52 | |
P. cruentum | Soxhlet 96% ethanol | 134.40 ± 0.80 | 1.38 | 0.31 |
Soxhlet 96% ethanol second step after n-hexane | 162.45 ± 3.40 | 1.09 | - | |
400 bar, 40 °C, 10% ethanol | 182.09 ± 8.08 | 1.89 | 2.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsvetanova, F.V.; Boyadzhieva, S.S.; Coelho, J.A.P.; Yankov, D.S.; Stateva, R.P. Sustainable Transformation of Two Algal Species of Different Genera to High-Value Chemicals and Bioproducts. Molecules 2024, 29, 156. https://doi.org/10.3390/molecules29010156
Tsvetanova FV, Boyadzhieva SS, Coelho JAP, Yankov DS, Stateva RP. Sustainable Transformation of Two Algal Species of Different Genera to High-Value Chemicals and Bioproducts. Molecules. 2024; 29(1):156. https://doi.org/10.3390/molecules29010156
Chicago/Turabian StyleTsvetanova, Flora V., Stanislava S. Boyadzhieva, Jose A. Paixão Coelho, Dragomir S. Yankov, and Roumiana P. Stateva. 2024. "Sustainable Transformation of Two Algal Species of Different Genera to High-Value Chemicals and Bioproducts" Molecules 29, no. 1: 156. https://doi.org/10.3390/molecules29010156
APA StyleTsvetanova, F. V., Boyadzhieva, S. S., Coelho, J. A. P., Yankov, D. S., & Stateva, R. P. (2024). Sustainable Transformation of Two Algal Species of Different Genera to High-Value Chemicals and Bioproducts. Molecules, 29(1), 156. https://doi.org/10.3390/molecules29010156