Design and Synthesis of D3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. SAR Study of Flexible Bitopic Ligands towards D2R and D3R
2.3. β-Arrestin Competition Assay
2.4. Molecular Dynamic Simulation (MDS) Studies
3. Discussion
4. Materials and Methods
4.1. Chemistry
General Methods for the Synthesis of 2
4.2. Receptor Binding and β-Arrestin Assays
4.3. Molecular Docking and Molecular Dynamics Simulation (MDS) Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gingrich, J.A.; Caron, M.G. Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 1993, 16, 299–321. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine receptors: From structure to function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef]
- Jackson, D.M.; Westlind-Danielsson, A. Dopamine receptors: Molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther. 1994, 64, 291–370. [Google Scholar] [CrossRef]
- Luedtke, R.R.; Rangel-Barajas, C.; Malik, M.; Reichert, D.E.; H Mach, R. Bitropic D3 dopamine receptor selective compounds s potential antipsychotics. Curr. Pharm. Des. 2015, 21, 3700–3724. [Google Scholar] [CrossRef]
- Sokoloff, P.; Le Foll, B. The dopamine D3 receptor, a quarter century later. Eur. J. Neurosci. 2017, 45, 2–19. [Google Scholar] [CrossRef]
- Keck, T.M.; John, W.S.; Czoty, P.W.; Nader, M.A.; Newman, A.H. Identifying medication targets for psychostimulant addiction: Unraveling the dopamine D3 receptor hypothesis. J. Med. Chem. 2015, 58, 5361–5380. [Google Scholar] [CrossRef]
- Leggio, G.M.; Bucolo, C.; Platania, C.B.M.; Salomone, S.; Drago, F. Current drug treatments targeting dopamine D3 receptor. Pharmacol. Ther. 2016, 165, 164–177. [Google Scholar] [CrossRef]
- Yang, P.; Perlmutter, J.S.; Benzinger, T.L.; Morris, J.C.; Xu, J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res. Rev. 2020, 57, 100994. [Google Scholar] [CrossRef]
- Gurevich, E.V.; Bordelon, Y.; Shapiro, R.M.; Arnold, S.E.; Gur, R.E.; Joyce, J.N. Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia: A postmortem study. Arch. Gen. Psychiatry 1997, 54, 225–232. [Google Scholar] [CrossRef]
- Gurevich, E.V.; Joyce, J.N. Distribution of dopamine D3 receptor expressing neurons in the human forebrain: Comparison with D2 receptor expressing neurons. Neuropsychopharmacology 1999, 20, 60–80. [Google Scholar] [CrossRef]
- Morissette, M.; Goulet, M.; Grondin, R.; Blanchet, P.; Bédard, P.J.; Di Paolo, T.; Lévesque, D. Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: Effects of MPTP and dopamine agonist replacement therapies. Eur. J. Neurosci. 1998, 10, 2565–2573. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cairns, N.J.; Perlmutter, J.S.; Mach, R.H.; Xu, J. Regulation of dopamine D3 receptor in the striatal regions and substantia nigra in diffuse Lewy body disease. Neuroscience 2013, 248, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xu, J.; Cairns, N.J.; Perlmutter, J.S.; Mach, R.H. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS ONE 2012, 7, e49483. [Google Scholar] [CrossRef] [PubMed]
- Ledonne, A.; Mercuri, N.B. Current concepts on the physiopathological relevance of dopaminergic receptors. Front. Cell. Neurosci. 2017, 11, 27. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Fowler, J.S.; Wang, G.-J.; Swanson, J.M. Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Mol. Psychiatry 2004, 9, 557–569. [Google Scholar] [CrossRef]
- Visanji, N.P.; Fox, S.H.; Johnston, T.; Reyes, G.; Millan, M.J.; Brotchie, J.M. Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neurobiol. Dis. 2009, 35, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Mash, D.C.; Staley, J.K. D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Ann. N. Y. Acad. Sci. 1999, 877, 507–522. [Google Scholar] [CrossRef]
- Staley, J.K.; Mash, D.C. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J. Neurosci. Off. J. Soc. Neurosci. 1996, 16, 6100–6106. [Google Scholar] [CrossRef]
- Mukherjee, J.; Christian, B.T.; Dunigan, K.A.; Shi, B.; Narayanan, T.K.; Satter, M.; Mantil, J. Brain imaging of 18F-fallypride in normal volunteers: Blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 2002, 46, 170–188. [Google Scholar] [CrossRef]
- de Paulis, T. The discovery of epidepride and its analogs as high-affinity radioligands for imaging extrastriatal dopamine D2 receptors in human brain. Curr. Pharm. Des. 2003, 9, 673–696. [Google Scholar] [CrossRef]
- Elsinga, P.H.; Hatano, K.; Ishiwata, K. PET tracers for imaging of the dopaminergic system. Curr. Med. Chem. 2006, 13, 2139–2153. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.H.; Vyas, N.S.; Puri, B.K.; Nijran, K.S.; Al-Nahhas, A. Positron emission tomography in schizophrenia: A new perspective. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2010, 51, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Fowler, J.S.; Wang, G.-J.; Dewey, S.L.; Schlyer, D.; MacGregor, R.; Logan, J.; Alexoff, D.; Shea, C.; Hitzemann, R. Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain. J. Nucl. Med. 1993, 34, 609–613. [Google Scholar] [PubMed]
- Caravaggio, F.; Porco, N.; Kim, J.; Torres-Carmona, E.; Brown, E.; Iwata, Y.; Nakajima, S.; Gerretsen, P.; Remington, G.; Graff-Guerrero, A. Measuring amphetamine-induced dopamine release in humans: A comparative meta-analysis of [11C]-raclopride and [11C]-(+)-PHNO studies. Synapse 2021, 75, e22195. [Google Scholar] [CrossRef] [PubMed]
- Le Foll, B.; Wilson, A.A.; Graff, A.; Boileau, I.; Di Ciano, P. Recent methods for measuring dopamine D3 receptor occupancy in vivo: Importance for drug development. Front. Pharmacol. 2014, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zakiniaeiz, Y.; Cosgrove, K.P.; Morris, E.D. Toward whole-brain dopamine movies: A critical review of PET imaging of dopamine transmission in the striatum and cortex. Brain Imaging Behav. 2019, 13, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Nord, M.; Farde, L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci. Ther. 2011, 17, 97–103. [Google Scholar] [CrossRef]
- Halldin, C.; Farde, L.; Högberg, T.; Mohell, N.; Hall, H.; Suhara, T.; Karlsson, P.; Nakashima, Y.; Swahn, C.-G. Carbon-11-FLB 457: A radioligand for extrastriatal D2 dopamine receptors. J. Nucl. Med. 1995, 36, 1275–1281. [Google Scholar]
- Galineau, L.; Wilson, A.A.; Garcia, A.; Houle, S.; Kapur, S.; Ginovart, N. In vivo characterization of the pharmacokinetics and pharmacological properties of [11C]-(+)-PHNO in rats using an intracerebral beta-sensitive system. Synapse 2006, 60, 172–183. [Google Scholar] [CrossRef]
- Payer, D.; Balasubramaniam, G.; Boileau, I. What is the role of the D3 receptor in addiction? A mini review of PET studies with [11C]-(+)-PHNO. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 52, 4–8. [Google Scholar] [CrossRef]
- Vyas, N.S.; Patel, N.H.; Herscovitch, P.; Puri, B.K.; Lanzenberger, R. Recent developments in neurochemical imaging in schizophrenia: An update. Curr. Med. Chem. 2013, 20, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Mach, R.H.; Luedtke, R.R. Challenges in the development of dopamine D2-and D3-selective radiotracers for PET imaging studies. J. Label. Compd. Radiopharm. 2018, 61, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Li, S.; Cui, J.; Xu, J.; Taylor, M.; Ho, D.; Luedtke, R.R.; Mach, R.H. Synthesis and pharmacological evaluation of fluorine-containing D3 dopamine receptor ligands. J. Med. Chem. 2011, 54, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Mugnaini, M.; Iavarone, L.; Cavallini, P.; Griffante, C.; Oliosi, B.; Savoia, C.; Beaver, J.; Rabiner, E.A.; Micheli, F.; Heidbreder, C. Occupancy of brain dopamine D3 receptors and drug craving: A translational approach. Neuropsychopharmacology 2013, 38, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Levant, B.; Jiang, C.; Keck, T.M.; Newman, A.H.; Wang, S. Tranylcypromine substituted cis-hydroxycyclobutylnaphthamides as potent and selective dopamine D3 receptor antagonists. J. Med. Chem. 2014, 57, 4962–4968. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, J.Y.; Hsieh, C.-J.; Taylor, M.; Luedtke, R.R.; Mach, R.H. Design and Synthesis of Conformationally Flexible Scaffold as Bitopic Ligands for Potent D3-Selective Antagonists. Int. J. Mol. Sci. 2023, 24, 432. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.L.; Hsieh, C.J.; Taylor, M.; Lee, J.Y.; Riad, A.A.; Luedtke, R.R.; Mach, R.H. Synthesis of bitopic ligands based on fallypride and evaluation of their affinity and selectivity towards dopamine D2 and D3 receptors. Eur. J. Med. Chem. 2023, 261, 115751. [Google Scholar] [CrossRef]
- Yang, Z.; Mukherjee, J. N-[(1-Cyclopropylmethyl-2-pyrrolidinyl)methyl]-substituted benzamides: Synthesis and dopamine D-2 and D-3 receptor binding affinities. Med. Chem. Res. 1999, 9, 1–8. [Google Scholar]
- Hsieh, C.-J.; Riad, A.; Lee, J.Y.; Sahlholm, K.; Xu, K.; Luedtke, R.R.; Mach, R.H. Interaction of ligands for PET with the dopamine D3 receptor: In silico and in vitro methods. Biomolecules 2021, 11, 529. [Google Scholar] [CrossRef]
- Hayatshahi, H.S.; Xu, K.; Griffin, S.A.; Taylor, M.; Mach, R.H.; Liu, J.; Luedtke, R.R. Analogues of arylamide phenylpiperazine ligands to investigate the factors influencing D3 dopamine receptor bitropic binding and receptor subtype selectivity. ACS Chem. Neurosci. 2018, 9, 2972–2983. [Google Scholar] [CrossRef]
- Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 2018, 555, 269–273. [Google Scholar] [CrossRef]
- Im, D.; Inoue, A.; Fujiwara, T.; Nakane, T.; Yamanaka, Y.; Uemura, T.; Mori, C.; Shiimura, Y.; Kimura, K.T.; Asada, H. Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone. Nat. Commun. 2020, 11, 6442. [Google Scholar] [CrossRef]
Compounds | Ki ± SEM (nM) | D2R/D3R Ratio e | β-Arrestin Assay IC50 ± SEM (nM) f | CLgP h | |
---|---|---|---|---|---|
D2R c | D3R d | ||||
Fallypride b | 0.02 | 0.19 | 0.1 | 1.7 ± 0.8 g | 3.18 |
(R,S)-trans-2a | 4.8 ± 0.5 | 2.6 ± 0.3 | 1.8 | 0.8 ± 0.5 | 4.25 |
(R,S)-trans-2b | 5.5 ± 1.0 | 1.6 ± 0.4 | 3.4 | 7.8 ± 5.9 | 5.30 |
(R,S)-trans-2c | 15.9 ± 3.3 | 3.4 ± 0.8 | 4.7 | 27.8 ± 21.1 | 6.36 |
(R,S)-trans-2d | 35.6 ± 8.1 | 2.8 ± 0.5 | 12.7 | 21.2 ± 9.8 | 7.42 |
(R,S)-trans-2e | 9.2 ± 0.8 | 4.1 ± 0.6 | 2.2 | ND | 2.50 |
(R,S)-trans-2f | 11.5 ± 2.6 | 5.3 ± 0.8 | 2.2 | ND | 2.33 |
(R,S)-trans-2g | 9.0 ± 0.3 | 3.7 ± 0.8 | 2.4 | ND | 2.96 |
(R,S)-trans-2h | 3.9 ± 0.4 | 0.6 ± 0.1 | 6.2 | ND | 6.37 |
(R,S)-trans-2i | 3.7 ± 0.2 | 0.7 ± 0.1 | 5.6 | ND | 7.43 |
(R,S)-trans-2j | 10.5 ± 2.0 | 2.1 ± 0.1 | 5.0 | ND | 7.43 |
Compounds | Ki ± SEM (nM) | D2R/D3R Ratio e | β-Arrestin Assay IC50 ± SEM (nM) f | ClogP h | |
---|---|---|---|---|---|
D2R c | D3R d | ||||
Fallypride b | 0.02 | 0.19 | 0.1 | 1.7 ± 0.8 g | 3.18 |
(S,R)-trans-2d | 1945 ± 380 | 2628 ± 815 | 0.7 | >1000 | 7.42 |
(S,S)-cis-2d | 164 ± 29 | 282 ± 69 | 5.8 | 608 ± 231 | 7.42 |
(R,R)-cis-2d | 9598 ± 2359 | 1665 ± 433 | 0.5 | >1000 | 7.42 |
(S,R)-trans-2i | 1472 ± 166 | 2416 ± 975 | 0.6 | ND | 7.43 |
(S,S)-cis-2i | 68 ± 12 | 148 ± 37 | 0.6 | ND | 7.43 |
(R,R)-cis-2i | 2190 ± 235 | 722 ± 234 | 3.0 | ND | 7.43 |
Compound | Distance to D3R ASP1103.32 (Å) | Distance to D2R ASP1143.32 (Å) |
---|---|---|
(R,S)-trans-2a | 3.33 ± 0.21 | 3.65 ± 1.06 |
(R,S)-trans-2b | 3.28 ± 0.20 | 3.45 ± 1.01 |
(R,S)-trans-2c | 3.41 ± 0.19 | 9.32 ± 2.20 |
(R,S)-trans-2d | 3.79 ± 0.96 | 4.00 ± 1.55 |
(R,S)-trans-2h | 3.30 ± 0.17 | 4.40 ± 1.74 |
(R,S)-trans-2i | 3.41 ± 0.22 | 3.82 ± 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, G.-L.; Hsieh, C.-J.; Taylor, M.; Lee, J.Y.; Luedtke, R.R.; Mach, R.H. Design and Synthesis of D3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies. Molecules 2024, 29, 123. https://doi.org/10.3390/molecules29010123
Tian G-L, Hsieh C-J, Taylor M, Lee JY, Luedtke RR, Mach RH. Design and Synthesis of D3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies. Molecules. 2024; 29(1):123. https://doi.org/10.3390/molecules29010123
Chicago/Turabian StyleTian, Gui-Long, Chia-Ju Hsieh, Michelle Taylor, Ji Youn Lee, Robert R. Luedtke, and Robert H. Mach. 2024. "Design and Synthesis of D3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies" Molecules 29, no. 1: 123. https://doi.org/10.3390/molecules29010123
APA StyleTian, G. -L., Hsieh, C. -J., Taylor, M., Lee, J. Y., Luedtke, R. R., & Mach, R. H. (2024). Design and Synthesis of D3R Bitopic Ligands with Flexible Secondary Binding Fragments: Radioligand Binding and Computational Chemistry Studies. Molecules, 29(1), 123. https://doi.org/10.3390/molecules29010123