Recovery of Li2CO3 from Spent LiFePO4 by Using a Novel Impurity Elimination Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selective Extraction from SLFP
2.1.1. Effect of Acid Concentration
2.1.2. Effect of Liquid-to-Solid Ratio
2.1.3. Effect of H2O2/H2SO4 Volume Ratio
2.1.4. Effect of Temperature
2.2. Purification of the Extracted Li+-Containing Liquid with Different Alkalis
2.3. Analysis of Recovered Li and Elemental Impurities
2.4. Recovery and Analysis of the Extraction Residue
2.5. LFP Material Regeneration and Tests of Its Performance
3. Experimental Section
3.1. Materials and Characterization
3.2. Experimental Procedure
3.2.1. Analysis of the Components in SLFP
3.2.2. Selective Extraction from SLFP
3.2.3. Purification of the Extracted Li+-Containing Liquid
3.2.4. Precipitation of Li2CO3 and Analysis of Its Impurities
3.2.5. Recycling and Characterization of FePO4
3.2.6. Preparation of Lithium Iron Phosphate and Its Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Makuza, B.; Tian, Q.; Guo, X.; Chattopadhyay, K.; Yu, D. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Source 2021, 491, 229622. [Google Scholar] [CrossRef]
- Sun, L.; Qiu, K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. J. Hazard. Mater. 2011, 194, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Huang, S.; Fu, Z.; Li, C.; Tao, Y.; Tang, H.; Liao, Q.; Wang, Z. Recycling and Echelon Utilization of Used Lithium-Ion Batteries from Electric Vehicles in China. Int. J. Electrochem. Sci 2022, 17, 2. [Google Scholar] [CrossRef]
- Raj, T.; Chandrasekhar, K.; Kumar, A.N.; Sharma, P.; Pandey, A.; Jang, M.; Jeon, B.-H.; Varjani, S.; Kim, S.-H. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. J. Hazard. Mater. 2022, 429, 128312. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, P.; Yao, Q. Electrochemical performance of LiFePO4/C synthesized by sol-gel method as cathode for aqueous lithium ion batteries. J. Alloys Compd. 2018, 741, 404–408. [Google Scholar] [CrossRef]
- He, K.; Zhang, Z.-Y.; Zhang, F.-S. Selectively peeling of spent LiFePO4 cathode by destruction of crystal structure and binder matrix for efficient recycling of spent battery materials. J. Hazard. Mater. 2020, 386, 121633. [Google Scholar] [CrossRef] [PubMed]
- Gangaja, B.; Nair, S.; Santhanagopalan, D. Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium-and sodium-ion batteries. ACS Sustain. Chem. Eng. 2021, 9, 4711–4721. [Google Scholar] [CrossRef]
- Kumar, J.; Neiber, R.R.; Park, J.; Soomro, R.A.; Greene, G.W.; Mazari, S.A.; Seo, H.Y.; Lee, J.H.; Shon, M.; Chang, D.W. Recent progress in sustainable recycling of LiFePO4-type lithium-ion batteries: Strategies for highly selective lithium recovery. Chem. Eng. J. 2022, 431, 133993. [Google Scholar] [CrossRef]
- Jing, Q.; Zhang, J.; Liu, Y.; Zhang, W.; Chen, Y.; Wang, C. Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method. ACS Sustain. Chem. Eng. 2020, 8, 17622–17628. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Dong, P.; Zhang, Y.; Meng, Q.; Zhou, S.; Yang, X.; Zhang, M.; Yang, X. Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping. J. Alloys Compd. 2021, 860, 157909. [Google Scholar] [CrossRef]
- Jie, Y.; Yang, S.; Shi, P.; Chang, D.; Fang, G.; Mo, C.; Ding, J.; Liu, Z.; Lai, Y.; Chen, Y. Thermodynamic Analysis and Experimental Investigation of Al and F Removal from Sulfuric Acid Leachate of Spent LiFePO4 Battery Powder. Metals 2021, 11, 1641. [Google Scholar] [CrossRef]
- He, K.; Zhang, Z.-Y.; Zhang, F.-S. A green process for phosphorus recovery from spent LiFePO4 batteries by transformation of delithiated LiFePO4 crystal into NaFeS2. J. Hazard. Mater. 2020, 395, 122614. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xie, B.; Song, S.; Lei, S.; Sun, W.; Xu, R.; Yang, Y. Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis. Green Chem. 2021, 23, 3963–3971. [Google Scholar] [CrossRef]
- Li, L.; Bian, Y.; Zhang, X.; Yao, Y.; Xue, Q.; Fan, E.; Wu, F.; Chen, R. A green and effective room-temperature recycling process of LiFePO4 cathode materials for lithium-ion batteries. Waste Manag. 2019, 85, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Shen, X.; Li, B.; Liu, H.; Zhao, J. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4. Waste Manag. 2020, 113, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xing, S.; Liu, Y.; Li, F.; Guo, H.; Kuang, G. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain. Chem. Eng. 2017, 5, 8017–8024. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, J.; Zou, J.; Ji, G.; Ye, L.; Li, D.; Zhang, B.; Ou, X. Closed-loop regeneration of LiFePO4 from spent lithium-ion batteries: A “feed three birds with one scone” strategy toward advanced cathode materials. J. Clean. Prod. 2021, 316, 128098. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, J.; Wang, D.; Jing, Q.; Chen, Y.; Wang, C. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation–water leaching at room temperature. Green Chem. 2022, 24, 152–162. [Google Scholar] [CrossRef]
- Ku, H.; Jung, Y.; Jo, M.; Park, S.; Kim, S.; Yang, D.; Rhee, K.; An, E.-M.; Sohn, J.; Kwon, K. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J. Hazard. Mater. 2016, 313, 138–146. [Google Scholar] [CrossRef]
- Jiao, F.; Li, W.; Xue, K.; Yang, C.; Qin, W. Recovery of chromium and magnesium from spent magnesia-chrome refractories by acid leaching combined with alkali precipitation and evaporation. Sep. Purif. Technol. 2019, 227, 115705. [Google Scholar] [CrossRef]
- Lounis, A.; Gavach, C. Treatment of uranium leach solution by electrodialysis for anion impurities removal. Hydrometallurgy 1997, 44, 83–96. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, Z. Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Sep. Purif. Technol. 2018, 206, 335–342. [Google Scholar] [CrossRef]
- Li, H.Y.; Ye, H.; Sun, M.C.; Chen, W.J. Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method. J. Cent. South Univ. 2020, 27, 3239–3248. [Google Scholar] [CrossRef]
- Bian, D.; Sun, Y.; Li, S.; Tian, Y.; Yang, Z.; Fan, X.; Zhang, W. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers. Electrochim. Acta 2016, 190, 134–140. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Zhang, R.; Wang, Y.; Shu, H. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source. Waste Manag. 2018, 78, 208–216. [Google Scholar] [CrossRef]
- Yang, X.-G.; Wang, C.-Y. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. J. Power Source 2018, 402, 489–498. [Google Scholar] [CrossRef]
- Lou, W.B.; Zhang, Y.; Zhang, Y.; Zheng, S.L.; Sun, P.; Wang, X.J.; Qiao, S.; Li, J.Z.; Zhang, Y.; Liu, D.Y.; et al. A facile way to regenerate FePO4∙ 2H2O precursor from spent lithium iron phosphate cathode powder: Spontaneous precipitation and phase transformation in an acidic medium. J. Alloys Compd. 2021, 856, 158148. [Google Scholar] [CrossRef]
- Khan, S.; Milham, P.J.; Eltohamy, K.M.; Jin, Y.; Wang, Z.; Liang, X. Phytate exudation by the roots of Pteris vittata can dissolve colloidal FePO4. Environ.Sci. Pollut. Res. 2022, 29, 13142–13153. [Google Scholar] [CrossRef]
- Fathalla, A.S.; Amin, N.K.; El-Ashtoukhy, E.-S.Z.; Sedahmed, G.H. Heat and Mass Transfer at the Wall of a Square Mechanically Stirred Gas-Liquid-Solid Catalytic Reactor. Chem. Eng. Technol. 2022, 45, 58–66. [Google Scholar] [CrossRef]
- Pangarkar, V.; Yawalkar, A.; Sharma, M.; Beenackers, A. Particle−liquid mass transfer coefficient in two-/three-phase stirred tank reactors. Ind. Eng. Chem. Res. 2002, 41, 4141–4167. [Google Scholar] [CrossRef]
- Gjengedal, E.; Steinnes, E. Uptake of metal ions in moss from artificial precipitation. Environ. Monit. Assess. 1990, 14, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Sis, H.; Uysal, T. Removal of heavy metal ions from aqueous medium using Kuluncak (Malatya) vermiculites and effect of precipitation on removal. Appl. Clay Sci. 2014, 95, 1–8. [Google Scholar] [CrossRef]
- Lepine, E.; Riedl, B.; Wang, X.-M.; Pizzi, A.; Delmotte, L.; Hardy, J.-M.; Da Cruz, M.J.R. Synthesis of bio-adhesives from soybean flour and furfural: Relationship between furfural level and sodium hydroxide concentration. Int. J. Adhes. Adhes. 2015, 63, 74–78. [Google Scholar] [CrossRef]
- Prazeres, A.R.; Luz, S.; Fernandes, F.; Jeronimo, E. Cheese wastewater treatment by acid and basic precipitation: Application of H2SO4, HNO3, HCl, Ca(OH)2 and NaOH. J. Environ. Chem. Eng. 2020, 8, 103556. [Google Scholar] [CrossRef]
- Nie, Z.-R.; Ma, L.-W.; Xi, X.-L. “Complexation–precipitation” metal separation method system and its application in secondary resources. Rare Met. 2014, 33, 369–378. [Google Scholar] [CrossRef]
- Mantoura, R.; Dickson, A.; Riley, J. The complexation of metals with humic materials in natural waters. Estuar. Coast. Shelf Sci. 1978, 6, 387–408. [Google Scholar] [CrossRef]
- Ma, A.; Zheng, X.; Zhang, L.; Peng, J.; Li, Z.; Li, S.; Li, S. Clean recycling of zinc from blast furnace dust with ammonium acetate as complexing agents. Sep. Sci. Technol. 2018, 53, 1327–1341. [Google Scholar] [CrossRef]
- Oswald, S. Binding energy referencing for XPS in alkali metal-based battery materials research (I): Basic model investigations. Appl. Surf. Sci. 2015, 351, 492–503. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller.Nanotub. Carbon Nanostruct. 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Ishizaki, T.; Wada, Y.; Chiba, S.; Kumagai, S.; Lee, H.; Serizawa, A.; Li, O.L.; Panomsuwan, G. Effects of halogen doping on nanocarbon catalysts synthesized by a solution plasma process for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 2016, 18, 21843–21851. [Google Scholar] [CrossRef]
- Povey, A.F.; Sherwood, P.M. Covalent character of lithium compounds studied by X-ray photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 2 1974, 70, 1240–1246. [Google Scholar] [CrossRef]
- Zheng, R.; Zhao, L.; Wang, W.; Liu, Y.; Ma, Q.; Mu, D.; Li, R.; Dai, C. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method. RSC Adv. 2016, 6, 43613–43625. [Google Scholar] [CrossRef]
- Raj, H.; Rani, S.; Sil, A. Two-Phase Composition (LiFePO4/FePO4) and Phase Transformation Dependence on Charging Current: In Situ and Ex Situ Studies. Energy Fuels 2020, 34, 14874–14881. [Google Scholar] [CrossRef]
Liquid | Mass of Li and Elemental Impurities (mg) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Ca | Cu | Fe | K | Mg | Mn | Na | Ni | Pb | Si | Zn | Li | |
Extracted Li+-containing liquid | 1.97 | 0.59 | 0.67 | 0.16 | 0.10 | 0.11 | 1.81 | 0.42 | 0.64 | 0.00 | 0.09 | 0.02 | 103.27 |
Purified Li+-containing liquid | 0.05 | 0.10 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 11.30 | 0.00 | 0.00 | 0.18 | 0.00 | 102.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-L.; Chen, C.; Xiao, H.; Chen, C.-W.; Sun, D. Recovery of Li2CO3 from Spent LiFePO4 by Using a Novel Impurity Elimination Process. Molecules 2023, 28, 3902. https://doi.org/10.3390/molecules28093902
Chen W-L, Chen C, Xiao H, Chen C-W, Sun D. Recovery of Li2CO3 from Spent LiFePO4 by Using a Novel Impurity Elimination Process. Molecules. 2023; 28(9):3902. https://doi.org/10.3390/molecules28093902
Chicago/Turabian StyleChen, Wen-Lan, Chi Chen, Hao Xiao, Cheng-Wei Chen, and Dan Sun. 2023. "Recovery of Li2CO3 from Spent LiFePO4 by Using a Novel Impurity Elimination Process" Molecules 28, no. 9: 3902. https://doi.org/10.3390/molecules28093902
APA StyleChen, W. -L., Chen, C., Xiao, H., Chen, C. -W., & Sun, D. (2023). Recovery of Li2CO3 from Spent LiFePO4 by Using a Novel Impurity Elimination Process. Molecules, 28(9), 3902. https://doi.org/10.3390/molecules28093902