Enhancing Efficiency of Natural Product Structure Revision: Leveraging CASE and DFT over Total Synthesis
Abstract
:1. Introduction
2. Results
2.1. Macahydantoin B
2.2. Clionastatin
2.3. Pyrostatin B (Ectoin)
2.4. Madurastatin C
2.5. Dichomitol
2.6. Samoquasine A
2.7. Palmarumicin B6
2.8. Nocarbenzoxazole G
2.9. Hetiamacin A
2.10. Uniflorine A
2.11. Altechromone A
2.12. Arunicin B
3. Discussion
4. Materials and Methods
4.1. ACD/Structure Elucidator
4.2. DFT Calculations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Snyder, S.A. Chasing molecules that were never there: Misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew. Chem. Int. Ed. 2005, 44, 1012–1044. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.E. Structural revisions of natural products by total synthesis. Nat. Prod. Rep. 2009, 26, 1105–1124. [Google Scholar] [CrossRef] [PubMed]
- Suyama, T.L.; Gerwick, W.H.; McPhail, K.L. Survey of marine natural product structure revisions: A synergy of spectroscopy and chemical synthesis. Bioorg. Med. Chem. 2011, 19, 6675–6701. [Google Scholar] [CrossRef]
- Chhetri, B.K.; Lavoie, S.; Sweeney-Jones, A.M.; Kubanek, J. Recent trends in the structural revision of natural products. Nat. Prod. Rep. 2018, 35, 514–531. [Google Scholar] [CrossRef]
- Ha, M.W.; Kim, J.; Paek, S.-M. Recent Achievements in Total Synthesis for Integral Structural Revisions of Marine Natural Products. Mar. Drugs 2022, 20, 171. [Google Scholar] [CrossRef]
- Shen, S.-M.; Appendino, G.; Guo, Y.-W. Pitfalls in the structural elucidation of small molecules. A critical analysis of a decade of structural misassignments of marine natural products. Nat. Prod. Rep. 2022, 39, 1803–1832. [Google Scholar] [CrossRef] [PubMed]
- Nuzillard, J.-M.; Massiot, G. Logic for structure determination. Tetrahedron 1991, 47, 3655–3664. [Google Scholar] [CrossRef]
- Lindel, T.; Junker, J.; Koeck, M. 2D-NMR-guided constitutional analysis of organic compounds employing the computer program COCON. Eur. J. Org. Chem. 1999, 1999, 573–577. [Google Scholar] [CrossRef]
- Steinbeck, C. SENECA: A Platform-Independent, Distributed, and Parallel System for Computer-Assisted Structure Elucidation in Organic Chemistry. J. Chem. Inf. Comput. Sci. 2001, 41, 1500–1507. [Google Scholar] [CrossRef]
- Wenk, M.; Nuzillard, J.-M.; Steinbeck, C. Sherlock: A Free and Open-Source System for the Computer-Assisted Structure Elucidation of Organic Compounds from NMR Data. Molecules 2023, 28, 1448. [Google Scholar] [CrossRef]
- Mnova, v14.3.0; Mestrelab: Santiago de Compostela, Spain, 2016.
- Kessler, P.; Godejohann, M. Identification of tentative marker in Corvina and Primitivo wines with CMC-se. Magn. Reson. Chem. 2018, 56, 480–492. [Google Scholar] [CrossRef]
- Elyashberg, M.; Williams, A. ACD/Structure Elucidator: 20 Years in the History of Development. Molecules 2021, 26, 6623. [Google Scholar] [CrossRef] [PubMed]
- Buevich, A.V.; Elyashberg, M.E. Synergistic Combination of CASE Algorithms and DFT Chemical Shift Predictions: A Powerful Approach for Structure Elucidation, Verification, and Revision. J. Nat. Prod. 2016, 79, 3105–3116. [Google Scholar] [CrossRef] [PubMed]
- Elyashberg, M.; Novitskiy, I.M.; Bates, R.W.; Kutateladze, A.G.; Williams, C.M. Reassignment of Improbable Natural Products Identified through Chemical Principle Screening. Eur. J. Org. Chem. 2022, 2022, e202200572. [Google Scholar] [CrossRef]
- ACD\Structure Elucidator V.2020.2.1; Advanced Chemistry Development Inc.: Toronto, ON, Canada, 2021.
- Yu, M.-Y.; Qin, X.-J.; Shao, L.-D.; Peng, X.-R.; Li, L.; Yang, H.; Qiu, M.-H. Macahydantoins A and B, two new thiohydantoin derivatives from Maca (Lepidium meyenii): Structural elucidation and concise synthesis of macahydantoin A. Tetrahedron Lett. 2017, 58, 1684–1686, Corrigendum in Tetraheron Lett. 2018, 59, 418. [Google Scholar] [CrossRef]
- Zhou, M.; Ma, H.-Y.; Xing, H.-H.; Li, P.; Li, G.-P.; Geng, H.-C.; Hu, Q.-F.; Yang, G.-Y. Biomimetic Synthesis of Macahydantoins A and B from Lepidium meyenii, and Structure Revision of Macahydantoin B as a Class of Thiohydantoin with a 4-Methyl-hexahydropyrrolo[1,2-c]imidazole Skeleton. Org. Lett. 2017, 19, 4952–4955. [Google Scholar] [CrossRef] [PubMed]
- Elyashberg, M.E.; Blinov, K.A.; Molodtsov, S.G.; Williams, A.J.; Martin, G.E. Fuzzy Structure Generation: A New Efficient Tool for Computer-Aided Structure Elucidation (CASE). J. Chem. Inf. Model. 2007, 47, 1053–1066. [Google Scholar] [CrossRef]
- Fattorusso, E.; Taglialatela-Scafati, O.; Petrucci, F.; Bavestrello, G.; Calcinai, B.; Cerrano, C.; Di Meglio, P.; Ianaro, A. Polychlorinated Androstanes from the Burrowing Sponge Cliona nigricans. Org. Lett. 2004, 6, 1633–1635. [Google Scholar] [CrossRef]
- Tartakoff, S.S.; Vanderwal, C.D. A Synthesis of the ABC Tricyclic Core of the Clionastatins Serves to Corroborate Their Proposed Structures. Org. Lett. 2014, 16, 1458–1461. [Google Scholar] [CrossRef]
- Aoyama, T.; Kojima, F.; Imada, C.; Muraoka, Y.; Naganawa, H.; Okami, Y.; Takexjchi, T.; Aoyagi, T. Pyrostatins A and B, New Inhibitors of N-Acetyl-β-D-Glucosaminidase, Produced by Streptomyces sp. SA-3501. J. Enzym. Inhib. 1995, 8, 223–232. [Google Scholar] [CrossRef]
- Castellanos, L.; Duque, C.; Zea, S.; Espada, A.; Rodríguez, J.; Jiménez, C. Isolation and Synthesis of (−)-(5S)-2-Imino-1-methylpyrrolidine-5- carboxylic Acid from Cliona tenuis: Structure Revision of Pyrostatins. Org. Lett. 2006, 8, 4967–4970. [Google Scholar] [CrossRef]
- Mazzei, E.; Iorio, M.; Maffioli, S.I.; Sosio, M.; Donadio, S. Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J. Antibiot. 2012, 65, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Itoh, M.; Izumikawa, M.; Sakata, N.; Tsuchida, T.; Shin-ya, K. Novel aziridine-containing peptides MBJ-0034 and MBJ-0035 from Streptosporangium sp. 32552. J. Antibiot. 2014, 67, 577–580. [Google Scholar] [CrossRef]
- Tyler, A.R.; Mosaei, H.; Morton, S.; Waddell, P.G.; Wills, C.; McFarlane, W.; Gray, J.; Goodfellow, M.; Errington, J.; Allenby, N.; et al. Structural Reassignment and Absolute Stereochemistry of Madurastatin C1 (MBJ-0034) and the Related Aziridine Siderophores: Madurastatins A1, B1, and MBJ-0035. J. Nat. Prod. 2017, 80, 1558–1562. [Google Scholar] [CrossRef]
- Shaaban, K.A.; Saunders, M.A.; Zhang, Y.; Tran, T.; Elshahawi, S.I.; Ponomareva, L.V.; Wang, X.; Zhang, J.; Copley, G.C.; Sunkara, M.; et al. Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate Streptomyces sp. RM-14-6. J. Nat. Prod. 2017, 80, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Dan, Y.; Huang, Y.; Lin, L.; Li, T.; Ye, W.; Wei, X. Sesquiterpenes from the Mycelial Cultures of Dichomitus squalens. J. Nat. Prod. 2004, 67, 2121–2123. [Google Scholar] [CrossRef] [PubMed]
- Mehta, G.; Pallavi, K. Total synthesis of the putative structure of the novel triquinane based sesquiterpenoid natural product dichomitol. Tetraheron Lett. 2006, 47, 8355–8360. [Google Scholar] [CrossRef]
- Xie, H.-H.; Xu, X.-Y.; Dan, Y.; Wei, X.-Y. Novel Sesquiterpenes from the Mycelial Cultures of Dichomitus squalens. Helvet. Chim. Acta 2011, 94, 868–874. [Google Scholar] [CrossRef]
- Buevich, A.V.; Elyashberg, M.E. Enhancing Computer Assisted Structure Elucidation with DFT analysis of J-couplings. Magn. Reson. Chem. 2020, 58, 594–606. [Google Scholar] [CrossRef]
- Morita, H.; Sato, Y.; Chan, K.-L.; Choo, C.-Y.; Itokawa, H.; Takeya, K.; Kobayashi, J.I. Samoquasine A, a Benzoquinazoline Alkaloid from the Seeds of Annona squamosa. J. Nat. Prod. 2000, 63, 1707–1708. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-L.; Chang, F.-R.; Wu, Y.-C. Total synthesis of 3,4-dihydrobenzo[h]quinazolin-4-one and structure elucidation of perlolidine and samoquasine A. Tetraheron Lett. 2003, 44, 319–322. [Google Scholar] [CrossRef]
- Monsieurs, K.; Tapolcsányi, P.; Loones, K.T.J.; Neumajer, G.; Dirk De Ridder, J.A.; Goubitz, K.; Lemière, G.L.F.; Dommisse, R.A.; Mátyus, P.; Maes, B.U.W. Is samoquasine A indeed benzo[f]phthalazin-4(3H)-one? Unambiguous, straightforward synthesis of benzo[f]phthalazin-4(3H)-one and its regioisomer benzo[f]phthalazin-1(2H)-one. Tetrahedron 2007, 63, 3870–3881. [Google Scholar] [CrossRef]
- Timmons, C.; Wipf, P. Density Functional Theory Calculation of 13C NMR Shifts of Diazaphenanthrene Alkaloids: Reinvestigation of the Structure of Samoquasine A. J. Org. Chem. 2008, 73, 9168–9170. [Google Scholar] [CrossRef]
- Dhoro, F.; Parkin-Gibbs, J.; McIldowie, M.; Skelton, B.W.; Piggott, M.J. Confirmation of the Revised Structure of Samoquasine A and a Proposed Structural Revision of Cherimoline. J. Nat. Prod. 2018, 81, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Tian, J.; Wang, X.; Mou, Y.; Mao, Z.; Lai, D.; Dai, J.; Peng, Y.; Zhou, L.; Wang, M. Bioactive Spirobisnaphthalenes from the Endophytic Fungus Berkleasmium sp. J. Nat. Prod. 2014, 77, 2151–2160. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Zhao, Y.; Lai, D.; Zhou, L.; Liu, Z.; Wang, M. Total Synthesis and Structure Revision of Palmarumycin B6. J. Nat. Prod. 2018, 81, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhang, X.; Hao, H.; Li, W.; Lu, C. Nocarbenzoxazoles A–G, Benzoxazoles Produced by Halophilic Nocardiopsis lucentensis DSM 44048. J. Nat. Prod. 2015, 78, 2123–2127. [Google Scholar] [CrossRef]
- Kim, T.; Lee, S.-A.; Noh, T.; Choi, P.; Choi, S.-J.; Song, B.G.; Kim, Y.; Park, Y.-T.; Huh, G.; Kim, Y.-J.; et al. Synthesis, Structure Revision, and Cytotoxicity of Nocarbenzoxazole G. J. Nat. Prod. 2019, 82, 1325–1330. [Google Scholar] [CrossRef]
- Liu, S.-W.; Jin, J.; Chen, C.; Liu, J.-M.; Li, J.-Y.; Wang, F.-F.; Jiang, Z.-K.; Hu, J.-H.; Gao, Z.-X.; Yao, F.; et al. PJS, a novel isocoumarin with hexahydropyrimidine ring from Bacillus subtilis PJS. J. Antibiot. 2013, 66, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Han, X.; Jiang, Z.; Wu, G.; Hu, X.; You, X.; Jiang, J.; Zhang, Y.; Sun, C. Hetiamacin B–D, new members of amicoumacin group antibiotics isolated from Bacillus subtilis PJS. J. Antibiot. 2016, 69, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, S.; Wang, T.; Jiang, Z.; Lv, K.; Wang, Y.; Sun, C. Total Synthesis of Originally Proposed and Revised Structure of Hetiamacin A. Org. Lett. 2018, 20, 3566–3569. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Kasai, M.; Hayashi, T.; Arisawa, M.; Momose, Y.; Arai, I.; Amagaya, S.; Komatsu, Y. A-glucosidase Inhibitors From Paraguayan Natural Medicine, Ñangapiry, The Leaves Of Eugenia Uniflora. Pharm. Biol. 2000, 38, 302–307. [Google Scholar] [CrossRef]
- Davis, A.S.; Pyne, S.G.; Skelton, B.W.; White, A.H. Synthesis of Putative Uniflorine A. J. Org. Chem. 2004, 69, 3139–3143. [Google Scholar] [CrossRef]
- Ritthiwigrom, T.; Pyne, S.G. Synthesis of (+)-Uniflorine A: A Structural Reassignment and a Configurational Assignment. Org. Lett. 2008, 10, 2769–2771. [Google Scholar] [CrossRef]
- Königs, P.; Rinker, B.; Maus, L.; Nieger, M.; Rheinheimer, J.; Waldvogel, S.R. Structural Revision and Synthesis of Altechromone A. J. Nat. Prod. 2010, 73, 2064–2066. [Google Scholar] [CrossRef]
- Kimura, Y.; Mizuno, T.; Nakajima, H.; Hamasaki, T. Altechromones A and B, New Plant Growth Regulators Produced by the Fungus, Alternaria sp. Biosci. Biotechnol. Biochem. 1992, 56, 1664–1665. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Jun, D.Y.; Kim, Y.H.; Min, B.S.; Min, B.K.; Woo, M.H. Monoterpenoids from the aerial parts of Aruncus dioicus var. kamtschaticus and their antioxidant and cytotoxic activities. Bioorg. Med. Chem. Lett. 2011, 21, 3252–3256. [Google Scholar] [CrossRef]
- Han, C.R.; Jun, D.Y.; Woo, H.J.; Jeong, S.-Y.; Woo, M.-H.; Kim, Y.H. Induction of microtubule-damage, mitotic arrest, Bcl-2 phosphorylation, Bak activation, and mitochondria-dependent caspase cascade is involved in human Jurkat T-cell apoptosis by aruncin B from Aruncus dioicus var. kamtschaticus. Bioorg. Med. Chem. Lett. 2012, 22, 945–953. [Google Scholar] [CrossRef]
- Ribaucourt, A.; Hodgson, D.M. Total Synthesis and Structural Revision of the Cytotoxin Aruncin B. Org. Lett. 2016, 18, 4364–4367. [Google Scholar] [CrossRef]
- Elyashberg, M.E.; Williams, A.J. Computer-Based Structure Elucidation from Spectral Data. The Art of Solving Problems; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Elyashberg, M.; Williams, A.; Blinov, K. Structural revisions of natural products by Computer Assisted Structure Elucidation (CASE) systems. Nat. Prod. Rep. 2010, 27, 1296–1328. [Google Scholar] [CrossRef] [PubMed]
- ACD\Structure Elucidator V.2022; Advanced Chemistry Develpment Inc.: Toronto, ON, Canada, 2022.
- Elyashberg, M.E.; Williams, A.J.; Blinov, K.A. Contemporary Computer-Assisted Approaches to Molecular Structure Elucidation; RSC: Cambridge, UK, 2012. [Google Scholar]
- Bremser, W. HOSE–a novel substructure code. Anal. Chim. Acta 1978, 103, 355–365. [Google Scholar] [CrossRef]
- Buevich, A.V.; Elyashberg, M.E. Towards unbiased and more versatile NMR-based structure elucidation: A powerful combination of CASE algorithms and DFT calculations. Magn. Reson. Chem. 2018, 56, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Spartan ’20, version 1.0.0.; Wavefunction Inc.: Irvine, CA, USA, 2021.
- Schrödinger Release 2021-1: MacroModel; Schrödinger, LLC: New York, NY, USA, 2021; Available online: https://www.schrodinger.com/products/macromodel (accessed on 30 March 2023).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Microsoft Excel for Misrosoft 365 MSO, version 2202; Microsoft Corporation: Redmond, WA, USA, 2022; Available online: https://www.microsoft.com/en-us/microsoft-365/excel (accessed on 30 March 2023).
- CHESHIRE. CHEmical SHift REpository with Coupling Constants Added too. Available online: http://cheshirenmr.info (accessed on 30 March 2023).
Structure #1 (20) | Structure #2 (19) | Structure #3 | Structure #4 | Structure #5 | Structure #6 | |
---|---|---|---|---|---|---|
RMSD, ppm | 1.11 | 1.75 | 2.73 | 2.85 | 3.62 | 4.06 |
max_dev, ppm | 2.8 | 4.3 | 8.7 | 9.1 | 9.3 | 9.8 |
r | 0.9997 | 0.9991 | 0.9979 | 0.9974 | 0.9959 | 0.9944 |
Structure #1 | Structure #2 (23) | Structure #3 | Original (22) | |
---|---|---|---|---|
RMSD, ppm | 2.71 | 2.01 | 2.39 | 8.69 |
max_dev, ppm | 4.5 | 3.4 | 6.5 | 17.4 |
r | 0.9958 | 0.9981 | 0.9968 | 0.9600 |
Structure #1 (25) | Structure #2 | Structure #3 | Original (24) | |
---|---|---|---|---|
RMSD, ppm | 1.59 | 3.75 | 4.04 | 6.87 |
max_dev, ppm | 3.3 | 9.6 | 10.9 | 22.2 |
r | 0.9996 | 0.9976 | 0.9977 | 0.9927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elyashberg, M.; Tyagarajan, S.; Mandal, M.; Buevich, A.V. Enhancing Efficiency of Natural Product Structure Revision: Leveraging CASE and DFT over Total Synthesis. Molecules 2023, 28, 3796. https://doi.org/10.3390/molecules28093796
Elyashberg M, Tyagarajan S, Mandal M, Buevich AV. Enhancing Efficiency of Natural Product Structure Revision: Leveraging CASE and DFT over Total Synthesis. Molecules. 2023; 28(9):3796. https://doi.org/10.3390/molecules28093796
Chicago/Turabian StyleElyashberg, Mikhail, Sriram Tyagarajan, Mihir Mandal, and Alexei V. Buevich. 2023. "Enhancing Efficiency of Natural Product Structure Revision: Leveraging CASE and DFT over Total Synthesis" Molecules 28, no. 9: 3796. https://doi.org/10.3390/molecules28093796
APA StyleElyashberg, M., Tyagarajan, S., Mandal, M., & Buevich, A. V. (2023). Enhancing Efficiency of Natural Product Structure Revision: Leveraging CASE and DFT over Total Synthesis. Molecules, 28(9), 3796. https://doi.org/10.3390/molecules28093796