Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials Preparation
3.1.1. Synthesis of Polystyrene (PS)
3.1.2. Synthesis of PPF-800
3.1.3. Synthesis of PF-800 and PC
3.2. Materials Characterizations
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nayak, P.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2017, 57, 102–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Song, X.; Dong, Y.; Yang, L.; Wang, L.; Jia, D.; Zong, B.; Qiu, J. Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon 2016, 109, 461–471. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Zhang, J.; Wu, N.; Liu, G.; Chen, H.; Yuan, C.; Liu, X. Optimizing electronic structure of porous Ni/MoO2 het-erostructure to boost alkaline hydrogen evolution reaction. J. Colloid Interf. Sci. 2022, 627, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Ghimbeu, C.M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J.-M. Correlation Between Microstructure and Na Storage Behavior in Hard Carbon. Adv. Energy Mater. 2015, 6, 1501588. [Google Scholar] [CrossRef]
- Liu, B.; Li, F.; Li, H.; Zhang, S.; Liu, J.; He, X.; Sun, Z.; Yu, Z.; Zhang, Y.; Huang, X.; et al. Monodisperse MoS2/Graphite Composite Anode Materials for Advanced Lithium Ion Batteries. Molecules 2023, 28, 2775. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.; Chu, H.; Niu, L.; Sun, Z.; Pan, L.; Sun, C.Q. Fe2O3-reduced graphene oxide composites synthesized via microwave-assisted method for sodium ion batteries. Electrochim. Acta 2015, 166, 12–16. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Z.; Sun, H.; Arandiyan, H.; Li, J.; Ahmad, M. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodium-ion battery anode. J. Power Sources 2015, 273, 878–884. [Google Scholar] [CrossRef]
- Zhao, Y.; Manthiram, A. High-Capacity, High-Rate Bi−Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries. Chem. Mater. 2015, 27, 3096–3101. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Huang, F.; Li, Y.; Xu, Y.; Wang, F.; Yao, Q.; Zhou, H.; Deng, J. 3D porous Sb-Co nanocomposites as advanced an-odes for sodium-ion batteries and potassium-ion batteries. Appl. Surf. Sci. 2020, 499, 143907–143914. [Google Scholar] [CrossRef]
- Yang, D.; Chen, W.; Zhang, X.; Mi, L.; Liu, C.; Chen, L.; Guan, X.; Cao, Y.; Shen, C. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 19709–19718. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.; Hu, Z.; Wang, Y.; Lan, D.; Cui, S.; Li, Z.; Zhao, A.; Feng, Y.; Chen, B.; et al. Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries. Chem. Eng. J. 2022, 435, 135149. [Google Scholar] [CrossRef]
- Pan, Q.; Zheng, F.; Liu, Y.; Li, Y.; Zhong, W.; Chen, G.; Hu, J.; Yang, C.; Liu, M. Fe1-xS@S-doped carbon core-shell heterostructured hollow spheres as highly reversible anode materials for sodium ion batteries. J. Mater. Chem. A 2019, 7, 20229–20238. [Google Scholar] [CrossRef]
- Veerasubramani, G.K.; Subramanian, Y.; Park, M.; Nagaraju, G.; Senthilkumar, B.; Lee, Y.; Kim, D. Enhanced storage ability by using porous pyrrhotite @ N-doped carbon yolk-shell as an advanced anode material for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 20056–20068. [Google Scholar] [CrossRef]
- Fan, H.; Qin, B.; Wang, Z.; Li, H.; Guo, J.; Wu, X.; Zhang, J.; Zhang, J. Pseudocapacitive sodium storage of Fe1-xS@N-doped carbon for low-temperature operation. Science China Materials 2022, 63, 505–515. [Google Scholar] [CrossRef]
- Qiu, Y.; Fan, L.; Wang, M.; Yin, X.; Wu, X.; Sun, X.; Tian, D.; Guan, B.; Tang, D.; Zhang, N. Precise Synthesis of Fe-N2 Sites with High Activity and Stability for Long-Life Lithium–Sulfur Batteries. ACS Nano 2020, 14, 16105–16113. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Ren, Y.; Yang, Y.; Liu, H.; Wang, L.; Li, J.; Dai, L.; He, Z. High-activity and stability graphite felt supported by Fe, N, S co-doped carbon nanofibers derived from bimetal-organic framework for vanadium redox flow battery. Chem. Eng. J. 2023, 460, 141751. [Google Scholar] [CrossRef]
- Xiao, Z.; Wu, Y.; Cao, S.; Yan, W.; Chen, B.; Xing, T.; Li, Z.; Lu, X.; Chen, Y.; Wang, K.; et al. An active site pre-anchoring and post-exposure strategy in Fe(CN)64-@PPy derived Fe/S/N-doped carbon electrocatalyst for high performance oxygen reduction re-action and zinc-air batteries. Chem. Eng. J. 2021, 413, 127395. [Google Scholar] [CrossRef]
- Lee, W.J.; Lim, J.; Kim, S.O. Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity? Small Methods 2017, 1, 1600014. [Google Scholar] [CrossRef]
- Jin, A.; Kim, M.-J.; Lee, K.-S.; Yu, S.-H.; Sung, Y.-E. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 2019, 12, 6–11. [Google Scholar] [CrossRef]
- Cui, L.; Tan, C.; Pan, Q.; Huang, Y.; Li, Y.; Wang, H.; Zheng, F.; Li, Q. SnS/Fe7S8 heterojunction embedded in three-dimensional N, S co-doped carbon nanosheets as anode material for sodium-ion batteries with long-term cycle life. Appl. Surf. Sci. 2023, 613, 155992. [Google Scholar] [CrossRef]
- Li, S.; Qu, B.; Huang, H.; Deng, P.; Xu, C.; Li, Q.; Wang, T. Controlled synthesis of iron sulfide coated by carbon layer to improve lithium and sodium storage. Electrochim. Acta 2017, 247, 1080–1087. [Google Scholar] [CrossRef]
- Zhao, J.; Weng, Y.; Xu, S.; Shebl, A.; Wen, X.; Yang, G. Protein-mediated synthesis of Fe3N nanoparticles embedded in hierarchical porous carbon for enhanced reversible lithium storage. J. Power Sources 2020, 464, 228246. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.; Song, Y.; Li, L.; Zhang, C.; Wang, G. Superior Rate Mesoporous Carbon Sphere Array Composite via Intecalation and Conversion Coupling Mechanisms for Potassium-Ion Capacitors. Adv. Funct. Mater. 2021, 31, 2107728. [Google Scholar] [CrossRef]
- Wu, N.; Shen, J.; Yong, K.; Chen, C.; Li, J.; Xie, Y.; Guo, D.; Liu, G.; Cao, A.; Liu, X.; et al. Synergistic Structure and Iron-Vacancy Engineering Realizing High Initial Coulombic Efficiency and Kinetically Accelerated Lithium Storage in Lithium Iron Oxide. Adv. Sci. 2023, 10, 2206574. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Wang, Y.; Wan, Y.; Tuo, Y.; Wang, X.; Sun, D. Embedding anion-doped Fe7S8 in N-doped carbon matrix and shell for fast and stable sodium storage. Mater. Chem. Phys. 2021, 264, 124456. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Zhou, M.; He, B.; Ren, W.; Chen, L.; Xu, W.; Hou, Z.; Chen, Y. In-situ self-templated preparation of porous core–shell Fe1−S@N, S co-doped carbon architecture for highly efficient oxygen reduction reaction. J. Energy Chem. 2020, 54, 310–317. [Google Scholar] [CrossRef]
- Liu, L.; Yuan, J.; Shang, X. Dual-Function Sacrificing Template-Directed Strategy for Constructing Hollow and Core-Shell Nonstoichiometric Fe1–xS@C Microspheres Exhibiting Ultrafast Sodium Storage. Chem. Nano Mat. 2022, 6, 963–968. [Google Scholar] [CrossRef]
- Xu, X.; Ma, Q.; Zhang, Z.; Peng, H.; Liu, J.; Mao, C.; Li, G. Pomegranate-like mesoporous microspheres assembled by N-doped car-bon coated Fe1-xS nanocrystals for high-performance lithium storage. J. Alloy. Compd. 2019, 797, 952–960. [Google Scholar] [CrossRef]
- He, X.; Liu, D.; Qu, D.; Li, J.; Tang, H.; Zhang, X.; Chen, H. Solid-state fabrication of CNT-threaded Fe1-xS@N-doped carbon com-posite as high-rate anodes for sodium-ion batteries and hybrid capacitors. J. Alloys Compd. 2021, 869, 159303. [Google Scholar] [CrossRef]
- Liu, J.; Li, G.; Wu, J. Fe2O3–TeO2–MoO3 semiconductor glass-ceramics as anode materials for high specific capacity lithium ion batteries. Mater. Chem. Phys. 2020, 258, 123894. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Pal, A.; Ning, Y.; Wang, Z.; Zhao, B.; Bradley, R.; Wu, W. Ultra-small Fe3O4 nanoparticles encapsulated in hollow porous carbon nanocapsules for high performance supercapacitors. Carbon 2021, 179, 327–336. [Google Scholar] [CrossRef]
- Ni, J.; Jia, Y.; Jiang, Y.; Zhang, R.; Fang, F.; Zhang, Y. Alkali-free synthesis of hexagonal star-like Fe-ethylene glycol (Fe-EG) complex and subsequently decomposition to α-Fe2O3 and Fe3O4/α-Fe/C composites. Chem. Phys. 2022, 555, 111429. [Google Scholar] [CrossRef]
- Cao, D.; Kang, W.; Wang, W.; Sun, K.; Wang, Y.; Ma, P.; Sun, D. Okra-Like Fe7S8/C@ZnS/N-C@C with Core–Double-Shelled Struc-tures as Robust and High-Rate Sodium Anode. Small 2020, 16, 1907641. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, T.; Wang, Y.-X.; Chou, S.-L.; Xu, X.; Cao, A.; Chen, L. S/N-doped carbon nanofibers affording Fe7S8 particles with superior sodium storage. J. Power Sources 2020, 451, 227790. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, D.; Wang, F.; Zhang, G.; Duan, J.; Han, F.; Duan, H.; Liu, J. Highly active Fe7S8 encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 2020, 53, 26–35. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Ye, Y.; Guo, R.; Wang, A.; Zou, G.; Hou, H.; Ji, X. Kilogram-Scale Synthesis and Functionalization of Carbon Dots for Superior Electrochemical Potassium Storage. ACS Nano 2021, 15, 6872–6885. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, F.; Xiang, J.; Yue, C.; Lee, D.; Song, T. A Nano-Micro Hybrid Structure Composed of Fe7 S8 Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Framework for High-Performance Lithium/Sodium-Ion Batteries. Part. Part. Syst. Charact. 2018, 35, 1800163. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, Q.; Du, R.; Yan, X.; Zhou, Y. Fe7S8 nanoparticles attached carbon networks as anode materials for both lithium and sodium ion batteries. Chem. Phys. Lett. 2018, 706, 273–279. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, Y.; Yang, J.; Hao, M.; Tong, Z.; Jiang, L.; Zhuang, W. MoS2 nanodot decorated In2S3 nanoplates: A novel heterojunction with enhanced photoelectrochemical performance. Chem. Com. 2016, 52, 1867–1870. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.-J.; Wu, Y.; Bao, S.-J.; Li, C.; Chen, Y.; Wang, G.; Xu, M. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Hu, M.; Ju, Z.; Bai, Z.; Yu, K.; Fang, Z.; Lu, R.; Yu, G. Revealing the Critical Factor in Metal Sulfide Anode Performance in Sodi-um-Ion Batteries: An Investigation of Polysulfide Shuttling Issues. Small Methods 2020, 4, 1900673. [Google Scholar] [CrossRef]
- Liu, T.; Li, Y.; Zhao, L.; Zheng, F.; Guo, Y.; Li, Y.; Pan, Q.; Liu, Y.; Hu, J.; Yang, C. In Situ Fabrication of Carbon-Encapsulated Fe7X8 (X = S, Se) for Enhanced Sodium Storage. ACS Appl. Mater. Inter. 2019, 11, 19040–19047. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, X.; Mi, L.; Liu, C.; Zhang, J.; Cui, S.; Feng, X.; Cao, Y.; Shen, C. High-Performance Flexible Freestanding Anode with Hierarchical 3D Carbon-Networks/Fe7S8/Graphene for Applicable Sodium-Ion Batteries. Adv. Mater. 2019, 31, 1806664. [Google Scholar]
- Jiang, F.; Zhang, L.; Zhao, W.; Zhou, J.; Ge, P.; Wang, L.; Yang, Y.; Sun, W.; Chang, X.; Ji, X. Microstructured sulfur-doped carbon coat-ed Fe7S8 composite for high performance lithium and sodium storage. ACS Sustain. Chem. Eng. 2020, 8, 11783–11794. [Google Scholar] [CrossRef]
- He, Q.; Rui, K.; Yang, J.; Wen, Z. Fe7S8 Nanoparticles Anchored on Nitrogen-Doped Graphene Nanosheets as Anode Materials for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 29476–29485. [Google Scholar] [CrossRef]
- Huang, W.; Sun, H.; Shangguan, H.; Cao, X.; Xiao, X.; Shen, F.; Mølhave, K.; Ci, L.; Si, P.; Zhang, J. Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 2018, 10, 7851–7859. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, X.; Dong, W.; Wang, H. FeS@tubular mesoporous carbon as high capacity and long cycle life anode materials for lithium- and sodium-ions batteries. J. Alloy. Compd. 2019, 786, 523–529. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Tang, S.; Wang, T.; Wang, K.; Pan, L.; Wang, C. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 2023, 629, 121–132. [Google Scholar] [CrossRef]
- Luo, Y.; He, H.; Li, P.; Cai, Y.; Zhang, M. Graphene-controlled FeSe nanoparticles embedded in carbon nanofibers for high-performance potassium-ion batteries. Sci. China Mater. 2022, 65, 1751–1760. [Google Scholar] [CrossRef]
- Liu, G.; Wu, H.; Meng, Q.; Zhang, T.; Sun, D.; Jin, X.; Guo, D.; Wu, N.; Liu, X.; Kim, J. Role of Anatase/TiO2(B) heterointerface for ul-trastable high-rate lithium and sodium energy storage performance. Nanoscale Horiz. 2020, 5, 150–162. [Google Scholar] [CrossRef]
- Yang, M.; Guo, D.; Zhang, T.; Liu, G.; Wu, N.; Qin, A.; Liu, X.; Mi, H. Controlled Synthesis of Ultrafine β-Mo2C Nanoparticles Encap-sulated in N-Doped Porous Carbon for Boosting Lithium Storage Kinetics. ACS OMEGA 2021, 6, 29609–29617. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hong, J.; Park, Y.; Jinsoo, K.; Hwang, I.; Kang, K. Sodium Storage Behavior in Natural Graphite using Ether-based Elec-trolyte Systems. Adv. Funct. Mater. 2015, 25, 534–541. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Li, F.; Cheng, F.; Chen, J. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes. Adv. Mater. 2017, 29, 1702212. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, J.; Lin, D.; Wang, D.; Li, B.; Li, W.; Sun, S.; He, Y.; Kang, F.; Yang, Q.; et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Ren, Y.; Guo, S.; Sun, B.; Wu, L.; Du, C.; Wang, J.; Yin, G.; Huo, H. Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Ether-Based Electrolytes. Adv. Funct. Mater. 2022, 32, 2110017. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Z.; Yang, D.; Song, K.; Mi, L.; Zhai, Y.; Guan, X.; Chen, W. Enhanced interfacial compatibility of FeS@N,S-C anode with ester-based electrolyte enables stable sodium-ion full cells. J. Energy Chem. 2022, 68, 27–34. [Google Scholar] [CrossRef]
- Liang, Y.; Song, N.; Zhang, Z.; Chen, W.; Feng, J.; Xi, B.; Xiong, S. Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. Adv. Mater. 2022, 34, 2202673–2202684. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Wu, N.; Xie, W.; Li, Q.; Guo, D.; Li, J.; Liu, G.; Liu, X.; Mi, H. Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering. Molecules 2023, 28, 3757. https://doi.org/10.3390/molecules28093757
Shen J, Wu N, Xie W, Li Q, Guo D, Li J, Liu G, Liu X, Mi H. Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering. Molecules. 2023; 28(9):3757. https://doi.org/10.3390/molecules28093757
Chicago/Turabian StyleShen, Jinke, Naiteng Wu, Wei Xie, Qing Li, Donglei Guo, Jin Li, Guilong Liu, Xianming Liu, and Hongyu Mi. 2023. "Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering" Molecules 28, no. 9: 3757. https://doi.org/10.3390/molecules28093757
APA StyleShen, J., Wu, N., Xie, W., Li, Q., Guo, D., Li, J., Liu, G., Liu, X., & Mi, H. (2023). Realizing Ultrafast and Robust Sodium-Ion Storage of Iron Sulfide Enabled by Heteroatomic Doping and Regulable Interface Engineering. Molecules, 28(9), 3757. https://doi.org/10.3390/molecules28093757